Computational Mathematics and its Applications
Research Article      Open Access      Peer-Reviewed

Study on generalized BK-5th recurrent Finsler space

Adel Mohammed Ali Al-Qashbari1* and Saeedah Mohammed Saleh Baleedi2

1Deparment of Mathematics, Faculty of Education, Aden, University of Aden, Khormaksar, Aden, Yemen
2Deparment of Mathematics, Faculty of Education, Abyan, University of Abyan, Zingibar, Abyan, Yemen
*Corresponding author: Adel Mohammed Ali Al-Qashbari, Deparment of Mathematics, Faculty of Education, Aden, University of Aden, Khormaksar, Aden, Yemen, Tel: 733678130; E-mail: Adel_ma71@yahoo.com
Received: 21 November, 2023 | Accepted: 06 December, 2023 | Published: 07 December, 2023
Keywords: N-dimensional finsler space Fn; generalized BK-5th recurrent spaces, Berwald’s fifth-order covariant derivative, K jkh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadUeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3D4D@ Cartan’s fourth curvature tensor and R jkh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3D54@ Cartan’s third curvature tensor

Cite this as

Ali Al-Qashbari AM, Saleh Baleedi SM (2023) Study on generalized BK-5th recurrent Finsler space. Comput Math Appl. 1(1): 009-020. DOI: 10.17352/cma.000002

Copyright Licence

© 2023 Ali Al-Qashbari AM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

In this paper, we present a novel new class and investigate the connection between the K-projective curvature tensor and other tensors of Finsler space Fn, this space is characterized by the property for Cartan’s 4th curvature tensor K jkh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadUeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3D4D@ satisfies the certain relationship with the given covariant vectors field, we define this space as a generalized BK-5th recurrent space and denote it briefly by GBK-5RFn. This paper aims to derive the fifth-order Berwald covariant derivatives of the torsion tensor   H kh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3D7F@ and the deviation tensor H h i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaaaa@3B6B@ . Additionally, it demonstrates that the curvature vector Hj, the curvature vector Hk, and the curvature scalar H are all non-vanishing within the considered space. We have identified tensors that exhibit self-similarity under specific conditions. Furthermore, we have established the necessary and sufficient conditions for certain tensors in this space to have equal fifth-order Berwald covariant derivatives with their lower-order counterparts.

1. Introduction

In 1973, Sinha and Singh studied the properties of recurrent tensors in recurrent Finsler space [1]. Several works on recurrent Finsler space were done in the years 1973 and 1987. Verma (1991) discussed the recurrence property of Cartan’s third curvature tensor   R jkh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckacaWGsbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaaaa@3E78@ [2]. Dikshit (1992) discussed the bi-recurrence of Berwald curvature tensor H jkh  i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaiaacckaaSWdaeaajugib8qacaWGPbaaaaaa@3E6E@ [3]. Qasem (2000) introduced and studied the recurrence conditions of the curvature tensor U jkh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadwfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3D57@ in the sense of Berwald [4]. Qasem and Abdallah (2016) defined a generalized BR-recurrent Finsler space and obtained the necessary and sufficient conditions for the Berwald curvature tensor and Cartan’s fourth curvature tensorto be generalized recurrent [5]. The generalized BK - recurrent Finsler space was introduced by Qasem and Baleedi (2016) this space whose Cartan’s fourth curvature tensor K jkh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadUeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3D4D@ satisfies a recurrence relation [6]. They showed that the K-Ricci tensor, the curvature vector, and the curvature scalar are non-vanishing in the BK-recurrent Finsler space. Al-Qashbari and Qasem (2017) [7] Studied on generalized BR-Trirecurrent Finsler Space. In 2020, Al-Qashbari [8] introduced some identities for generalized curvature tensors in B-recurrent Finsler space. Bidabad and Sepasi, [9] completed Finsler spaces of constant negative Ricci curvature. Abu-Donia, Shenawy, and Abdehameed [10] studied the W*-Curvature Tensor on Relativistic Space- times. Verstraelen [11] established a new submanifolds theory a contemplation of submanifolds in geometry of submanifolds. Deszcz, Głogowska, and Zafindratafa [12] established some conditions on hypersurfaces. In 2021, Opondo [13] studied the decomposition of Weyl projective curvature tensor in recurrent and bi-recurrent Finsler space. Chen [14] developmental Wintgen inequality and Wintgen ideal submanifolds. Eyasmin [15] studied hypersurfaces in a conformally flat space. Deszcz and Hotloś [16] defined and studied the geodesic mappings in a particular class of roter spaces. Deszcz, M. Głogowska, and M. Hotloś[17] studied the OpozdaVerstraelen affine curvature tensor on hypersurfaces. Decu, Deszcz, and Haesen [18] studied the classification of Roter-type spacetimes. In 2022, Deszcz, Głogowska, Hotloś, and Sawicz [19] studied the particular Roter-type equation on hypersurfaces in space forms. Derdzinski and Terek [20] introduced new examples of compact Weyl-parallel manifolds. Also they [21] studied the topology of compact rank-one ECSmanifolds. In 2023, Al-Qashbari and Al-Maisary [22] studied generalized BW- fourth recurrent in Finsler space. Shaikh, Hul, Datta, and Sakar [23] established new relations between the Kulkarni-Nomizu product of two (0,2) type tensors and the curvature tensors of type (0,4). Ali, Salman, Rahaman, and Pundeer, [24] obtained some properties of M-projective curvature tensor in spacetime.

Delving into the properties of an n-dimensional Finsler space Fn, we assume that its metric function F adheres to the established conditions outlined in the works of Deszcz, M. Głogowska, and M. Hotloś [17].

Positively homogeneous: F( x,ky )=k F(x,y),k>0. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaabAeajuaGdaqadaGcpaqaaKqzGeWdbiaadIhacaGGSaGaam4AaiaadMhaaOGaayjkaiaawMcaaKqzGeGaeyypa0Jaam4AaiaacckacaqGgbGaaiikaiaadIhacaGGSaGaamyEaiaacMcacaGGSaGaam4Aaiabg6da+iaaicdacaGGUaaaaa@4A68@

Positively:  F( x,y )>0 , y0. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckacaqGgbqcfa4aaeWaaOWdaeaajugib8qacaqG4bGaaiilaiaabMhaaOGaayjkaiaawMcaaKqzGeGaeyOpa4JaaGimaiaabckacaGGSaGaaeiOaiaabMhacqGHGjsUcaaIWaGaaiOlaaaa@4784@

{  ˙ i   ˙ j F 2 ( x , y ) }  ξ i   ξ j ,  ˙ i = y i ,is the positive definitevariables  ξ i . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGG7baeaaaaaaaaa8qacaGGGcqcfa4aaCbiaOqaaKqzGeGafyOaIyRbaiaajuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaaqabeaaaaqcLbsacaGGGcGafyOaIyRbaiaakmaaBaaaleaacaWGQbaabeaajugibiaadAeajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaKqbaoaabmaak8aabaqcLbsapeGaamiEaiaabckacaGGSaGaaeiOaiaadMhaaOGaayjkaiaawMcaaKqzGeGaaiiOa8aacaGG9bWdbiaacckacqaH+oaEjuaGpaWaaWbaaSqabeaajugib8qacaWGPbaaaiaacckacqaH+oaEjuaGpaWaaWbaaSqabeaajugib8qacaWGQbaaa8aacaGGSaWdbiaacckacuGHciITgaGaaOWaaSbaaSqaaiaadMgaaeqaaKqzGeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacqGHciITaOWdaeaajugib8qacqGHciITcaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaamyAaaaaaaGaaiila8aacaqGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiCaiaab+gacaqGZbGaaeyAaiaabshacaqGPbGaaeODaiaabwgacaqGGaGaaeizaiaabwgacaqGMbGaaeyAaiaab6gacaqGPbGaaeiDaiaabwgapeGaeyiaIiYdaiaabAhacaqGHbGaaeOCaiaabMgacaqGHbGaaeOyaiaabYgacaqGLbGaae4CaiaabccapeGaeqOVdGxcfa4damaaCaaaleqabaqcLbsapeGaamyAaaaapaGaaiOlaaaa@8E14@

The corresponding metric tenser denoted by gij, the connection coefficients of Cartan represented by   Γ jk *i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckacaqGtoqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaaWcpaqaaKqzGeWdbiaacQcacaWGPbaaaaaa@3E7B@ and the connection coefficients of Berwald designated by   G jk  i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckacaWGhbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaaaa@3EA4@ , are all related to the metric function F.

a)   g ij   y i   y j = F 2 , b)  g ij   y j = y i , c)  g ij = 1 2   ˙ i y j ,  d)  y i   y   i = F 2 , e)  g ij  g ik = δ j k ={   1   if  j=k , 0      if  jk .  f)   δ h  i g ik = g hk ,                g)   δ k  i y k = y i  and h)  δ i  i =n .                                                    (1.1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibiaabggacaqGPaGaaeiiaabaaaaaaaaapeGaaiiOaiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGQbaal8aabeaajugib8qacaGGGcGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadMgaaaGaaiiOaiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGQbaaaiabg2da9iaadAeajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaa8aacaGGSaGaaeiiaiaabkgacaqGPaGaaeiia8qacaWGNbqcfa4damaaBaaaleaajugib8qacaWGPbGaamOAaaWcpaqabaqcLbsapeGaaiiOaiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGQbaaaiabg2da9iaadMhajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgaaSWdaeqaaKqzGeGaaiilaaGcbaqcLbsacaqGJbGaaeykaiaabccapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadQgaaSWdaeqaaKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaikdaaaGaaiiOaiqbgkGi2Aaacaqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaadMhajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgaaSWdaeqaaKqzGeGaaiila8qacaGGGcGaaeiia8aacaqGKbGaaeykaiaabccapeGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaamyAaaWcpaqabaqcLbsapeGaaiiOaiaadMhajuaGpaWaaSbaaSqaaKqzGeWdbiaacckaaSWdaeqaaKqbaoaaCaaaleqabaqcLbsapeGaamyAaaaacqGH9aqpcaWGgbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaapaGaaiilaaGcbaqcLbsacaqGLbGaaeykaiaabccapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadQgacaGGGcaal8aabeaajugib8qacaWGNbqcfa4damaaCaaaleqabaqcLbsapeGaamyAaiaadUgaaaGaeyypa0JaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGQbaal8aabaqcLbsapeGaam4AaaaacqGH9aqpjuaGdaGabaGcpaqaaKqzGeWdbiaacckapaqbaeqabiqaaaGcbaqcLbsapeGaaGymaiaacckacaGGGcGaaiiOaiaadMgacaWGMbGaaiiOaiaacckacaWGQbGaeyypa0Jaam4AaiaacckacaGGSaaak8aabaqcLbsapeGaaGimaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaadMgacaWGMbGaaiiOaiaacckacaWGQbGaeyiyIKRaam4AaiaacckacaGGUaGaaiiOaaaaaOGaay5EaaqcLbsacaqGMbGaaeykaiaacckacaGGGcGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadUgaaSWdaeqaaKqzGeWdbiabg2da9iaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadIgacaWGRbaal8aabeaajugibiaacYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaaOqaaKqzGeGaae4zaiaacMcapeGaaiiOaiaacckacqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaGGGcaal8aabaqcLbsapeGaamyAaaaacaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaam4AaaaacqGH9aqpcaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaamyAaaaapaGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGObGaaeykaiaabccapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGPbGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaeyypa0JaamOBaiaacckacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeOlaiaabgdacaqGPaaaaaa@2AE0@

The torsion tensor C ijk MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGQbGaam4AaaWcpaqabaaaaa@3BB8@ defined by [12]

C ijk = 1 2    ˙ i g jk = 1 4    ˙ i   ˙ j ˙ k   F 2        (1.2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaaGOmaaaacaGGGcGaaiiOaiqbgkGi2Aaacaqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaI0aaaaiaacckacaGGGcGafyOaIyRbaiaajuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqzGeGaaiiOaiqbgkGi2Aaacaqcfa4aaSbaaSqaaKqzGeGaamOAaaWcbeaajugibiqbgkGi2Aaacaqcfa4aaSbaaSqaaKqzGeGaam4AaaWcbeaajugibiaacckacaWGgbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaajuaGpaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeOlaiaabkdacaqGPaaaaa@6DA9@

and its associate is the torsion tensor C jk  i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadoeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3D7C@ and it is defined by

a)  C ik h = g hj   C ijk   and b)  C jk  i   y k = C kj  i   y k =0.        (1.3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaabggacaqGPaGaaeiiaiaadoeajuaGpaWaa0baaSqaaKqzGeWdbiaadMgacaWGRbaal8aabaqcLbsapeGaamiAaaaacqGH9aqpcaWGNbqcfa4damaaCaaaleqabaqcLbsapeGaamiAaiaadQgaaaGaaiiOaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGQbGaam4AaaWcpaqabaqcLbsapeGaaiiOaiaacckacaqGHbGaaeOBaiaabsgacaqGGaGaaeOyaiaabMcacaGGGcGaam4qaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadUgacaGGGcaal8aabaqcLbsapeGaamyAaaaacaGGGcGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadUgaaaGaeyypa0Jaam4qaKqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadQgacaGGGcaal8aabaqcLbsapeGaamyAaaaacaGGGcGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadUgaaaGaeyypa0JaaGimaiaac6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeOlaiaabodacaqGPaaaaa@75A4@

These tensors satisfy the following conditions

a) C ijk  y k =C kij  y k =C jki  y k =0 ;   b) G jkh  i y j =G hjk  i y j =G khj  i y j =0 ; c)  δ k i  C jin =C jkn ; d) C jkr  g jk =C r and e)  Γ jkh *i  y h = G jkh  i y h =0 ; MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibabaaaaaaaaapeGaaeyyaiaabMcacaqGGaGaae4qaKqba+aadaWgaaWcbaqcLbsapeGaaeyAaiaabQgacaqGRbaal8aabeaajugib8qacaqGGcGaaeyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaabUgaaaGaaeypaiaaboeajuaGpaWaaSbaaSqaaKqzGeWdbiaabUgacaqGPbGaaeOAaaWcpaqabaqcLbsapeGaaeiOaiaabMhajuaGpaWaaWbaaSqabeaajugib8qacaqGRbaaaiaab2dacaqGdbqcfa4damaaBaaaleaajugib8qacaqGQbGaae4AaiaabMgaaSWdaeqaaKqzGeWdbiaabckacaqG5bqcfa4damaaCaaaleqabaqcLbsapeGaae4AaaaacaqG9aGaaeimaiaabccacaqG7aGaaeiOaiaabccaaOqaaKqzGeGaaeOyaiaabMcacaqGGcGaae4raKqba+aadaqhaaWcbaqcLbsapeGaaeOAaiaabUgacaqGObGaaeiOaaWcpaqaaKqzGeWdbiaabMgaaaGaaeyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaabQgaaaGaaeypaiaabEeajuaGpaWaa0baaSqaaKqzGeWdbiaabIgacaqGQbGaae4AaiaabckaaSWdaeaajugib8qacaqGPbaaaiaabMhajuaGpaWaaWbaaSqabeaajugib8qacaqGQbaaaiaab2dacaqGhbqcfa4damaaDaaaleaajugib8qacaqGRbGaaeiAaiaabQgacaqGGcaal8aabaqcLbsapeGaaeyAaaaacaqG5bqcfa4damaaCaaaleqabaqcLbsapeGaaeOAaaaacaqG9aGaaeimaiaabckacaqG7aaakeaajugibiaabogacaqGPaGaaeiiaiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaae4AaaWcpaqaaKqzGeWdbiaabMgaaaGaaeiOaiaaboeajuaGpaWaaSbaaSqaaKqzGeWdbiaabQgacaqGPbGaaeOBaaWcpaqabaqcLbsapeGaaeypaiaaboeajuaGpaWaaSbaaSqaaKqzGeWdbiaabQgacaqGRbGaaeOBaaWcpaqabaqcLbsacaqG7aaakeaajugib8qacaqGKbGaaeykaiaabccacaqGdbqcfa4damaaBaaaleaajugib8qacaqGQbGaae4AaiaabkhaaSWdaeqaaKqzGeWdbiaabckacaqGNbqcfa4damaaCaaaleqabaqcLbsapeGaaeOAaiaabUgaaaGaaeypaiaaboeajuaGpaWaaSbaaSqaaKqzGeWdbiaabkhaaSWdaeqaaaGcbaqcLbsacaqGHbGaaeOBaiaabsgaaOqaaKqzGeGaaeyzaiaabMcacaqGGaWdbiabfo5ahLqba+aadaqhaaWcbaqcLbsapeGaaeOAaiaabUgacaqGObaal8aabaqcLbsapeGaaeOkaiaabMgaaaGaaeiOaiaabMhajuaGpaWaaWbaaSqabeaajugib8qacaqGObaaaiaab2dacaqGGcGaae4raKqba+aadaqhaaWcbaqcLbsapeGaaeOAaiaabUgacaqGObGaaeiOaaWcpaqaaKqzGeWdbiaabMgaaaGaaeyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaabIgaaaGaaeypaiaabcdacaqGGcGaae4oaaaaaa@D1E0@

Where G jkh i = ˙ j   G kh   i and   ˙ i = y h .       (1.4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadEeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaeyypa0JafyOaIyRbaiaakmaaBaaaleaacaWGQbaabeaajugibiaacckacaWGhbqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaiaacckacaGGGcaal8aabaqcLbsapeGaamyAaaaapaGaaeyyaiaab6gacaqGKbGaaeiia8qacaGGGcGafyOaIyRbaiaajuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqzGeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacqGHciITaOWdaeaajugib8qacqGHciITcaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaamiAaaaaaaGaaiOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaab6cacaqG0aGaaeykaaaa@6547@

The Berwald covariant derivative k T j   i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacaWGubqcfa4damaaDaaaleaajugib8qacaWGQbGaaiiOaiaacckaaSWdaeaajugib8qacaWGPbaaaaaa@4B70@ of an arbitrary tensor field T j   i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaGGGcGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3DC1@ with respect to x k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIhajuaGpaWaaWbaaSqabeaajugib8qacaWGRbaaaaaa@39F7@ is defined as:

k   T j  i = k   T j  i ( ˙ r   T j   i )  G k r + T j   r   G rk i T r   i G jk  r .       (1.5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacaGGGcGaamivaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaacckaaSWdaeaajugib8qacaWGPbaaaiabg2da9iabgkGi2Mqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaaiiOaiaadsfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaGGGcaal8aabaqcLbsapeGaamyAaaaacqGHsisljuaGdaqadaGcpaqaaKqzGeWdbiqbgkGi2Aaacaqcfa4aaSbaaSqaaKqzGeGaamOCaaWcbeaajugibiaacckacaWGubqcfa4damaaDaaaleaajugib8qacaWGQbGaaiiOaiaacckaaSWdaeaajugib8qacaWGPbaaaaGccaGLOaGaayzkaaqcLbsacaGGGcGaam4raKqba+aadaqhaaWcbaqcLbsapeGaam4AaaWcpaqaaKqzGeWdbiaadkhaaaGaey4kaSIaamivaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaacckacaGGGcaal8aabaqcLbsapeGaamOCaaaacaGGGcGaam4raKqba+aadaqhaaWcbaqcLbsapeGaamOCaiaadUgaaSWdaeaajugib8qacaWGPbaaaiabgkHiTiaadsfajuaGpaWaa0baaSqaaKqzGeWdbiaadkhacaGGGcGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaam4raKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadUgacaGGGcaal8aabaqcLbsapeGaamOCaaaapaGaaiOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaab6cacaqG1aGaaeykaaaa@9581@

The Berwald covariant derivatives of the metric function F, the vectors yi, yi and the unit vector li are all identically zero [11]. In other words,

a)   k  F=0 ,b)  k  y i =0, c)  k   y i =0  and d)  k   l i  =0.      (1.6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGHbGaaeykaiaabccaqaaaaaaaaaWdbiaacckatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaaiiOaiaadAeacqGH9aqpcaaIWaGaaiiOaiaacYcapaGaaeOyaiaabMcacaqGGaWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeqaaKqzGeWdbiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGPbaaaiabg2da9iaaicdacaGGSaWdaiaabccacaqGJbGaaeykaiaabccapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacaGGGcGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaamyAaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacckacaGGGcGaaeyyaiaab6gacaqGKbGaaeiiaiaabsgacaqGPaGaaeiiaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaaiiOaiaadYgajuaGpaWaaWbaaSqabeaajugib8qacaWGPbGaaiiOaaaacqGH9aqpcaaIWaGaaiOlaiaacckacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeOlaiaabAdacaqGPaaaaa@8464@

However, Berwald’s covariant derivative of the metric tensor gij is not identically zero, meaning k  g ij 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGRbGaaiiOaaWcpaqabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadQgaaSWdaeqaaKqzGeWdbiabgcMi5kaaicdaaaa@4CDF@ . It is expressed as:

k g ij =2  y h  h   C ijk =2  C ijk׀h   y h .        (1.7) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiKcpaWaaSbaaSqaaiaadUgaaeqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGQbaal8aabeaajugib8qacqGH9aqpcqGHsislcaaIYaGaaiiOaiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGObGaaiiOaaaacqWFSeIqk8aadaWgaaWcbaGaamiAaaqabaqcLbsapeGaaiiOaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyypa0JaeyOeI0IaaGOmaiaacckacaWGdbqcfa4damaaBaaaleaajugib8qacaWGPbGaamOAaSWdaiaadUgajugib8qacaWGaxWcpaGaamiAaaqabaqcLbsapeGaaiiOaiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGObaaa8aacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaab6cacaqG3aGaaeykaaaa@7447@

The covariant differential operator of Berwald with respect to xh and the partial differential operator with respect to yk commute, as defined by

 ( ˙ i k  h h  ˙ k )  T j   i = T j  r G khr i   T r   i G khj   r ,      (1.8) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckajuaGdaqadaGcpaqaaKqzGeWdbiqbgkGi2Aaacaqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgacaGGGcaal8aabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiAaaWcpaqabaqcLbsapeGaeyOeI0Iae8hlHiucfa4damaaBaaaleaajugib8qacaWGObGaaiiOaaWcpaqabaqcLbsapeGafyOaIyRbaiaajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaaiiOaiaadsfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaGGGcGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaeyypa0JaamivaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaacckaaSWdaeaajugib8qacaWGYbaaaiaadEeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObGaamOCaaWcpaqaaKqzGeWdbiaadMgaaaGaeyOeI0IaaiiOaiaadsfajuaGpaWaa0baaSqaaKqzGeWdbiaadkhacaGGGcGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaam4raKqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadIgacaWGQbGaaiiOaiaacckaaSWdaeaajugib8qacaWGYbaaa8aacaGGSaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGUaGaaeioaiaabMcaaaa@8B1C@

Where T j   i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadsfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaGGGcGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3DC1@ is any arbitrary tensor.

The second Berwald covariant derivative of the vector field Xi, with respect to Xk and Xh is given by:

k   h   X i = ˙ k h  X i (   ˙ s  h  X i )  G k s +(   h X r   )  G rk i (   r  X i )  G hk r .      (1.9) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacaGGGcGae8hlHiucfa4damaaBaaaleaajugib8qacaWGObaal8aabeaajugib8qacaGGGcGaamiwaKqba+aadaahaaWcbeqaaKqzGeWdbiaadMgaaaGaeyypa0JafyOaIyRbaiaajuaGdaWgaaWcbaqcLbsacaWGRbaaleqaaKqzGeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGObGaaiiOaaWcpaqabaqcLbsapeGaamiwaKqba+aadaahaaWcbeqaaKqzGeWdbiaadMgaaaGaeyOeI0scfa4aaeWaaOWdaeaajugib8qacaGGGcGafyOaIyRbaiaajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaGGGcaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadIgacaGGGcaal8aabeaajugib8qacaWGybqcfa4damaaCaaaleqabaqcLbsapeGaamyAaaaaaOGaayjkaiaawMcaaKqzGeGaaiiOaiaadEeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgaaSWdaeaajugib8qacaWGZbaaaiabgUcaRKqbaoaabmaak8aabaqcLbsapeGaaiiOaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiAaaWcpaqabaqcLbsapeGaamiwaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaGaaiiOaaGccaGLOaGaayzkaaqcLbsacaGGGcGaam4raKqba+aadaqhaaWcbaqcLbsapeGaamOCaiaadUgaaSWdaeaajugib8qacaWGPbaaaiabgkHiTKqbaoaabmaak8aabaqcLbsapeGaaiiOaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOCaiaacckaaSWdaeqaaKqzGeWdbiaadIfajuaGpaWaaWbaaSqabeaajugib8qacaWGPbaaaaGccaGLOaGaayzkaaqcLbsacaGGGcGaam4raKqba+aadaqhaaWcbaqcLbsapeGaamiAaiaadUgaaSWdaeaajugib8qacaWGYbaaaiaac6cacaGGGcGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaab6cacaqG5aGaaeykaaaa@A781@

The tensors K jkh   i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadUeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaiaacckacaGGGcaal8aabaqcLbsapeGaamyAaaaaaaa@3F95@ and R jkh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3D54@ defined by

a)   K jkh i = k Γ hj *i  +( ˙ s Γ jk *i   )  Γ th *s   y t + Γ mk *i Γ hj *m h Γ kj *i  (   ˙ s Γ jh *i   )  Γ tk *s   y t   Γ mh *i Γ kj *m   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibiaabggacaGGPaaeaaaaaaaaa8qacaGGGcGaaiiOaiaadUeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaeyypa0JaeyOaIyBcfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacqqHtoWrjuaGpaWaa0baaSqaaKqzGeWdbiaadIgacaWGQbaal8aabaqcLbsapeGaaiOkaiaadMgaaaGaaiiOaiabgUcaRKqbaoaabmaak8aabaqcfa4aaCbiaOqaaKqzGeWdbiabgkGi2cWcpaqabeaajugib8qacaGGzlaaaKqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGaeu4KdCucfa4damaaDaaaleaajugib8qacaWGQbGaam4AaaWcpaqaaKqzGeWdbiaacQcacaWGPbaaaiaacckaaOGaayjkaiaawMcaaKqzGeGaaiiOaiabfo5ahLqba+aadaqhaaWcbaqcLbsapeGaamiDaiaadIgaaSWdaeaajugib8qacaGGQaGaam4CaaaacaGGGcGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadshaaaGaey4kaSIaeu4KdCucfa4damaaDaaaleaajugib8qacaWGTbGaam4AaaWcpaqaaKqzGeWdbiaacQcacaWGPbaaaiaabo5ajuaGpaWaa0baaSqaaKqzGeWdbiaadIgacaWGQbaal8aabaqcLbsapeGaaiOkaiaad2gaaaGaeyOeI0IaeyOaIyBcfa4damaaBaaaleaajugib8qacaWGObaal8aabeaajugib8qacqqHtoWrjuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGQbaal8aabaqcLbsapeGaaiOkaiaadMgaaaaak8aabaqcLbsapeGaaeiOaiabgkHiTKqbaoaabmaak8aabaqcLbsapeGaaiiOaKqba+aadaWfGaGcbaqcLbsapeGaeyOaIylal8aabeqaaKqzGeWdbiaacMTaaaqcfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqqHtoWrjuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGObaal8aabaqcLbsapeGaaiOkaiaadMgaaaGaaiiOaaGccaGLOaGaayzkaaqcLbsacaGGGcGaeu4KdCucfa4damaaDaaaleaajugib8qacaWG0bGaam4AaaWcpaqaaKqzGeWdbiaacQcacaWGZbaaaiaacckacaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaamiDaaaacqGHsislcaGGGcGaeu4KdCucfa4damaaDaaaleaajugib8qacaWGTbGaamiAaaWcpaqaaKqzGeWdbiaacQcacaWGPbaaaiabfo5ahLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadQgaaSWdaeaajugib8qacaGGQaGaamyBaaaacaGGGcaaaaa@C00E@

and

b)  R jkh i = h Γ jk *i +( ˙ r Γ jk *i )  Γ sh *r y s + C jm i ( k Γ sh *m y s   Γ kr *m   Γ sh *r   y s )+ Γ mk *i Γ jh *m    k Γ jh *i ( ˙ r Γ jh *i )  Γ sk *r   y s C jm i ( h  Γ sk *m   y s    Γ hr *m   Γ sk *r   y s ) Γ mh  *i Γ jk *m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibiaabkgacaGGPaaeaaaaaaaaa8qacaGGGcGccaWGsbWdamaaDaaaleaapeGaamOAaiaadUgacaWGObaapaqaa8qacaWGPbaaaOGaeyypa0JaeyOaIy7damaaBaaaleaapeGaamiAaaWdaeqaaOWdbiaabo5apaWaa0baaSqaa8qacaWGQbGaam4AaaWdaeaapeGaaiOkaiaadMgaaaGccqGHRaWkdaqadaWdaeaadaWfGaqaa8qacqGHciITaSWdaeqabaWdbiaacMTaaaGcpaWaaSbaaSqaa8qacaWGYbaapaqabaGcpeGaae4Kd8aadaqhaaWcbaWdbiaadQgacaWGRbaapaqaa8qacaGGQaGaamyAaaaaaOGaayjkaiaawMcaaiaacckacaqGtoWdamaaDaaaleaapeGaam4CaiaadIgaa8aabaWdbiaacQcacaWGYbaaaOGaamyEa8aadaahaaWcbeqaa8qacaWGZbaaaOGaey4kaSIaam4qa8aadaqhaaWcbaWdbiaadQgacaWGTbaapaqaa8qacaWGPbaaaOWaaeWaa8aabaWdbiabgkGi2+aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacaqGtoWdamaaDaaaleaapeGaam4CaiaadIgaa8aabaWdbiaacQcacaWGTbaaaOGaamyEa8aadaahaaWcbeqaa8qacaWGZbaaaOGaaiiOaiaacobicaqGtoWdamaaDaaaleaapeGaam4Aaiaadkhaa8aabaWdbiaacQcacaWGTbaaaOGaaiiOaiaabo5apaWaa0baaSqaa8qacaWGZbGaamiAaaWdaeaapeGaaiOkaiaadkhaaaGccaGGGcGaamyEa8aadaahaaWcbeqaa8qacaWGZbaaaaGccaGLOaGaayzkaaGaey4kaSIaae4Kd8aadaqhaaWcbaWdbiaad2gacaWGRbaapaqaa8qacaGGQaGaamyAaaaakiaabo5apaWaa0baaSqaa8qacaWGQbGaamiAaaWdaeaapeGaaiOkaiaad2gaaaaak8aabaqcLbsapeGaaiiOaOGaeyOeI0IaaiiOaiabgkGi2+aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacaqGtoWdamaaDaaaleaapeGaamOAaiaadIgaa8aabaWdbiaacQcacaWGPbaaaOGaeyOeI0YaaeWaa8aabaWaaCbiaeaapeGaeyOaIylal8aabeqaa8qacaGGzlaaaOWdamaaBaaaleaapeGaamOCaaWdaeqaaOWdbiaabo5apaWaa0baaSqaa8qacaWGQbGaamiAaaWdaeaapeGaaiOkaiaadMgaaaaakiaawIcacaGLPaaacaGGGcGaae4Kd8aadaqhaaWcbaWdbiaadohacaWGRbaapaqaa8qacaGGQaGaamOCaaaakiaacckacaWG5bWdamaaCaaaleqabaWdbiaadohaaaGccqGHsislcaWGdbWdamaaDaaaleaapeGaamOAaiaad2gaa8aabaWdbiaadMgaaaGcdaqadaWdaeaapeGaeyOaIy7damaaBaaaleaapeGaamiAaaWdaeqaaOWdbiaabckacaqGtoWdamaaDaaaleaapeGaam4CaiaadUgaa8aabaWdbiaacQcacaWGTbaaaOGaaiiOaiaadMhapaWaaWbaaSqabeaapeGaam4CaaaakiaacckacaGGtaIaaiiOaiaabo5apaWaa0baaSqaa8qacaWGObGaamOCaaWdaeaapeGaaiOkaiaad2gaaaGccaGGGcGaae4Kd8aadaqhaaWcbaWdbiaadohacaWGRbaapaqaa8qacaGGQaGaamOCaaaakiaacckacaWG5bWdamaaCaaaleqabaWdbiaadohaaaaakiaawIcacaGLPaaacqGHsislcaqGtoWdamaaDaaaleaapeGaamyBaiaadIgacaGGGcaapaqaa8qacaGGQaGaamyAaaaakiaabo5apaWaa0baaSqaa8qacaWGQbGaam4AaaWdaeaapeGaaiOkaiaad2gaaaaaaaa@DAEB@

The aforementioned tensors, denoted as Cartan’s fourth curvature tensor and Cartan’s third curvature tensor, respectively, exhibit skew-symmetry with respect to their last two lower indices and positive homogeneity of degree zero in their directional arguments. These tensors adhere to the following relations:

a) R jkh i   y j = K jkh i   y j = H kh i  ,b) H jkh i = K jkh i +  y m  ( ˙ j   K mkh i ), c)   K jkh i = R jkh i C js i H kh s  ,d)  H jkh i K jkh i = P jkh i + P jk r P rh i P jhk i P jh r P rk i , e) R ijhk = K ijhk + C ijm   K rhk  s y m  and f) R ijkh = g rj R ikh r .                                                  (1.11)        MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibiaabggacaGGPaaeaaaaaaaaa8qacaWGsbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiaacckacaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaamOAaaaacqGH9aqpcaWGlbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiaacckacaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaamOAaaaacqGH9aqpcaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaaiiOaiaacYcapaGaaeOyaiaacMcapeGaamisaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaacqGH9aqpcaWGlbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiaacckacaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaamyBaaaacaGGGcGaaiikaiqbgkGi2Aaacaqcfa4damaaBaaaleaajugib8qacaWGQbaal8aabeaajugib8qacaGGGcGaam4saKqba+aadaqhaaWcbaqcLbsapeGaamyBaiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaacaGGPaGaaiilaaGcbaqcLbsapaGaae4yaiaacMcapeGaaiiOaiaacckacaWGlbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiabg2da9iaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaeyOeI0Iaam4qaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadohaaSWdaeaajugib8qacaWGPbaaaiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaam4CaaaacaGGGcGaaiila8aacaqGKbGaaiyka8qacaGGGcGaamisaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaacqGHsislcaWGlbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiabg2da9iaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaey4kaSIaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeaajugib8qacaWGYbaaaiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadkhacaWGObaal8aabaqcLbsapeGaamyAaaaacqGHsislcaWGqbqcfa4damaaDaaaleaajugib8qacaWGQbGaamiAaiaadUgaaSWdaeaajugib8qacaWGPbaaaiabgkHiTiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGObaal8aabaqcLbsapeGaamOCaaaacaWGqbqcfa4damaaDaaaleaajugib8qacaWGYbGaam4AaaWcpaqaaKqzGeWdbiaadMgaaaWdaiaacYcaaOqaaKqzGeGaaeyzaiaacMcapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadQgacaWGObGaam4AaaWcpaqabaqcLbsapeGaeyypa0Jaam4saKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadQgacaWGObGaam4AaaWcpaqabaqcLbsapeGaey4kaSIaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadQgacaWGTbaal8aabeaajugib8qacaGGGcGaam4saKqba+aadaqhaaWcbaqcLbsapeGaamOCaiaadIgacaWGRbGaaiiOaaWcpaqaaKqzGeWdbiaadohaaaGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaad2gaaaWdaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeOzaiaacMcapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadQgacaWGRbGaamiAaaWcpaqabaqcLbsapeGaeyypa0Jaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOCaiaadQgaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadMgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadkhaaaWdaiaac6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeOlaiaabgdacaqGXaGaaeykaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaaaaa@3E5C@

Ricci tensor Kjk, curvature vector Kj and curvature scalar K derived from the curvature tensor   K jkh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckacaWGlbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaaaa@3E71@ are defined as:

a)  K jki i = K jk ,b)  K jk  y k = K j  and c)  K jk   g jk =K.      (1.12) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGHbGaaiykaabaaaaaaaaapeGaaiiOaiaadUeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamyAaaWcpaqaaKqzGeWdbiaadMgaaaGaeyypa0Jaam4saKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeGaaiilaiaabkgacaGGPaGaaeiia8qacaWGlbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaacckaaSWdaeqaaKqzGeWdbiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGRbaaaiabg2da9iaadUeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgaaSWdaeqaaKqzGeGaaeiiaiaabggacaqGUbGaaeizaiaabccacaqGJbGaaiyka8qacaGGGcGaam4saKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeWdbiaacckacaWGNbqcfa4damaaCaaaleqabaqcLbsapeGaamOAaiaadUgaaaGaeyypa0Jaam4saiaac6cacaGGGcGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaab6cacaqGXaGaaeOmaiaabMcaaaa@72D0@

Ricci tensor Rjk, the deviation tensor R h i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaaaa@3B75@ and curvature scalar R derived from the curvature tensor R jkh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3D54@ are defined as:

a)  R jkr r = R jk ,b)   R jkh  i g jk = R h i  and c)  R jk  g jk =R.     (1.13) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGHbGaaiykaabaaaaaaaaapeGaaiiOaiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamOCaaWcpaqaaKqzGeWdbiaadkhaaaGaeyypa0JaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeGaaiilaiaabkgacaGGPaWdbiaacckacaGGGcGaamOuaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadUgacaWGObGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaam4zaKqba+aadaahaaWcbeqaaKqzGeWdbiaadQgacaWGRbaaaiabg2da9iaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaa8aacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabogacaGGPaWdbiaacckacaWGsbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaacckaaSWdaeqaaKqzGeWdbiaadEgajuaGpaWaaWbaaSqabeaajugib8qacaWGQbGaam4AaaaacqGH9aqpcaWGsbGaaiOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGUaGaaeymaiaabodacaqGPaaaaa@7753@

The curvature tensor of Berwald H jkh i , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaqcfa4daiaacYcaaaa@3E97@ torsion tensor Ricci tensor H kh i ,  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaajuaGpaGaaiilaKqzGeWdbiaacckaaaa@3F6B@ deviation tensor H jk , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugibiaacYcaaaa@3C0E@ H h i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaaaa@3B6B@ and curvature scalar H is defined as

a) H jkh i   y j ,= H kh i b)  H kh i   y k = H h i ,c)  H k   i y k =0,d) H jk = H jkr r e)  H kr r = H k ,f)  H jk  i y i =0,g) y i  H k i =0, h)  K jk  y j = H k and i) K j y j =( n1 )H.                                              (1.14) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibiaabggacaGGPaaeaaaaaaaaa8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiaacckacaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaamOAaaaapaGaaiila8qacqGH9aqpcaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaWdaiaabkgacaGGPaWdbiaacckacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaaiiOaiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGRbaaaiabg2da9iaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaa8aacaGGSaGaae4yaiaacMcapeGaaiiOaiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaGGGcGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadUgaaaGaeyypa0JaaGimaiaacYcapaGaaeizaiaacMcapeGaamisaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeWdbiabg2da9iaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamOCaaWcpaqaaKqzGeWdbiaadkhaaaaak8aabaqcLbsacaqGLbGaaiyka8qacaGGGcGaamisaKqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadkhaaSWdaeaajugib8qacaWGYbaaaiabg2da9iaadIeajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqzGeGaaiilaiaabAgacaGGPaWdbiaacckacaWGibqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadMhajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgaaSWdaeqaaKqzGeWdbiabg2da9iaaicdacaGGSaGaam4zaiaacMcacaWG5bqcfa4damaaBaaaleaajugib8qacaWGPbGaaiiOaaWcpaqabaqcLbsapeGaamisaKqba+aadaqhaaWcbaqcLbsapeGaam4AaaWcpaqaaKqzGeWdbiaadMgaaaGaeyypa0JaaGimaiaacYcaaOqaaKqzGeWdaiaabIgacaGGPaWdbiaacckacaWGlbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaacckaaSWdaeqaaKqzGeWdbiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGQbaaaiabg2da9iaadIeajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqzGeGaaeyyaiaab6gacaqGKbGaaeiiaiaabMgacaGGPaWdbiaadUeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgaaSWdaeqaaKqzGeWdbiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGQbaaaiabg2da9Kqbaoaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaamisaiaac6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGUaGaaeymaiaabsdacaqGPaaaaaa@F123@

A Finsler space in which the Berwald connection parameter   G kh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckacaWGhbqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3D7E@ does not depend on the directional coefficients yi is known as an affinely connected space (Berwald space) [17].

Therefore, an affinely connected space is defined by one of the equivalent conditions

a)  k g ij =0 and b) k g ij =0      (1.15) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGHbGaaiykaabaaaaaaaaapeGaaiiOamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8hlHiucfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacaWGNbqcfa4damaaBaaaleaajugib8qacaWGPbGaamOAaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaabccacaqGHbGaaeOBaiaabsgacaqGGaWdaiaabkgacaGGPaWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaam4zaKqba+aadaahaaWcbeqaaKqzGeWdbiaadMgacaWGQbaaaiabg2da9iaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaab6cacaqGXaGaaeynaiaabMcaaaa@6573@

2. A Generalized BK-5th recurrent Finsler space

Let us explore in GBK-RFn for which whose Cartan’s fourth curvature tensor K jkh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadUeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3D4D@ is defined as [9]:

m K jkh i = a m K jkh i + b m ( δ h i g jk δ k  i g jh ) , K jkh i 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaWGlbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadUeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaey4kaSIaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0IaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGRbGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadIgaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaaiiOaiaacYcacaWGlbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiabgcMi5kaaicdaaaa@7FFD@

Is called generalized BK-recurrent space, where Bm is a covariant derivative of the first order (Berwald’s covariant differential operator) with respect to xm. Taking the covariant derivative of the fifth order for the above equation in the sense of Berwald with respect to xl, xm, xn, xq and xs respectively, we obtain

s q n m l K jkh i = a sqlnm K jkh i + b sqlnm ( δ h i g jk δ k  i g jh ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiaadUeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaeyypa0JaamyyaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaadUeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaey4kaSIaamOyaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObaal8aabeaaaOWdbiaawIcacaGLPaaaaaa@8CB7@

  c sqlnm ( δ h i C jkn δ k  i C jhn ) d sqlnm ( δ h i C jkl δ k  i C jhl ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGJbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4Aaiaad6gaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamOBaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHsislcaWGKbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadYgaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamiBaaWcpaqabaaak8qacaGLOaGaayzkaaaaaa@7ED1@

  e sqlnm ( δ h i C jkq δ k  i C jhq )2 b qlnm y r r ( δ h i C jks δ k  i C jhs ).      (2.1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGLbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadghaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamyCaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHsislcaaIYaGaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadkhaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGZbaal8aabeaajugib8qacqGHsislcqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaGGGcaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaiaadohaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaaiOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeOlaiaabgdacaqGPaaaaa@9841@

Multiplying (2.1) by yj, using (1.6b), (1.11a), (1.4a), and (1.1b), we obtain

s q l n m H kh i = a sqlnm H kh i + b sqlnm ( δ h i y k δ k i y h ).      (2.2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamisaKqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaiaadMhajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaaWcpaqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaamiAaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGUaGaaeOmaiaabMcaaaa@907A@

Multiplying (2.2) by yk, using (1.6b), (1.14b), (1.1d), and (1.1g), we obtain

s q l n m H h i = a sqlnm H h i + b sqlnm ( δ h i F 2 y i y h ).     (2.3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacqGHRaWkcaWGIbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGgbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaacqGHsislcaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaamyAaaaacaWG5bqcfa4damaaBaaaleaajugib8qacaWGObaal8aabeaaaOWdbiaawIcacaGLPaaajugibiaac6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeOlaiaabodacaqGPaaaaa@8A89@

In conclusion, we find that

Theorem 2.1: In the GBK-5RFn, Berwald's covariant derivatives of the fifth order for the torsion tensor H kh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaaaaa@3C5B@ and the deviation tensor H h i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaaaa@3B6B@ are given by the conditions (2.2) and (2.3), respectively.

Summation over the indices i and h in condition (2.1), using (1.12a), (1.4c), (1.1f) and (1.1h), we obtain

s q l n m K jk = a sqlnm K jk + b sqlnm ( n1 ) g jk MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadUeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaam4saKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeWdbiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGUbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaaaaa@79D8@

  c sqlnm ( n1 ) C jkn   d sqlnm ( n1 ) C jkl MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGJbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGUbaal8aabeaajugib8qacaqGGcGaeyOeI0IaamizaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaamiBaaWcpaqabaaaaa@601A@

  e sqlnm ( n1 ) C jkq 2 b qlnm y r r ( n1 ) C jks .     (2.4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGLbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGXbaal8aabeaajugib8qacqGHsislcaaIYaGaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadkhaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaam4CaaWcpaqabaqcLbsacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaab6cacaqG0aGaaeykaaaa@77BD@

Multiplying (2.4) by yk, using (1.6b), (1.12b), (1.4a) and (1.1b), we obtain

s q l n m K j = a sqlnm K j + b sqlnm ( n1 ) y j .      (2.5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadUeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgaaSWdaeqaaKqzGeWdbiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGlbqcfa4damaaBaaaleaajugib8qacaWGQbaal8aabeaajugib8qacqGHRaWkcaWGIbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaamOAaaWcpaqabaqcLbsacaGGUaWdbiaacckacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGYaGaaeOlaiaabwdacaqGPaaaaa@8033@

Multiplying (2.5) by yj, using (1.6b), (1.14i) and (1.1d), we obtain

s q l n m H= a sqlnm H+ b sqlnm F 2 .     (2.6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamisaiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGgbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaab6cacaqG2aGaaeykaaaa@7258@

Multiplying (2.4) by y, using (1.6b), (1.14h), (1.4a) and (1.1b), we obtain

s q l n m H k = a sqlnm H k + b sqlnm ( n1 )  y k .     (2.7) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqzGeWdbiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGibqcfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacqGHRaWkcaWGIbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaaiiOaiaadMhajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqzGeGaaiOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGUaGaae4naiaabMcaaaa@8022@

In conclusion, we find that

Theorem 2.2: In the GBK-5RFn, the curvature vector kj, the curvature vector Hk and the curvature scalar H are all nonzero.

3. Necessary and sufficient condition

Let us explore an GBK-5RFn which is characterized by the condition (2.1).

Multiplying (2.4) by gjk, and let a Berwald space (affinely connected space) and using (1.12c), (1.15b), (1.1e), (1.1h), and (1.4d), we obtain

s q l n m K= a sqlnm K+n( n1 ) b sqlnm        (3.1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadUeacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaam4saiabgUcaRiaad6gajuaGdaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeymaiaabMcaaaa@76E3@

 ( n1 )[   c sqlnm c n + d sqlnm c l + e sqlnm c q +2 b qlnm y r r C s   ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckajuaGdaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajuaGdaWadaGcpaqaaKqzGeWdbiaacckacaWGJbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaam4yaKqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGaey4kaSIaamizaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaadogajuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiabgUcaRiaadwgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGJbqcfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqGHRaWkcaaIYaGaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadkhaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadohaaSWdaeqaaKqzGeWdbiaacckaaOGaay5waiaaw2faaaaa@863A@

We can express the above equation in different ways as

s q l n m K= a sqlnm K     (3.2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadUeacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaam4saiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeOmaiaabMcaaaa@660B@

If and only if

n b sqlnm [ c sqlnm c n + d sqlnm c l + e sqlnm c q +2 b qlnm  y r r C s ]=0       (3.3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaad6gacaWGIbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaeyOeI0scfa4aamWaaOWdaeaajugib8qacaWGJbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaam4yaKqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGaey4kaSIaamizaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaadogajuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiabgUcaRiaadwgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGJbqcfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqGHRaWkcaaIYaGaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyCaiaadYgacaWGUbGaamyBaiaacckaaSWdaeqaaKqzGeWdbiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGYbaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8hlHiucfa4damaaBaaaleaajugib8qacaWGYbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaaaOWdbiaawUfacaGLDbaajugibiabg2da9iaaicdacaGGGcGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaae4maiaabMcaaaa@9167@

In conclusion, we find that

Theorem 3.1: In the GBK-5RFn, (as defined by Berwald space), the fifth-order Berwald covariant derivative of the curvature scalar K is directly proportional to the curvature scalar itself solely under the condition that equation (3.3) is valid.

On account of (2.4), we have

s q l n m K jk = a sqlnm K jk       (3.4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadUeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaam4saKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqbakaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabsdacaqGPaaaaa@6E9F@

If and only if

b sqlnm g jk c sqlnm C jkn   d sqlnm C jkl e sqlnm C jkq 2 b qlnm  y r r C jks =0      (3.5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0Iaam4yaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaamOBaaWcpaqabaqcLbsapeGaaeiOaiabgkHiTiaadsgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadYgaaSWdaeqaaKqzGeWdbiabgkHiTiaadwgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadghaaSWdaeqaaKqzGeWdbiabgkHiTiaaikdacaWGIbqcfa4damaaBaaaleaajugib8qacaWGXbGaamiBaiaad6gacaWGTbGaaiiOaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadkhaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaam4CaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabwdacaqGPaaaaa@995C@

In conclusion, we find that

Theorem 3.2: In the GBK-5RFn, covariant derivative of Berwald on the fifth order for Ricci tensor Kjk is proportional to the tensor itself if and only if (3.5) is valid.

On account of the condition [15]:

m H kh i = λ m H kh  i + μ m ( δ h i y k δ k  i y h )    (3.6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaeyypa0Jaeq4UdWwcfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaiaacckaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiabeY7aTLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGaaiikaiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaeyOeI0IaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGRbGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaamiAaaWcpaqabaqcLbsapeGaaiykaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqG2aGaaeykaaaa@7931@

And in view the condition (2.2), we obtain

s q l n m H kh i = m H kh i       (3.7) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaacqGH9aqpcqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaajuaGpaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaae4naiaabMcaaaa@6D80@

If and only if

λ m H kh i + μ m ( δ h i y k δ k  i y h )= a sqlnm H kh i + b sqlnm ( δ h i y k δ k i y h )      (3.8) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabeU7aSLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGaamisaKqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiabeY7aTLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGaaiikaiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaeyOeI0IaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGRbGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaamiAaaWcpaqabaqcLbsapeGaaiykaiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaey4kaSIaamOyaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaeyOeI0IaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGRbaal8aabaqcLbsapeGaamyAaaaacaWG5bqcfa4damaaBaaaleaajugib8qacaWGObaal8aabeaaaOWdbiaawIcacaGLPaaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqG4aGaaeykaaaa@92B5@

In conclusion, we find that

Theorem 3.3: In the GBK-5RFn, covariant derivative of Berwald on the first order and fifth order for the torsion tensor both are equal if and only if (3.8) is valid.

On account of the condition [15]:

m H h i = λ m H h  i + μ m ( δ h i F 2 y i y h ).      (3.9) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacqGH9aqpcqaH7oaBjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadIgacaGGGcaal8aabaqcLbsapeGaamyAaaaacqGHRaWkcqaH8oqBjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaacIcacqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaiaadAeajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaiabgkHiTiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGPbaaaiaadMhajuaGpaWaaSbaaSqaaKqzGeWdbiaadIgaaSWdaeqaaKqzGeWdbiaacMcacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeyoaiaabMcaaaa@74B9@

And in view the condition (2.3), we obtain

s q l n m H h i = m H h i .     (3.10) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaiabg2da9iab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGaamisaKqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaWdaiaac6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabgdacaqGWaGaaeykaaaa@6BCE@

If and only if

λ m H h  i + μ m ( δ h i F 2 y i y h )= a sqlnm H h  i + b sqlnm ( δ h i F 2 y i y h ).     (3.11) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabeU7aSLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGaamisaKqba+aadaqhaaWcbaqcLbsapeGaamiAaiaacckaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiabeY7aTLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGgbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaacqGHsislcaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaamyAaaaacaWG5bqcfa4damaaBaaaleaajugib8qacaWGObaal8aabeaaaOWdbiaawIcacaGLPaaajugibiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGObGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaey4kaSIaamOyaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaamOraKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaGaeyOeI0IaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaamiAaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGXaGaaeymaiaabMcaaaa@8CC9@

In conclusion, we find that

Theorem 3.4: In the GBK-5RFn, covariant derivative of Berwald on the first order and fifth order for the deviation tensor H h i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaaaa@3B6B@ both are equal if and only if (3.11) is valid.

On account of the condition [8]:

s n m l   W kh i = a lmns W kh  i + b lmns ( δ h i y k δ k  i y h ) .     (3.12) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGSbaal8aabeaajugib8qacaGGGcGaam4vaKqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadYgacaWGTbGaamOBaiaadohaaSWdaeqaaKqzGeWdbiaadEfajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaey4kaSIaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamiBaiaad2gacaWGUbGaam4CaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWG5bqcfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacqGHsislcqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaGGGcaal8aabaqcLbsapeGaamyAaaaacaWG5bqcfa4damaaBaaaleaajugib8qacaWGObaal8aabeaaaOWdbiaawIcacaGLPaaajugibiaacckacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGXaGaaeOmaiaabMcaaaa@8F23@

And in view the condition (2.2), we obtain

s q l n m H kh i = s n m l W kh i       (3.13) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaacqGH9aqpcqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadohaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiaadEfajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaajuaGpaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeymaiaabodacaqGPaaaaa@7ABA@

If and only if

a sqlnm H kh  i + b sqlnm ( δ h i y k δ k i y h )= a lmns W kh  i + b lmns ( δ h i y k δ k  i y h ).      (3.14) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaiaacckaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaiaadMhajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaaWcpaqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaamiAaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGSbGaamyBaiaad6gacaWGZbaal8aabeaajugib8qacaWGxbqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaiaacckaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadYgacaWGTbGaamOBaiaadohaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaeyOeI0IaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGRbGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaamiAaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeymaiaabsdacaqGPaaaaa@9B7B@

In conclusion, we find that

Theorem 3.5: In the GBK-5RFn, covariant derivative of Berwald on the fifth order for the torsion tensor H kh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaaaaa@3C5B@ and of the fourth order for projective torsion tensor W kh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadEfajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaaaaa@3C6A@ both are equal if and only if (3.14) are valid.

On account of the condition [8]:

s n m l W h i = a lmns W h  i + b lmns ( δ h i F 2 y i y h ).      (3.15) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGSbaal8aabeaajugib8qacaWGxbqcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGSbGaamyBaiaad6gacaWGZbaal8aabeaajugib8qacaWGxbqcfa4damaaDaaaleaajugib8qacaWGObGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaey4kaSIaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamiBaiaad2gacaWGUbGaam4CaaWcpaqabaqcLbsapeGaaiikaiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaamOraKqba+aadaahaaWcbeqaaKqzGeWdbiaaikdaaaGaeyOeI0IaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaamiAaaWcpaqabaqcLbsapeGaaiykaiaac6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGXaGaaeynaiaabMcaaaa@861D@

And in view the condition (2.3), we obtain

s q l n m H h i = s n m l   W h i .     (3.16) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaiabg2da9iab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGaaiiOaiaadEfajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaa8aacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGXaGaaeOnaiaabMcaaaa@7982@

If and only if

a sqlnm H h i + b sqlnm ( δ h i F 2 y i y h )= a lmns W h  i + b lmns ( δ h i F 2 y i y h )      (3.17) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacqGHRaWkcaWGIbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGgbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaacqGHsislcaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaamyAaaaacaWG5bqcfa4damaaBaaaleaajugib8qacaWGObaal8aabeaaaOWdbiaawIcacaGLPaaajugibiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadYgacaWGTbGaamOBaiaadohaaSWdaeqaaKqzGeWdbiaadEfajuaGpaWaa0baaSqaaKqzGeWdbiaadIgacaGGGcaal8aabaqcLbsapeGaamyAaaaacqGHRaWkcaWGIbqcfa4damaaBaaaleaajugib8qacaWGSbGaamyBaiaad6gacaWGZbaal8aabeaajugib8qacaGGOaGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGgbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaacqGHsislcaWG5bqcfa4damaaCaaaleqabaqcLbsapeGaamyAaaaacaWG5bqcfa4damaaBaaaleaajugib8qacaWGObaal8aabeaajugib8qacaGGPaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeymaiaabEdacaqGPaaaaa@8ED5@

In conclusion, we find that

Theorem 3.6: In the GBK-5RFn, covariant derivative of Berwald on the fifth order for the deviation tensor H h i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaaaa@3B6B@ and of the fourth order for projective deviation tensor W h i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadEfajuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaaaa@3B7A@ both are equal if and only if (3.17) holds good.

On account of the condition [8]:

s n m l W k = a lmns W k +( n1 ) b lmns  y k     (3.18) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGSbaal8aabeaajugib8qacaWGxbqcfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGSbGaamyBaiaad6gacaWGZbaal8aabeaajugib8qacaWGxbqcfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacqGHRaWkjuaGdaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadYgacaWGTbGaamOBaiaadohacaGGGcaal8aabeaajugib8qacaWG5bqcfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeymaiaabIdacaqGPaaaaa@7A18@

and

s n m l W= a lmns W+( n1 )  b lmns F 2      (3.19) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGSbaal8aabeaajugib8qacaWGxbGaeyypa0JaamyyaKqba+aadaWgaaWcbaqcLbsapeGaamiBaiaad2gacaWGUbGaam4CaaWcpaqabaqcLbsapeGaam4vaiabgUcaRKqbaoaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaaiiOaiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadYgacaWGTbGaamOBaiaadohaaSWdaeqaaKqzGeWdbiaadAeajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaKqba+aacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabgdacaqG5aGaaeykaaaa@7429@

With the condition (2.7) and (2.6), we obtain

s q l n m H k = s n m l W k      (3.20) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqzGeWdbiabg2da9iab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGaam4vaKqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcfaOaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGYaGaaeimaiaabMcaaaa@75AF@

If and only if

a sqlnm H k + b sqlnm ( n1 ) y k = a lmns W k +(n1) b lmns y k       (3.21) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGibqcfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacqGHRaWkcaWGIbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaeyypa0JaamyyaKqba+aadaWgaaWcbaqcLbsapeGaamiBaiaad2gacaWGUbGaam4CaaWcpaqabaqcLbsapeGaam4vaKqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaey4kaSIaaiikaiaad6gacqGHsislcaaIXaGaaiykaiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadYgacaWGTbGaamOBaiaadohaaSWdaeqaaKqzGeWdbiaadMhajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqbakaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabkdacaqGXaGaaeykaaaa@77E6@

And

s q l n m H= s n m l W      (3.22) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeacqGH9aqpcqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadohaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiaadEfacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGYaGaaeOmaiaabMcaaaa@7043@

If and only if

a sqlnm H+ b sqlnm F 2 = a lmns W( n1 )  b lmns F 2      (3.23) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGibGaey4kaSIaamOyaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaadAeajuaGpaWaaWbaaSqabeaajugib8qacaaIYaaaaiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadYgacaWGTbGaamOBaiaadohaaSWdaeqaaKqzGeWdbiaadEfacqGHsisljuaGdaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaacckacaWGIbqcfa4damaaBaaaleaajugib8qacaWGSbGaamyBaiaad6gacaWGZbaal8aabeaajugib8qacaWGgbqcfa4damaaCaaaleqabaqcLbsapeGaaGOmaaaajuaGpaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGYaGaae4maiaabMcaaaa@6D5D@

In conclusion, we find that

Theorem 3.7: In the GBK-5RFn, covariant derivative of Berwald on the fifth order for curvature vector HK and curvature scalar H, both are equal to Berwald’s covariant derivative of the fifth order for the curvature vector WK and curvature scalar W, respectively if and only if (3.21) and (3.23), respectively hold good.

On account of the condition [4]:

n m P kh i = a mn P kh i + b mn ( δ h i y k δ k i y h )     (3.24) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGTbGaamOBaaWcpaqabaqcLbsapeGaamiuaKqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaad2gacaWGUbaal8aabeaajugib8qacaGGOaGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWG5bqcfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacqGHsislcqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadUgaaSWdaeaajugib8qacaWGPbaaaiaadMhajuaGpaWaaSbaaSqaaKqzGeWdbiaadIgaaSWdaeqaaKqzGeWdbiaacMcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabkdacaqG0aGaaeykaaaa@7CC0@

And the condition (2.2), we obtain

s q l n m H kh i = n m P kh i       (3.25) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaacqGH9aqpcqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGaamiuaKqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaKqba+aacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGYaGaaeynaiaabMcaaaa@7263@

If and only if

a sqlnm H kh  i + b sqlnm ( δ h i y k δ k i y h )= a mn P kh i + b mn ( δ h i y k δ k i y h )      (3.26) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaiaacckaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaiaadMhajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaaWcpaqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaamiAaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGTbGaamOBaaWcpaqabaqcLbsapeGaamiuaKqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaad2gacaWGUbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaiaadMhajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaaWcpaqaaKqzGeWdbiaadMgaaaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaamiAaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacaGGGcGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGYaGaaeOnaiaabMcaaaa@952C@

In conclusion, we find that

Theorem 3.8: In the GBK-5RFn , covariant derivative of Berwald on the fifth order for torsion tensor H kh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaaaaa@3C5B@ and of the second order for torsion tensor P kh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaaaaa@3C63@ both are equal if and only if (3.26) holds good.

On account of the condition [4]:

n m P k = a mn P k + b mn ( n1 ) y k       (3.27) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadcfajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqzGeWdbiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaad2gacaWGUbaal8aabeaajugib8qacaWGqbqcfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacqGHRaWkcaWGIbqcfa4damaaBaaaleaajugib8qacaWGTbGaamOBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaaiiOaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeOmaiaabEdacaqGPaaaaa@6E0A@

and in view the condition (2.7), we obtain

s q l n m H k = n m P k      (3.28) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqzGeWdbiabg2da9iab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaWGqbqcfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabkdacaqG4aGaaeykaaaa@6D5D@

If and only if

a sqlnm H k + b sqlnm ( n1 ) y k = a mn P k + b mn (n1) y k       (3.29) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGibqcfa4damaaBaaaleaajugib8qacaWGRbaal8aabeaajugib8qacqGHRaWkcaWGIbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaeyypa0JaamyyaKqba+aadaWgaaWcbaqcLbsapeGaamyBaiaad6gaaSWdaeqaaKqzGeWdbiaadcfajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgaaSWdaeqaaKqzGeWdbiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaad2gacaWGUbaal8aabeaajugib8qacaGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaamyEaKqba+aadaWgaaWcbaqcLbsapeGaam4AaaWcpaqabaqcLbsapeGaaiiOaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeOmaiaabMdacaqGPaaaaa@74A7@

In conclusion, we find that

Theorem 3.9: In the GBK-5RFn, covariant derivative of Berwald on of the fifth order for the curvature vector HK and second order for the curvature vector Pk, both are equal if and only if (3.29) holds good.

Using (1.11c) in (2.1), we obtain

s q l n m R jkh i = a sqlnm R jkh  i + b sqlnm ( δ h i g jk δ k  i g jh )     (3.30) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaeyypa0JaamyyaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaiaacckaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGHsislcqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaGGGcaal8aabaqcLbsapeGaamyAaaaacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaaWcpaqabaaak8qacaGLOaGaayzkaaqcfaOaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGZaGaaeimaiaabMcaaaa@95CD@

  c sqlnm ( δ h i C jkn δ k  i C jhn ) d sqlnm ( δ h i C jkl δ k  i C jhl ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGJbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4Aaiaad6gaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamOBaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHsislcaWGKbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadYgaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamiBaaWcpaqabaaak8qacaGLOaGaayzkaaaaaa@7ED1@

  e sqlnm ( δ h i C jkq δ k  i C jhq )2 b qlnm y r r ( δ h i C jks δ k  i C jhs ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGLbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadghaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamyCaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHsislcaaIYaGaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadkhaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGZbaal8aabeaajugib8qacqGHsislcqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaGGGcaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaiaadohaaSWdaeqaaaGcpeGaayjkaiaawMcaaaaa@8FBD@

+  s q l n m ( C jt i H kh t ) a sqlnm ( C jt i H kh t ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgUcaRiaacckatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaGGOaGaam4qaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadshaaSWdaeaajugib8qacaWGPbaaaiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWGObaal8aabaqcLbsapeGaamiDaaaacaGGPaGaeyOeI0IaamyyaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaacIcacaWGdbqcfa4damaaDaaaleaajugib8qacaWGQbGaamiDaaWcpaqaaKqzGeWdbiaadMgaaaGaamisaKqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadIgaaSWdaeaajugib8qacaWG0baaaiaacMcacaGGUaaaaa@7A24@

This exhibits that

s q l n m R jkh i = a sqlnm R jkh  i + b sqlnm ( δ h i g jk δ k  i g jh ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaeyypa0JaamyyaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaiaacckaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadIgaaSWdaeaajugib8qacaWGPbaaaiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGHsislcqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaGGGcaal8aabaqcLbsapeGaamyAaaaacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaaWcpaqabaaak8qacaGLOaGaayzkaaaaaa@8DE9@

  c sqlnm ( δ h i C jkn δ k  i C jhn ) d sqlnm ( δ h i C jkl δ k  i C jhl ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGJbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4Aaiaad6gaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamOBaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHsislcaWGKbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadYgaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamiBaaWcpaqabaaak8qacaGLOaGaayzkaaaaaa@7ED1@

  e sqlnm ( δ h i C jkq δ k  i C jhq )2 b qlnm y r r ( δ h i C jks δ k  i C jhs )      (3.31) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGLbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadghaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamyCaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHsislcaaIYaGaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadkhaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGZbaal8aabeaajugib8qacqGHsislcqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaGGGcaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaiaadohaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqbakaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabodacaqGXaGaaeykaaaa@9845@

If and only if

s q l n m ( C jt i H kh t )= a sqlnm ( C jt i H kh t )       (3.32) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaacIcacaWGdbqcfa4damaaDaaaleaajugib8qacaWGQbGaamiDaaWcpaqaaKqzGeWdbiaadMgaaaGaamisaKqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadIgaaSWdaeaajugib8qacaWG0baaaiaacMcacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaaiikaiaadoeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWG0baal8aabaqcLbsapeGaamyAaaaacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadshaaaGaaiykaiaacckacaGGGcGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqGZaGaaeOmaiaabMcaaaa@8125@

In conclusion, we find that

Theorem 3.10: In the GBK-5RFn, Cartan’s third curvature tensor R jkh i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaaaaa@3D54@ is GBK-5RFn if and only if (3.32) it holds good.

Multiplying (3.30) by gif, and let the space be a Berwald space and using (1.15a), (1.11f), and (1.1f), we obtain

s q l n m R jfkh = a sqlnm R jfkh + b sqlnm ( g hf g jk g kf g jh ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGMbGaam4AaiaadIgaaSWdaeqaaKqzGeWdbiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGsbqcfa4damaaBaaaleaajugib8qacaWGQbGaamOzaiaadUgacaWGObaal8aabeaajugib8qacqGHRaWkcaWGIbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamiAaiaadAgaaSWdaeqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGHsislcaWGNbqcfa4damaaBaaaleaajugib8qacaWGRbGaamOzaaWcpaqabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadIgaaSWdaeqaaaGcpeGaayjkaiaawMcaaaaa@8A1F@

 2 b qlnm y r r ( g hf C jks g kf C jhs ) c sqlnm ( g hf C jkn g kf C jhn ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaaIYaGaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadkhaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadIgacaWGMbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadohaaSWdaeqaaKqzGeWdbiabgkHiTiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgacaWGMbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaiaadohaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaeyOeI0Iaam4yaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadIgacaWGMbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4Aaiaad6gaaSWdaeqaaKqzGeWdbiabgkHiTiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgacaWGMbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaiaad6gaaSWdaeqaaaGcpeGaayjkaiaawMcaaaaa@8A79@

  d sqlnm ( g hf C jkl g kf C jhl ) e sqlnm ( g hf C jkq g kf C jhq ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGKbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamiAaiaadAgaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaamiBaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaam4AaiaadAgaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamiBaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHsislcaWGLbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamiAaiaadAgaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaamyCaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaam4AaiaadAgaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamyCaaWcpaqabaaak8qacaGLOaGaayzkaaaaaa@799D@

+  s q l n m ( C jft H kh t ) a sqlnm ( C jft H kh t )     (3.33) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgUcaRiaacckatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaGGOaGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadAgacaWG0baal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadshaaaGaaiykaiabgkHiTiaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaGGOaGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadAgacaWG0baal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadshaaaGaaiykaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaae4maiaabodacaqGPaaaaa@80C3@

This exhibits that

s q l n m R jfkh = a sqlnm R jfkh      (3.34) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGMbGaam4AaiaadIgaaSWdaeqaaKqzGeWdbiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGsbqcfa4damaaBaaaleaajugib8qacaWGQbGaamOzaiaadUgacaWGObaal8aabeaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabodacaqG0aGaaeykaaaa@7270@

If and only if

b sqlnm ( g hf g jk g kf g jh )2 b qlnm y r r ( g hf C jks g kf C jhs )     (3.35) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGNbqcfa4damaaBaaaleaajugib8qacaWGObGaamOzaaWcpaqabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeWdbiabgkHiTiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgacaWGMbaal8aabeaajugib8qacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHsislcaaIYaGaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadkhaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadIgacaWGMbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadohaaSWdaeqaaKqzGeWdbiabgkHiTiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadUgacaWGMbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaiaadohaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqbakaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaae4maiaabwdacaqGPaaaaa@8EB2@

  c sqlnm ( g hf C jkn g kf C jhn ) d sqlnm ( g hf C jkl g kf C jhl ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGJbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamiAaiaadAgaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaamOBaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaam4AaiaadAgaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamOBaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHsislcaWGKbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamiAaiaadAgaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaamiBaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaam4AaiaadAgaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamiBaaWcpaqabaaak8qacaGLOaGaayzkaaaaaa@7995@

  e sqlnm ( g hf C jkq g kf C jhq )+ s q l n m ( C jft H kh t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGLbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamiAaiaadAgaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaamyCaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaam4AaiaadAgaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamyCaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHRaWktuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaGGOaGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadAgacaWG0baal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadshaaaGaaiykaaaa@8511@

  a sqlnm ( C jft H kh t )=0  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadAgacaWG0baal8aabeaajugib8qacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadshaaaaakiaawIcacaGLPaaajugibiabg2da9iaaicdacaGGGcaaaa@51BB@

Summation over the indices i and h in condition (3.30), using (1.13a), (1.1h), (1.1f) and (1.14c), we obtain

s q l n m R jk = a sqlnm R jk + b sqlnm ( n1 ) g jk 2 b qlnm y r r ( n1 ) C jks MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeWdbiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGUbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0IaaGOmaiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGYbaaaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOCaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGZbaal8aabeaaaaa@9521@

  c sqlnm ( n1 ) C jkn d sqlnm ( n1 ) C jkl e sqlnm ( n1 ) C jkq     (3.36) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGJbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGUbaal8aabeaajugib8qacqGHsislcaWGKbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGSbaal8aabeaajugib8qacqGHsislcaWGLbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGXbaal8aabeaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaae4maiaabAdacaqGPaaaaa@7A2C@

+  s q l n m ( C jt u H ku t ) a sqlnm ( C jt u H ku t )  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgUcaRiaacckatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaGGOaGaam4qaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadshaaSWdaeaajugib8qacaWG1baaaiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWG1baal8aabaqcLbsapeGaamiDaaaacaGGPaGaeyOeI0IaamyyaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaacIcacaWGdbqcfa4damaaDaaaleaajugib8qacaWGQbGaamiDaaWcpaqaaKqzGeWdbiaadwhaaaGaamisaKqba+aadaqhaaWcbaqcLbsapeGaam4AaiaadwhaaSWdaeaajugib8qacaWG0baaaiaacMcacaGGGcaaaa@7AC8@

This exhibits that

s q l n m R jk = a sqlnm R jk      (3.37) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqbakaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaae4maiaabEdacaqGPaaaaa@6EC3@

If and only if

b sqlnm ( n1 ) g jk 2 b qlnm y r r ( n1 ) C jks c sqlnm ( n1 ) C jkn MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGUbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0IaaGOmaiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGYbaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8hlHiucfa4damaaBaaaleaajugib8qacaWGYbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGUbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadohaaSWdaeqaaKqzGeWdbiabgkHiTiaadogajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGUbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4Aaiaad6gaaSWdaeqaaaaa@80DC@

  d sqlnm ( n1 ) C jkl e sqlnm ( n1 ) C jkq + s q l n m ( C jt u H ku t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGKbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGSbaal8aabeaajugib8qacqGHsislcaWGLbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGXbaal8aabeaajugib8qacqGHRaWktuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaGGOaGaam4qaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadshaaSWdaeaajugib8qacaWG1baaaiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWG1baal8aabaqcLbsapeGaamiDaaaacaGGPaaaaa@8BCB@

  a sqlnm ( C jt u H ku t )=0       (3.38) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaaiikaiaadoeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWG0baal8aabaqcLbsapeGaamyDaaaacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamyDaaWcpaqaaKqzGeWdbiaadshaaaGaaiykaiabg2da9iaaicdacaGGGcGaaiiOaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaae4maiaabIdacaqGPaaaaa@58DA@

Multiplying (3.36) by gjk, and let the space be a Berwald space and using (1.15b), (1.13c), (1.4d) and (1.1e), (1.1h), we obtain

s q l n m R= a sqlnm R+n( n1 ) b sqlnm 2 b qlnm y r r ( n1 ) C s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadkfacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamOuaiabgUcaRiaad6gajuaGdaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacqGHsislcaaIYaGaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaGae8hlHiucfa4damaaBaaaleaajugib8qacaWGYbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGUbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaWGdbqcfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaaaaa@87D8@

  c sqlnm ( n1 ) C n d sqlnm ( n1 ) C l e sqlnm ( n1 ) C q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGJbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGaeyOeI0IaamizaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiabgkHiTiaadwgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGUbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaWGdbqcfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaaaaa@6D48@

+ [ s q l n m ( C jt u H ku t ) a sqlnm ( C jt u H ku t )]  g jk      (3.39) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgUcaRiaacckacaGGBbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadohaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyCaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGSbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGaaiikaiaadoeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWG0baal8aabaqcLbsapeGaamyDaaaacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamyDaaWcpaqaaKqzGeWdbiaadshaaaGaaiykaiabgkHiTiaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaGGOaGaam4qaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadshaaSWdaeaajugib8qacaWG1baaaiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWG1baal8aabaqcLbsapeGaamiDaaaacaGGPaGaaiyxaiaacckacaWGNbqcfa4damaaCaaaleqabaqcLbsapeGaamOAaiaadUgaaaqcfa4daiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaae4maiaabMdacaqGPaaaaa@88B8@

This exhibits that

s q l n m R= a sqlnm R     (3.40) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadkfacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamOuaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeinaiaabcdacaqGPaaaaa@66CE@

If and only if

b sqlnm  2 b qlnm y r r C s c sqlnm C n d sqlnm C l e sqlnm C q MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaqGGcGaeyOeI0IaaGOmaiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaadMhajuaGpaWaaWbaaSqabeaajugib8qacaWGYbaaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8hlHiucfa4damaaBaaaleaajugib8qacaWGYbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqGHsislcaWGJbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGaeyOeI0IaamizaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiabgkHiTiaadwgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaaaaa@8229@

+ [  s q l n m ( C jt u H ku t ) a sqlnm ( C jt u H ku t )]  g jk =0       (3.41) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgUcaRiaacckacaGGBbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFGcaOcqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadohaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyCaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGSbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGaaiikaiaadoeajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWG0baal8aabaqcLbsapeGaamyDaaaacaWGibqcfa4damaaDaaaleaajugib8qacaWGRbGaamyDaaWcpaqaaKqzGeWdbiaadshaaaGaaiykaiabgkHiTiaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaGGOaGaam4qaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadshaaSWdaeaajugib8qacaWG1baaaiaadIeajuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaWG1baal8aabaqcLbsapeGaamiDaaaacaGGPaGaaiyxaiaacckacaWGNbqcfa4damaaCaaaleqabaqcLbsapeGaamOAaiaadUgaaaGaeyypa0JaaGimaiaacckacaGGGcGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaab6cacaqG0aGaaeymaiaabMcaaaa@8DE1@

In conclusion, we find that

Theorem 3.11: In the the GBK-5RFn, in the sense of Berwald space the covariant derivative of Berwald on the fifth order for associate curvature tensor Rjfkh of the tensor and the curvature scalar R all are proportional to the tensor itself if and only if (3.35) and (3.41), respectively hold good.

Theorem 3.12: In the GBK-5RFn, (in the sense of Berwald space), the covariant derivative of Berwald on the fifth order for the Ricci tensor Rjk is proportional to the tensor itself if and only if (3.38) it holds good.

Using (1.11d) in (2.1), we obtain

s q n m l ( H jkh  i P jkh i P jk r P rh i + P jhk i + P jh r P rk i ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiaacIcacaWGibqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaadIgacaGGGcaal8aabaqcLbsapeGaamyAaaaacqGHsislcaWGqbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaiaadIgaaSWdaeaajugib8qacaWGPbaaaiabgkHiTiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbaal8aabaqcLbsapeGaamOCaaaacaWGqbqcfa4damaaDaaaleaajugib8qacaWGYbGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaey4kaSIaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadIgacaWGRbaal8aabaqcLbsapeGaamyAaaaacqGHRaWkcaWGqbqcfa4damaaDaaaleaajugib8qacaWGQbGaamiAaaWcpaqaaKqzGeWdbiaadkhaaaGaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOCaiaadUgaaSWdaeaajugib8qacaWGPbaaaiaacMcaaaa@864A@

= a sqlnm ( H jkh  i P jkh i P jk r P rh i + P jhk i + P jh r P rk i )+ b sqlnm ( δ h i g jk δ k  i g jh ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajugib8qacaGGOaGaamisaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadUgacaWGObGaaiiOaaWcpaqaaKqzGeWdbiaadMgaaaGaeyOeI0IaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadUgacaWGObaal8aabaqcLbsapeGaamyAaaaacqGHsislcaWGqbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaaWcpaqaaKqzGeWdbiaadkhaaaGaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOCaiaadIgaaSWdaeaajugib8qacaWGPbaaaiabgUcaRiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGObGaam4AaaWcpaqaaKqzGeWdbiaadMgaaaGaey4kaSIaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadIgaaSWdaeaajugib8qacaWGYbaaaiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadkhacaWGRbaal8aabaqcLbsapeGaamyAaaaacaGGPaGaey4kaSIaamOyaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObaal8aabeaaaOWdbiaawIcacaGLPaaaaaa@925A@

  c sqlnm ( δ h i C jkn δ k  i C jhn ) d sqlnm ( δ h i C jkl δ k  i C jhl ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGJbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4Aaiaad6gaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamOBaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHsislcaWGKbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadYgaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamiBaaWcpaqabaaak8qacaGLOaGaayzkaaaaaa@7ED1@

  e sqlnm ( δ h i C jkq δ k  i C jhq )2 b qlnm y r r ( δ h i C jks δ k  i C jhs )      (3.42) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGLbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaeqiTdqwcfa4damaaDaaaleaajugib8qacaWGObaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadghaaSWdaeqaaKqzGeWdbiabgkHiTiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaam4AaiaacckaaSWdaeaajugib8qacaWGPbaaaiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObGaamyCaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHsislcaaIYaGaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadkhaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiabes7aKLqba+aadaqhaaWcbaqcLbsapeGaamiAaaWcpaqaaKqzGeWdbiaadMgaaaGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGZbaal8aabeaajugib8qacqGHsislcqaH0oazjuaGpaWaa0baaSqaaKqzGeWdbiaadUgacaGGGcaal8aabaqcLbsapeGaamyAaaaacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaiaadohaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaaiiOaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeinaiaabkdacaqGPaaaaa@98C9@

Summation over the indices i and h in condition (3.42), using (1.14d), (1.1h), (1.1f) and (1.4c), we obtain

s q n m l ( H jk P jkt t P jk r P rt t + P jtk t + P jt r P rk t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiaacIcacaWGibqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0IaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadUgacaWG0baal8aabaqcLbsapeGaamiDaaaacqGHsislcaWGqbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaaWcpaqaaKqzGeWdbiaadkhaaaGaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOCaiaadshaaSWdaeaajugib8qacaWG0baaaiabgUcaRiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWG0bGaam4AaaWcpaqaaKqzGeWdbiaadshaaaGaey4kaSIaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadshaaSWdaeaajugib8qacaWGYbaaaiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadkhacaWGRbaal8aabaqcLbsapeGaamiDaaaacaGGPaaaaa@83A6@

= a sqlnm ( H jk P jkt t P jk r P rt t + P jtk t + P jt r P rk t )+ b sqlnm ( n1 ) g jk MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabg2da9iaadggajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGibqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0IaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadUgacaWG0baal8aabaqcLbsapeGaamiDaaaacqGHsislcaWGqbqcfa4damaaDaaaleaajugib8qacaWGQbGaam4AaaWcpaqaaKqzGeWdbiaadkhaaaGaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOCaiaadshaaSWdaeaajugib8qacaWG0baaaiabgUcaRiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWG0bGaam4AaaWcpaqaaKqzGeWdbiaadshaaaGaey4kaSIaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadshaaSWdaeaajugib8qacaWGYbaaaiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadkhacaWGRbaal8aabaqcLbsapeGaamiDaaaaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaamOyaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaaaaa@820F@

 2 b qlnm y r r ( n1 ) C jks c sqlnm ( n1 ) C jkn   d sqlnm ( n1 ) C jkl MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaaIYaGaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadkhaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaam4CaaWcpaqabaqcLbsapeGaeyOeI0Iaam4yaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaamOBaaWcpaqabaqcLbsapeGaaiiOaiabgkHiTiaadsgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGUbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaWGdbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaiaadYgaaSWdaeqaaaaa@84E0@

  e sqlnm ( n1 ) C jkq        (3.43) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGLbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGXbaal8aabeaajugib8qacaGGGcGaaiiOaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGUaGaaeinaiaabodacaqGPaaaaa@5555@

We can express the above equation in different ways as

s q n m l H jk = a sqlnm H jk       (3.44) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiaadIeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGH9aqpcaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamisaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeWdbiaacckacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabsdacaqG0aGaaeykaaaa@6FE2@

If and only if

s q n m l ( P jkt t + P jk r P rt t P jtk t P jt r P rk t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiDaaWcpaqaaKqzGeWdbiaadshaaaGaey4kaSIaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeaajugib8qacaWGYbaaaiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadkhacaWG0baal8aabaqcLbsapeGaamiDaaaacqGHsislcaWGqbqcfa4damaaDaaaleaajugib8qacaWGQbGaamiDaiaadUgaaSWdaeaajugib8qacaWG0baaaiabgkHiTiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWG0baal8aabaqcLbsapeGaamOCaaaacaWGqbqcfa4damaaDaaaleaajugib8qacaWGYbGaam4AaaWcpaqaaKqzGeWdbiaadshaaaaakiaawIcacaGLPaaaaaa@7EE8@

+  a sqlnm ( P jkt t P jk r P rt t + P jtk t + P jt r P rk t )+ b sqlnm ( n1 ) g jk MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgUcaRiaacckacaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaaiikaiabgkHiTiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWGRbGaamiDaaWcpaqaaKqzGeWdbiaadshaaaGaeyOeI0IaamiuaKqba+aadaqhaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeaajugib8qacaWGYbaaaiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadkhacaWG0baal8aabaqcLbsapeGaamiDaaaacqGHRaWkcaWGqbqcfa4damaaDaaaleaajugib8qacaWGQbGaamiDaiaadUgaaSWdaeaajugib8qacaWG0baaaiabgUcaRiaadcfajuaGpaWaa0baaSqaaKqzGeWdbiaadQgacaWG0baal8aabaqcLbsapeGaamOCaaaacaWGqbqcfa4damaaDaaaleaajugib8qacaWGYbGaam4AaaWcpaqaaKqzGeWdbiaadshaaaGaaiykaiabgUcaRiaadkgajuaGpaWaaSbaaSqaaKqzGeWdbiaadohacaWGXbGaamiBaiaad6gacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGUbGaeyOeI0IaaGymaaGccaGLOaGaayzkaaqcLbsacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaaaaa@7CC2@

 2 b qlnm y r r ( n1 ) C jks c sqlnm ( n1 ) C jkn   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaaIYaGaamOyaKqba+aadaWgaaWcbaqcLbsapeGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaamyEaKqba+aadaahaaWcbeqaaKqzGeWdbiaadkhaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadkhaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaam4CaaWcpaqabaqcLbsapeGaeyOeI0Iaam4yaKqba+aadaWgaaWcbaqcLbsapeGaam4CaiaadghacaWGSbGaamOBaiaad2gaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaad6gacqGHsislcaaIXaaakiaawIcacaGLPaaajugibiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbGaamOBaaWcpaqabaqcLbsapeGaaiiOaaaa@7197@

  d sqlnm ( n1 ) C jkl e sqlnm ( n1 ) C jkq =0       (3.45) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgkHiTiaacckacaWGKbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGSbaal8aabeaajugib8qacqGHsislcaWGLbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaamOBaiabgkHiTiaaigdaaOGaayjkaiaawMcaaKqzGeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgacaWGXbaal8aabeaajugib8qacqGH9aqpcaaIWaGaaiiOaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGZaGaaeOlaiaabsdacaqG1aGaaeykaaaa@6A7E@

In conclusion, we find that

Theorem 3.13: In the GBK-5RFn, in the sense of Berwald space, the covariant derivative of Berwald on the fifth order for the Ricci tensor Hjk is proportional to the tensor itself if and only if (3.45) it holds good.

4. Composition relations between Cartan’s third curvature tensor and conformal Curvature Tensor in GBK-5RFn

In this section, we presented the relationship between Cartan’s third curvature tensor Rijkh and conformal curvature tensor Cijkh in GBK-5RFn

Definition 4.1: A conformal curvature tensor Cijkh (also known as Weyl conformal curvature tensor) is defined as [2]:

R ijkh = C ijkh + 1 2 ( g ik R jh + g jh R ik g ih R jk g jk R ih )+ R 6 ( g ih g jk g ik g jh )     (4.1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGQbGaam4AaiaadIgaaSWdaeqaaKqzGeWdbiabg2da9iaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGQbGaam4AaiaadIgaaSWdaeqaaKqzGeWdbiabgUcaRKqbaoaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaikdaaaqcfa4aaeWaaOWdaeaajugib8qacaWGNbqcfa4damaaBaaaleaajugib8qacaWGPbGaam4AaaWcpaqabaqcLbsapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadIgaaSWdaeqaaKqzGeWdbiabgUcaRiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObaal8aabeaajugib8qacaWGsbqcfa4damaaBaaaleaajugib8qacaWGPbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadIgaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGHsislcaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadIgaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaey4kaSscfa4aaSaaaOWdaeaajugib8qacaWGsbaak8aabaqcLbsapeGaaGOnaaaajuaGdaqadaGcpaqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGObaal8aabeaajugib8qacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadUgaaSWdaeqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObaal8aabeaaaOWdbiaawIcacaGLPaaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG0aGaaeOlaiaabgdacaqGPaaaaa@988A@

Taking the covariant derivative of 5th order for (4.1) in the sense of Berwald, we obtain

s q l n m   R ijkh = s q l n m C ijkh + 1 2 s q l n m (   g ik R jh +  g jh R ik g ih R jk g jk R ih )+ s q l n m [ R 6 ( g ih g jk g ik g jh ) ]       (4.2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaKqzGeaeaaaaaaaaa8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadohaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyCaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGSbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGaaeiOaiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGQbGaam4AaiaadIgaaSWdaeqaaKqzGeWdbiabg2da9iab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGPbGaamOAaiaadUgacaWGObaal8aabeaajugib8qacqGHRaWkjuaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaIYaaaaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaaaOqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaacckacaWGNbqcfa4damaaBaaaleaajugib8qacaWGPbGaam4AaaWcpaqabaqcLbsapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadIgaaSWdaeqaaKqzGeWdbiabgUcaRiaacckacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaaWcpaqabaqcLbsapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadUgaaSWdaeqaaKqzGeWdbiabgkHiTiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGObaal8aabeaajugib8qacaWGsbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGObaal8aabeaaaOWdbiaawIcacaGLPaaajugibiabgUcaRiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajuaGpeWaamWaaOWdaeaajuaGpeWaaSaaaOWdaeaajugib8qacaWGsbaak8aabaqcLbsapeGaaGOnaaaajuaGdaqadaGcpaqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGObaal8aabeaajugib8qacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadUgaaSWdaeqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObaal8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabsdacaqGUaGaaeOmaiaabMcaaaaa@FB96@

Using (1.11f) and (1.15 a) in (4.2), we obtain

  g rj s q l n m   R ikh r = s q l n m C ijkh + 1 2 s q l n m (   g ik R jh +  g jh R ik g ih R jk g jk R ih )+ s q l n m [   R 6 ( g ih g jk g ik g jh )  ]       (4.3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibabaaaaaaaaapeGaaiiOaiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadkhacaWGQbaal8aabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaqGGcGaamOuaKqba+aadaqhaaWcbaqcLbsapeGaamyAaiaadUgacaWGObaal8aabaqcLbsapeGaamOCaaaacqGH9aqpcqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadohaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyCaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGSbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadQgacaWGRbGaamiAaaWcpaqabaqcLbsapeGaey4kaSscfa4aaSaaaOWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaaGOmaaaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadohaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyCaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGSbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaaakeaajuaGpeWaaeWaaOWdaeaajugib8qacaGGGcGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadUgaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObaal8aabeaajugib8qacqGHRaWkcaGGGcGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadIgaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGRbaal8aabeaajugib8qacqGHsislcaWGNbqcfa4damaaBaaaleaajugib8qacaWGPbGaamiAaaWcpaqabaqcLbsapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeWdbiabgkHiTiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacaWGsbqcfa4damaaBaaaleaajugib8qacaWGPbGaamiAaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHRaWkcqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadohaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyCaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGSbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcfa4dbmaadmaak8aabaqcLbsapeGaaiiOaKqbaoaalaaak8aabaqcLbsapeGaamOuaaGcpaqaaKqzGeWdbiaaiAdaaaqcfa4aaeWaaOWdaeaajugib8qacaWGNbqcfa4damaaBaaaleaajugib8qacaWGPbGaamiAaaWcpaqabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeWdbiabgkHiTiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGRbaal8aabeaajugib8qacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacaGGGcaakiaawUfacaGLDbaajugibiaacckacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaab6cacaqGZaGaaeykaaaaaa@05A9@

We can express the above equation in different ways as

  s q l n m   R ikh r = 1   g rj [ s q l n m C ijkh + 1 2 s q l n m (   g ik R jh + g jh R ik g ih R jk g jk R ih ) + s q l n m [   R 6 ( g ih g jk g ik g jh )  ] ]     (4.4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaqGGcGaamOuaKqba+aadaqhaaWcbaqcLbsapeGaamyAaiaadUgacaWGObaal8aabaqcLbsapeGaamOCaaaacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaGGGcGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOCaiaadQgaaSWdaeqaaaaajuaGpeWaamWaaKqzGeWdaqaabeGcbaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGQbGaam4AaiaadIgaaSWdaeqaaKqzGeWdbiabgUcaRKqbaoaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaikdaaaGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiaacckacaWGNbqcfa4damaaBaaaleaajugib8qacaWGPbGaam4AaaWcpaqabaqcLbsapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadIgaaSWdaeqaaKqzGeWdbiabgUcaRiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObaal8aabeaajugib8qacaWGsbqcfa4damaaBaaaleaajugib8qacaWGPbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadIgaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGHsislcaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadIgaaSWdaeqaaaGcpeGaayjkaiaawMcaaaqaaKqzGeGaey4kaSIae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqba+qadaWadaGcpaqaaKqzGeWdbiaacckajuaGdaWcaaGcpaqaaKqzGeWdbiaadkfaaOWdaeaajugib8qacaaI2aaaaKqbaoaabmaak8aabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadIgaaSWdaeqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGHsislcaWGNbqcfa4damaaBaaaleaajugib8qacaWGPbGaam4AaaWcpaqabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadIgaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaaiiOaaGccaGLBbGaayzxaaaaaiaawUfacaGLDbaajuaGcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG0aGaaeOlaiaabsdacaqGPaaaaa@09D9@

In conclusion, we find that

Theorem 4.1: In the GBK-5RFn, (in the sense of Berwald space), the covariant derivative of Berwald on the fifth order for Cartan’s third curvature tensor R ikh r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGsbWdamaaDaaaleaapeGaamyAaiaadUgacaWGObaapaqaa8qacaWGYbaaaaaa@3B16@ and the conformal curvature tensor Cijkh, linking together by the relation (4.4).

From (4.3), we have

s q l n m C ijkh = g rj s q l n m C ijkh = g rj ( s q l n m R ikh r )     (4.5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaajugibabaaaaaaaaapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqzGeWdbiaadoeajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGQbGaam4AaiaadIgaaSWdaeqaaKqzGeWdbiabg2da9iaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadkhacaWGQbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadohaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyCaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGSbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcLbsapeGaam4qaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadQgacaWGRbGaamiAaaWcpaqabaqcLbsapeGaeyypa0Jaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOCaiaadQgaaSWdaeqaaKqba+qadaqadaGcpaqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaWGsbqcfa4damaaDaaaleaajugib8qacaWGPbGaam4AaiaadIgaaSWdaeaajugib8qacaWGYbaaaaGccaGLOaGaayzkaaqcfaOaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaab6cacaqG1aGaaeykaaaa@A803@

If and only if

1 2 s q l n m (   g ik R jh +  g jh R ik g ih R jk g jk R ih ) +  s q l n m [   R 6 ( g ih g jk g ik g jh )  ]=0                      (4.6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaaGymaaGcpaqaaKqzGeWdbiaaikdaaaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadohaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyCaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGSbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad6gaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamyBaaWcpaqabaqcfa4dbmaabmaak8aabaqcLbsapeGaaiiOaiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGRbaal8aabeaajugib8qacaWGsbqcfa4damaaBaaaleaajugib8qacaWGQbGaamiAaaWcpaqabaqcLbsapeGaey4kaSIaaiiOaiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObaal8aabeaajugib8qacaWGsbqcfa4damaaBaaaleaajugib8qacaWGPbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadIgaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGHsislcaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadIgaaSWdaeqaaaGcpeGaayjkaiaawMcaaaqaaKqzGeGaey4kaSIae8hOaaQae8hlHiucfa4damaaBaaaleaajugib8qacaWGZbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadghaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamiBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGUbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaad2gaaSWdaeqaaKqba+qadaWadaGcpaqaaKqzGeWdbiaacckajuaGdaWcaaGcpaqaaKqzGeWdbiaadkfaaOWdaeaajugib8qacaaI2aaaaKqbaoaabmaak8aabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadIgaaSWdaeqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGRbaal8aabeaajugib8qacqGHsislcaWGNbqcfa4damaaBaaaleaajugib8qacaWGPbGaam4AaaWcpaqabaqcLbsapeGaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadIgaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaaiiOaaGccaGLBbGaayzxaaqcLbsacqGH9aqpcaaIWaGaaiiOaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG0aGaaeOlaiaabAdacaqGPaaaaaa@D20B@

In conclusion, we find that

Theorem 4.2: In the GBK-5RFn, (in the sense of Berwald space), the covariant derivative of Berwald on the fifth order for the conformal curvature tensor Cijkh is proportional to the Berwald covariant derivative of the Cartan’s third curvature tensor R ikh r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadMgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadkhaaaaaaa@3D5C@ by (4.5) if and only if (4.6) it holds good.

Using (1. e 1), when [ihk] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacUfacaWGPbGaeyiyIKRaamiAaiabgcMi5kaadUgacaGGDbaaaa@3EBA@ in (3.31) and using it in (4.4), we obtain

R ikh r = 1    a sqlnm   g rj [   s q l n m C ijkh + 1 2 s q l n m ( g ik R jh + g jh R ik   g ih R jk g jk R ih ) + s q l n m [   R 6 ( g ih g jk g ik g jh )  ]  ]        (4.7) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadMgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadkhaaaGaeyypa0tcfa4aaSaaaOWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaaiiOaiaacckacaWGHbqcfa4damaaBaaaleaajugib8qacaWGZbGaamyCaiaadYgacaWGUbGaamyBaaWcpaqabaqcLbsapeGaaiiOaiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadkhacaWGQbaal8aabeaaaaqcfa4dbmaadmaajugib8aaeaqabOqaaKqzGeWdbiaacckatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajugib8qacaWGdbqcfa4damaaBaaaleaajugib8qacaWGPbGaamOAaiaadUgacaWGObaal8aabeaajugib8qacqGHRaWkjuaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaIYaaaaiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajuaGpeWaaeWaaOWdaeaajugib8qacaWGNbqcfa4damaaBaaaleaajugib8qacaWGPbGaam4AaaWcpaqabaqcLbsapeGaamOuaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadIgaaSWdaeqaaKqzGeWdbiabgUcaRiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObaal8aabeaajugib8qacaWGsbqcfa4damaaBaaaleaajugib8qacaWGPbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0IaaiiOaiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGObaal8aabeaajugib8qacaWGsbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamOAaiaadUgaaSWdaeqaaKqzGeWdbiaadkfajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGObaal8aabeaaaOWdbiaawIcacaGLPaaaaeaajugibiabgUcaRiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaam4CaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGXbaal8aabeaajugib8qacqWFSeIqjuaGpaWaaSbaaSqaaKqzGeWdbiaadYgaaSWdaeqaaKqzGeWdbiab=XsicLqba+aadaWgaaWcbaqcLbsapeGaamOBaaWcpaqabaqcLbsapeGae8hlHiucfa4damaaBaaaleaajugib8qacaWGTbaal8aabeaajuaGpeWaamWaaOWdaeaajugib8qacaGGGcqcfa4aaSaaaOWdaeaajugib8qacaWGsbaak8aabaqcLbsapeGaaGOnaaaajuaGdaqadaGcpaqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadMgacaWGObaal8aabeaajugib8qacaWGNbqcfa4damaaBaaaleaajugib8qacaWGQbGaam4AaaWcpaqabaqcLbsapeGaeyOeI0Iaam4zaKqba+aadaWgaaWcbaqcLbsapeGaamyAaiaadUgaaSWdaeqaaKqzGeWdbiaadEgajuaGpaWaaSbaaSqaaKqzGeWdbiaadQgacaWGObaal8aabeaaaOWdbiaawIcacaGLPaaajugibiaacckaaOGaay5waiaaw2faaKqzGeGaaiiOaaaakiaawUfacaGLDbaajugibiaacckacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabsdacaqGUaGaae4naiaabMcaaaa@0227@

In conclusion, we find that

Theorem 4.3: In the GBK-5RFn, the Cartan’s third curvature tensor R ikh r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadkfajuaGpaWaa0baaSqaaKqzGeWdbiaadMgacaWGRbGaamiAaaWcpaqaaKqzGeWdbiaadkhaaaaaaa@3D5C@ and the Berwald covariant derivative of the fifth order for conformal curvature tensor   C ijkh ,  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckacaWGdbqcfa4damaaBaaaleaajugib8qacaWGPbGaamOAaiaadUgacaWGObaal8aabeaajugibiaacYcapeGaaiiOaaaa@403C@ linking together by the relation (4.7).

The linking of Cartan’s third curvature tensor with the conformal curvature tensor is a relationship between two tensors in differential geometry. The first tensor is Cartan’s third curvature tensor which measures the local curvature of a metric space. The second tensor is the conformal curvature tensor which measures the local curvature of a transformed metric space. The relationship states that Cartan’s third curvature tensor can be expressed as the product of the conformal curvature tensor and the metric factor.

The relationship linking Cartan’s third curvature tensor with the conformal curvature tensor can be used to study the properties of transformed metric spaces. For example, it can be used to determine whether the metric space is connected or not.

Findings summary

In general relativity, the metric in Finsler space is defined as a function that depends on the velocity vector. A recurrent Finsler space is a Finsler space where the metric is symmetric around the velocity vector. The fifth order is the order of the velocity vector. In this context, (recurrent) refers to the fact that the metric depends on the velocity vector up to the fifth order. A generalized fifth-order recurrent Finsler space can be used to:

- Describe anti-desitter spacetime, where the metric is negative.

- Describe curved spacetime, where the metric depends on the spatial and temporal coordinates.

- Describe multi-dimensional spacetime, where there are more than three spatial dimensions.

Conclusion

A generalized fifth-order recurrent Finsler space is a new geometric structure with great potential. It can be used to describe a variety of geometric structures. Research on these new structures is still ongoing, but there are many potential applications for them. For example: developing new models of the universe, studying the properties of dark matter, and developing new technologies for space travel.

  1. Sinha BB, Singh SP. Recurrent Finsler space of second order II. Indian Journal of Pure and Applied Mathematics. 1973; 4(1): 45-50.
  2. Verma R. Some transformations in Finsler spaces. D. Phil. Thesis, University of Allahabad, (Allahabad) (India), 1991.
  3. Dikshit S. Certain types of recurrences in Finsler spaces. D. Phil. Thesis, University of Allahabad, (Allahabad) (India). 1992.
  4. Qasem FYA. On Transformation in Finsler Spaces. D.Phil Thesis University of Allahabad, (Allahabad) (India). 2000.
  5. Qasem FYA, Abdallah AAA. On study generalized -recurrent Finsler space. International Journal of Mathematics and its Applications. 2016; 4: 113- 121.
  6. Qasem FYA, Baleedi SMS. On a Generalized -Recurrent Finsler Space, International Journal of Science Basic and Applied Research. 2016; 28: 195-203.
  7. AL-Qashbari AMA, Qasem FYA. Study on Generalized -Trirecurrent Finsler Space, Journal of Yemen Engineer, Faculty of Engineering, University of Aden. 2017; 15: 79-89.
  8. AL-Qashbari AMA. On Generalized for Curvature Tensors of Second Order in Finsler Space. Univ.Aden J Nat and Appl Sci. 2020; 24: 171-176.
  9. Bidabad B, Sepasi M. Complete Finsler Spaces of Constant Negative Ricci Curvature. J of Math. D.G. 2020; 1:1–12.
  10. Abu-Donia H, Shenawy S, Abdehameed A. The W*-Curvature Tensor on Relativistic Spacetimes, Kyungpook Mathematical Journal. 2020; 60:185-195.
  11. Verstraelen L. Submanifolds theory–A contemplation of submanifolds, in: Geometry of Submanifolds, AMS Special Session on Geometry of Submanifolds in Honor of Bang- Yen Chen’s 75th Birthday, October 20-21, 2018, University of Michigan Ann Arbor Michigan J Van der Veken, et al. (eds.), Contemporary Math. 756 Amer Math Soc. 2020; 21-56.
  12. Deszcz R, Głogowska M, Zafindratafa G. Hypersurfaces in space forms satisfying some generalized Einstein metric condition. J Geom Phys. 2020; 148: 103562.
  13. Opondo MA. Study of Projective curvature tensor    in bi-recurrent Finsler space, M. Sc. Dissertation, Kenyatta University, (Nairobi), (Kenya). 2021.
  14. Chen BY. Recent developments in Wintgen inequality and Wintgen ideal submanifolds. Int Electron J Geom. 2021; 14: 1-40.
  15. Eyasmin S. Hypersurfaces in a conformally flat space. Int J Geom Methods Modern Phys. 2021; 18: 2150067.
  16. Deszcz R, Hotloś M. On geodesic mappings in a particular class of Roter spaces. Colloq Math. 2021; 166: 267-290.
  17. Deszcz R, Głogowska M, Hotloś M. On hypersurfaces satisfying conditions determined by the Opozda Verstraelen affine curvature tensor. Ann Polon Math. 2021; 126: 215–240.
  18. Decu S, Deszcz R, Haesen S. A classification of Roter type spacetimes. Int J Geom Meth Modern Phys.2021; 18: 2150147.
  19. Deszcz R, Głogowska Hotloś M, Sawicz K. Hypersurfaces in space forms satisfying a particular Roter type equation. 2022; 28.
  20. Derdzinski A, Terek I. New examples of compact Weyl-parallel manifolds. arXiv: 2210.03660v1 [math.DG] 7 Oct 2022; 11.
  21. Derdzinski A, Terek I. The topology of compact rank-one ECS manifolds. arXiv: 2210.09195v1 [math.DG] 17 Oct 2022; 17.
  22. AL-Qashbari AMA, AL-Maisary AAM. Study on Generalized of Fourth Order Recurrent in Finsler space. Journal of Yemen Engineer. 2023; 17: 1-13.
  23. Shaikh AA, Hul SK, Datta BR, Sakar M. On Curvature Related Geometric Properties of Hayward Black Hole Spacetime, arXiv: 2303.00932v1[math.DG] 23 Feb(2023); 1-29.
  24. Ali M, Salman M, Rahaman F, Pundeer N. On some properties of M-projective curvature tensor in spacetime of general relativity. arXiv:2209.12692v2 [gr-qc] 26 May (2023), 1-17.
  25. Rund H. The differential geometry of Finsler spaces. Springer-Verlag, Berlin Göttingen- Heidelberg. 2nd Edit. (In Russian), Nauka, (Moscow). 1981.
  26. Hadi WHA. Study of Certain Generalized Birecurrent in Finsler space. PhD. Thesis, University of Aden. (Yemen). 2016.
  27. Emamian MH, Tayebi A. Generalized Douglas-Weyl Finsler Metrics, Iranian Journal of Mathematical Sciences and Informatics. 2015; 10: 67-75.
  28. Baleedi SMS. On certain generalized BK-recurrent Finsler space, M. Sc. Dissertation. University of Aden. Aden Yemen. 2017.
  29. Ahsan Z, Ali M. On some properties of -curvature tensor. Palestine Journal of Mathematics. 2014; 3(1): 61-69.
 

Help ?