Some Hermite–Hadamard-mercer Inequalities on the Coordinates on Post Quantum
ISSN: 2689-7636
Annals of Mathematics and Physics
Review Article       Open Access      Peer-Reviewed

Some Hermite–Hadamard-mercer Inequalities on the Coordinates on Post Quantum

Jen Chieh Lo*

General Education Center, National Taipei University of Technology, Taipei, Taiwan

*Corresponding authors: Jen Chieh Lo, General Education Center, National Taipei University of Technology, Taipei, Taiwan, E-mail: [email protected]
Received: 10 July, 2025 | Accepted: 31 July, 2025 | Published: 01 August, 2025
Keywords: Hermite-Hadamard- Mercer inequalities; Post quamntum

Cite this as

Lo JC. Some Hermite – Hadamard - mercer Inequalities on the Coordinates on Post Quantum. Ann Math Phys. 2025;8(4):121-148. Available from: 10.17352/amp.000158

Copyright Licence

© 2025 Lo JC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

In this paper, we develop new Hermite-Hadamard-Mercer type inequalities on coordinates via post-quantum calculus, also known as (p, q) - calculus. By introducing novel (p1, p2, q1, q2)-differentiable and (p1, p2, q1, q2)-integrable functions, we generalize classical results and extend previous inequalities under the setting of coordinate convexity. Several new identities are derived, which naturally reduce to known results when specific parameters are chosen. Numerical examples and visualizations are also provided to illustrate the utility of our results.

1. Introduction

Mathematical inequalities are fundamental in both pure and applied mathematics, offering essential tools in areas ranging from analysis to physics. Among these, the Hermite-Hadamard inequality for convex functions plays a pivotal role, which is defined as follows:

f( a+b 2 ) 1 ba a b f( x )dx f( a )+f( b ) 2 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGHbGaey4kaSIaamOyaaWdaeaapeGaaGOmaaaaaiaawIcacaGLPaaacqGHKjYOdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOyaiabgkHiTiaadggaaaWaaybCaeqal8aabaWdbiaadggaa8aabaWdbiaadkgaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaamizaiaadIhacqGHKjYOdaWcaaWdaeaapeGaamOzamaabmaapaqaa8qacaWGHbaacaGLOaGaayzkaaGaey4kaSIaamOzamaabmaapaqaa8qacaWGIbaacaGLOaGaayzkaaaapaqaa8qacaaIYaaaaiaac6caaaa@594A@

The Hermite-Hadamard inequality and a variety of refinements of Hermite-Hadamard inequality have been extensively studied by many researchers, including those involving Jensen and Mercer-type refinements.

Jensen inequality has been caught attention of many researshers, and many articles related to different versions of this inequality have been found in the literature. Jensen’s inequality can be given as follows:

Let 0< x 1 x 2 ... x n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHKjYOcaWG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgsMiJkaac6cacaGGUaGaaiOlaiabgsMiJkaadIhapaWaaSbaaSqaa8qacaWGUbaapaqabaaaaa@47BB@ and μ=( μ 1 , μ 2 ,..., μ n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBcqGH9aqpdaqadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqabaaak8qacaGLOaGaayzkaaaaaa@4997@ be non-negative weights such that k=1 n μ k =11, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaaeWaqaaiaab2aicqaH8oqBaSqaaiaadUgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOWdamaaBaaaleaapeGaam4AaaWdaeqaaOWdbiabg2da9iaaigdacaaIXaGaaiilaaaa@44CB@ =1 if f is convex function on the interval [a, b], then

f( k=1 n u k x k ) k=1 n u k f( x k ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaWGRbGaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGccaWG1bWdamaaBaaaleaapeGaam4AaaWdaeqaaOWdbiaadIhapaWaaSbaaSqaa8qacaWGRbaapaqabaaak8qacaGLOaGaayzkaaGaeyizIm6aaybCaeqal8aabaWdbiaadUgacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbiabggHiLdaakiaadwhapaWaaSbaaSqaa8qacaWGRbaapaqabaGcpeGaamOzamaabmaapaqaa8qacaWG4bWdamaaBaaaleaapeGaam4AaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacYcaaaa@55D8@

where x k [ a,b ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bWdamaaBaaaleaapeGaam4AaaWdaeqaaOWdbiabgIGiopaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaaaaa@4098@ every and all μ k [ 0,1 ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGRbaapaqabaGcpeGaeyicI48aamWaa8aabaWdbiaaicdacaGGSaGaaGymaaGaay5waiaaw2faaiaac6caaaa@41AB@

A new variant of Jensen inequality thast has been established by Mercer can be presented as follows:

In 2003, Mercer [1] proved another version of Jensen inequality, which is called Jensen-Mercer inequality and stated as follows.

Theorem 1.1

For a convex mapping f:[ a,b ], MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risjaacYcaaaa@4BB1@ for following inequality holds for each x j [ a,b ]: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiabgIGiopaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacaGG6aaaaa@4155@

f( a+b j=1 n u j x j )f( a )+f( b ) j=1 n u j f( x j ),, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaaybCaeqal8aabaWdbiaadQgacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbiabggHiLdaakiaadwhapaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeGaamiEa8aadaWgaaWcbaWdbiaadQgaa8aabeaaaOWdbiaawIcacaGLPaaacqGHKjYOcaWGMbWaaeWaa8aabaWdbiaadggaaiaawIcacaGLPaaacqGHRaWkcaWGMbWaaeWaa8aabaWdbiaadkgaaiaawIcacaGLPaaacqGHsisldaGfWbqabSWdaeaapeGaamOAaiabg2da9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGaaeydGiaadwhapaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeGaamOzamaabmaapaqaa8qacaWG4bWdamaaBaaaleaapeGaamOAaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacYcacaGGSaaaaa@6390@

where u j [ 0,1 ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG1bWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiabgIGiopaadmaapaqaa8qacaaIWaGaaiilaiaaigdaaiaawUfacaGLDbaaaaa@403C@ and j=1 n u j =11. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaaeWaqaaiaadwhapaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeGaeyypa0JaaGymaiaaigdacaGGUaaaleaacaWGQbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaaa@4355@

In 2013, Kian, et al. [2] used this new Jensen inequality and established the following new versions of Hermite-Hadamard inequality:

Theorem 1.2

For a convex mapping f:[ a,b ], MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risjaacYcaaaa@4BB1@ for following inequality holds for each x,y[ a,b ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaaiilaiaadMhacqGHiiIZdaWadaWdaeaapeGaamyyaiaacYcacaWGIbaacaGLBbGaayzxaaaaaa@40E2@ and x<y: MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyipaWJaamyEaiaacQdaaaa@3BE2@

f( a+b x+y 2 )f( a )+f( b ) 1 yx x y f( u )duf( a )+f( b )f( x+y 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaaSaaa8aabaWdbiaadIhacqGHRaWkcaWG5baapaqaa8qacaaIYaaaaaGaayjkaiaawMcaaiabgsMiJkaadAgadaqadaWdaeaapeGaamyyaaGaayjkaiaawMcaaiabgUcaRiaadAgadaqadaWdaeaapeGaamOyaaGaayjkaiaawMcaaiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG5bGaeyOeI0IaamiEaaaadaGfWbqabSWdaeaapeGaamiEaaWdaeaapeGaamyEaaqdpaqaa8qacqGHRiI8aaGccaqGnaIaamOzamaabmaapaqaa8qacaWG1baacaGLOaGaayzkaaGaamizaiaadwhacqGHKjYOcaWGMbWaaeWaa8aabaWdbiaadggaaiaawIcacaGLPaaacqGHRaWkcaWGMbWaaeWaa8aabaWdbiaadkgaaiaawIcacaGLPaaacqGHsislcaWGMbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWG4bGaey4kaSIaamyEaaWdaeaapeGaaGOmaaaaaiaawIcacaGLPaaaaaa@6C87@

and

f( a+b x+y 2 ) 1 yx a+by a+bx f( u )du MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaaSaaa8aabaWdbiaadIhacqGHRaWkcaWG5baapaqaa8qacaaIYaaaaaGaayjkaiaawMcaaiabgsMiJoaalaaapaqaa8qacaaIXaaapaqaa8qacaWG5bGaeyOeI0IaamiEaaaadaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWG5baapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaadIhaa0WdaeaapeGaey4kIipaaOGaaeydGiaadAgadaqadaWdaeaapeGaamyDaaGaayjkaiaawMcaaiaadsgacaWG1baaaa@5A0C@

f( a+bx )+f( a+by ) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOdaWcaaWdaeaapeGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaadIhaaiaawIcacaGLPaaacqGHRaWkcaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaGOmaaaaaaa@4A1F@

f( a )+f( b )f( x+y 2 ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcaWGMbWaaeWaa8aabaWdbiaadggaaiaawIcacaGLPaaacqGHRaWkcaWGMbWaaeWaa8aabaWdbiaadkgaaiaawIcacaGLPaaacqGHsislcaWGMbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWG4bGaey4kaSIaamyEaaWdaeaapeGaaGOmaaaaaiaawIcacaGLPaaacaGGUaaaaa@49C8@

The ordinary calculus of Newton and Leibniz is well known to be investigated extensively and intensively to produce a large number of related formulas and properties as well as applications in a variety of fields ranging from natural sciences to social sciences.

Recent studies have explored these inequalities using quantum and post-quantum calculus, which extend traditional calculus by means of q and (p,q)-analogues.

Quantum calculus, which is often known as q-calculus or calculus without limits, is based on finite difference. In quantum calculus we obtain q-analogues of mathematical objects which can be recaptured by taking. The history of q-calculus can be track to Euler, who first introduced q-calculus in the track of Newton’s work on infinite series.

Then, in 1910, F. H. Jackson presented a systematic study of q-calculus and defined the q-defined integral, which is known as the q-Jackson integral. In recent years, the interest in q-calculus been arising due to high demand of mathematics in this field. The q-calculus numerous applications in various fields of mathematics and other areas such as combinatory, dynamical systems, fractals, number theory, orthogonal polynomials, special functions, mechanics and also for scientific problems in some applied areas.

In 2013, Tariboon and Ntouyas defined new q-derivatives and q-integrals of a continuous function on a finite interval. These definitions have been studied in various inequalities, for example, Hermiter-Hadamard inequalities, Ostrowski inequalities, Fejér inequalities, Simpson inequalities and Newton inequalities, and the references cited therein [3-12].

Along with the development of the theory and application of q-calculus, the theory of q-calculus based on two parameters (p-q)-integral has also presented and received more attention during the last few decades.

Recent, Ali, et al. [3] and Sitthiwirattham, et al. [13] ued new techniques to prove the following two different and new versions of Hermite-Hadamard type inequalitites:

Theorem 1.3

For a convex mapping f:[ a,b ], MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risjaacYcaaaa@4BB1@ for following inequality holds:

f( a+b 2 ) 1 ba [ a a+b 2 f ( x ) a+b 2 d q x+ a+b 2 b f ( x ) a+b 2 d q x ] f( a )+f( b ) 2 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGHbGaey4kaSIaamOyaaWdaeaapeGaaGOmaaaaaiaawIcacaGLPaaacqGHKjYOdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOyaiabgkHiTiaadggaaaWaamWaa8aabaWdbmaawahabeWcpaqaa8qacaWGHbaapaqaa8qadaWcaaWdaeaapeGaamyyaiabgUcaRiaadkgaa8aabaWdbiaaikdaaaaan8aabaWdbiabgUIiYdaakiaadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaamyyaiabgUcaRiaadkgaa8aabaWdbiaaikdaaaaaaOGaamiza8aadaWgaaWcbaWdbiaadghaa8aabeaak8qacaWG4bGaey4kaSYaaybCaeqal8aabaWdbmaalaaapaqaa8qacaWGHbGaey4kaSIaamOyaaWdaeaapeGaaGOmaaaaa8aabaWdbiaadkgaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaWdamaaBaaaleaapeWaaSaaa8aabaWdbiaadggacqGHRaWkcaWGIbaapaqaa8qacaaIYaaaaaWdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGXbaapaqabaGcpeGaamiEaaGaay5waiaaw2faaiabgsMiJoaalaaapaqaa8qacaWGMbWaaeWaa8aabaWdbiaadggaaiaawIcacaGLPaaacqGHRaWkcaWGMbWaaeWaa8aabaWdbiaadkgaaiaawIcacaGLPaaaa8aabaWdbiaaikdaaaGaaiilaaaa@770B@

f( a+b 2 ) 1 ba [ a a+b 2 f ( x ) a d q x+ a+b 2 b f ( x ) b d q x ] f( a )+f( b ) 2 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGHbGaey4kaSIaamOyaaWdaeaapeGaaGOmaaaaaiaawIcacaGLPaaacqGHKjYOdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOyaiabgkHiTiaadggaaaWaamWaa8aabaWdbmaawahabeWcpaqaa8qacaWGHbaapaqaa8qadaWcaaWdaeaapeGaamyyaiabgUcaRiaadkgaa8aabaWdbiaaikdaaaaan8aabaWdbiabgUIiYdaakiaadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacaWGKbWdamaaBaaaleaapeGaamyCaaWdaeqaaOWdbiaadIhacqGHRaWkdaGfWbqabSWdaeaapeWaaSaaa8aabaWdbiaadggacqGHRaWkcaWGIbaapaqaa8qacaaIYaaaaaWdaeaapeGaamOyaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaamOyaaaakiaadsgapaWaaSbaaSqaa8qacaWGXbaapaqabaGcpeGaamiEaaGaay5waiaaw2faaiabgsMiJoaalaaapaqaa8qacaWGMbWaaeWaa8aabaWdbiaadggaaiaawIcacaGLPaaacqGHRaWkcaWGMbWaaeWaa8aabaWdbiaadkgaaiaawIcacaGLPaaaa8aabaWdbiaaikdaaaGaaiOlaaaa@7168@

Remark

By setting the limit as q 1- in above Theorem, we recapture the traditional Hermite-Hadamard inequality.

Post-quantum calculus, also called (p,q)-calculus, is another generalization of q-calculus on the interval . The (p,q)-calculus consists of two-parameter quantum calculus (p and q-numbers) which are independent. The (p,q)- calculus was first introduced by Chakrabarti and Jagannathan in 1991. Then, the new (p,q)-deravative and (p,q)-integral of a continuous function on finite interval were by Tunc and Gov in 2016. In (p,q)-calculus, we obtain q-calculus formula for case p=1, and then get classical formula for case of . Base on (p,q)-calculus, many literatures have been published by many researchers, see [14-25] for more details and the references cited therein.

In this paper, we continue in this direction by developing Hermite-Hadamard-Mercer type inequalities in the framework of post-quantum calculus on coordinates. Our main contributions include novel identities for functions of two variables involving mixed partial (p1; p2; q1; q2) - derivatives and integrals.

2. Notation and preliminaries

The following is the brief introduction of the research of post-quantum calculus. Throughout this topic, we let p1; p2; q1; q2 be constants with 0< q 1 < p 1 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH8aapcaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgsMiJkaaigdaaaa@41A0@ and 0< q 2 < p 2 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH8aapcaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgsMiJkaaigdaaaa@41A2@ with [ a,b ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWadaWdaeaapeGaamyyaiaacYcacaWGIbaacaGLBbGaayzxaaGaeyOHI08efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIucaGGUaaaaa@4A1E@

Then, for any real number, the (p1, q1) - analogue and (p2, q2) - analogue of m,n is defined by

[ m ] p 1 , q 1 = p 1 m q 1 m p 1 q 1 = p 1 m1 + p 1 m2 q 1 +...+ p 1 q 1 m2 + q 1 m1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWadaWdaeaapeGaamyBaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiabg2da9maalaaapaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamyBaaaakiabgkHiTiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaOWdbiabg2da9iaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGTbGaeyOeI0IaaGymaaaakiabgUcaRiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGTbGaeyOeI0IaaGOmaaaakiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSIaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGXbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamyBaiabgkHiTiaaikdaaaGccqGHRaWkcaWGXbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamyBaiabgkHiTiaaigdaaaaaaa@6C03@

and

[ n ] p 2 , q 2 = p 2 n q 2 n p2 q 2 = p 2 n1 + p 2 n2 q 2 +...+ p 2 q 2 n2 + q 2 n1 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWadaWdaeaapeGaamOBaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiabg2da9maalaaapaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamOBaaaakiabgkHiTiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbGaaGOmaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaOWdbiabg2da9iaadchapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGUbGaeyOeI0IaaGymaaaakiabgUcaRiaadchapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGUbGaeyOeI0IaaGOmaaaakiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSIaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamOBaiabgkHiTiaaikdaaaGccqGHRaWkcaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamOBaiabgkHiTiaaigdaaaGccaGGSaaaaa@6C5C@

which is generalization of the q_1-analogue such that

[ m ] q 1 = 1 q 1 m 1 q 1 =1+ q 1 +...+ q 1 m2 + q 1 m1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWadaWdaeaapeGaamyBaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiabg2da9maalaaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad2gaaaaak8aabaWdbiaaigdacqGHsislcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaaak8qacqGH9aqpcaaIXaGaey4kaSIaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkcaGGUaGaaiOlaiaac6cacqGHRaWkcaWGXbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamyBaiabgkHiTiaaikdaaaGccqGHRaWkcaWGXbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamyBaiabgkHiTiaaigdaaaaaaa@5A80@

and

[ n ] q 2 = 1 q 2 n 1 q 2 =1+ q 2 +...+ q 2 n2 + q 2 n1 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWadaWdaeaapeGaamOBaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiabg2da9maalaaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad6gaaaaak8aabaWdbiaaigdacqGHsislcaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaak8qacqGH9aqpcaaIXaGaey4kaSIaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcaGGUaGaaiOlaiaac6cacqGHRaWkcaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamOBaiabgkHiTiaaikdaaaGccqGHRaWkcaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamOBaiabgkHiTiaaigdaaaGccaGGUaaaaa@5B46@

Definition 2.1 [26]

If is a continuous function, then (p, q) - derivative of the function on [a, b] by

D p,q f( x )= f( px )f( qx ) pq ,    x0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGebWdamaaBaaaleaapeGaamiCaiaacYcacaWGXbaapaqabaGcpeGaamOzamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiaadAgadaqadaWdaeaapeGaamiCaiaadIhaaiaawIcacaGLPaaacqGHsislcaWGMbWaaeWaa8aabaWdbiaadghacaWG4baacaGLOaGaayzkaaaapaqaa8qacaWGWbGaeyOeI0IaamyCaaaacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaadIhacqGHGjsUcaaIWaaaaa@566F@

with 0<q<p1. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamyCaiabgYda8iaadchacqGHKjYOcaaIXaGaaiOlaaaa@3FF4@

Definition 2.2 [27]

If f:[ a,b ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbaa@4B01@ is a continuous function, then (p, q)a - derivative of the function at x is defined by

  a D p,q f( x )= f( px+( 1p )a )f( qx+( 1q )a ) ( pq )( xa ) ,    xa MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGGcWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiaadseapaWaaSbaaSqaa8qacaWGWbGaaiilaiaadghaa8aabeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaamOzamaabmaapaqaa8qacaWGWbGaamiEaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCaaGaayjkaiaawMcaaiaadggaaiaawIcacaGLPaaacqGHsislcaWGMbWaaeWaa8aabaWdbiaadghacaWG4bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGXbaacaGLOaGaayzkaaGaamyyaaGaayjkaiaawMcaaaWdaeaapeWaaeWaa8aabaWdbiaadchacqGHsislcaWGXbaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadIhacqGHsislcaWGHbaacaGLOaGaayzkaaaaaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaamiEaiabgcMi5kaadggaaaa@6B53@

with 0<q<p1. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamyCaiabgYda8iaadchacqGHKjYOcaaIXaGaaiOlaaaa@3FF4@

For x = a, we state a D p,q f( a )= lim xa      a D p,q f( x ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaaabaaaaaaaaapeGaamyyaaWdaeqaaOWdbiaadseapaWaaSbaaSqaa8qacaWGWbGaaiilaiaadghaa8aabeaak8qacaWGMbWaaeWaa8aabaWdbiaadggaaiaawIcacaGLPaaacqGH9aqppaWaaCbeaeaapeGaaeiBaiaabMgacaqGTbaal8aabaWdbiaadIhacqGHsgIRcaWGHbaapaqabaGccaqGGaWdbiaacckacaGGGcWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiaadseapaWaaSbaaSqaa8qacaWGWbGaaiilaiaadghaa8aabeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaaa@549F@ if it exists and it is finite.

Definiiton 2.3 [16]

If f:[ a,b ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbaa@4B01@ is a continuous function, then (p, q)b - derivative of the function at x is defined by

  b D p,q f( x )= f( qx+( 1q )b )f( px+( 1p )b ) ( pq )( bx ) ,    xb MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGGcWdamaaCaaaleqabaWdbiaadkgaaaGccaWGebWdamaaBaaaleaapeGaamiCaiaacYcacaWGXbaapaqabaGcpeGaamOzamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiaadAgadaqadaWdaeaapeGaamyCaiaadIhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadghaaiaawIcacaGLPaaacaWGIbaacaGLOaGaayzkaaGaeyOeI0IaamOzamaabmaapaqaa8qacaWGWbGaamiEaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCaaGaayjkaiaawMcaaiaadkgaaiaawIcacaGLPaaaa8aabaWdbmaabmaapaqaa8qacaWGWbGaeyOeI0IaamyCaaGaayjkaiaawMcaamaabmaapaqaa8qacaWGIbGaeyOeI0IaamiEaaGaayjkaiaawMcaaaaacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaadIhacqGHGjsUcaWGIbaaaa@6B3A@

with 0<q<p1. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamyCaiabgYda8iaadchacqGHKjYOcaaIXaGaaiOlaaaa@3FF4@

For x = b, we state b D p,q f( a )= lim xb      b D p,q f( x ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaSqabeaaqaaaaaaaaaWdbiaadkgaaaGccaWGebWdamaaBaaaleaapeGaamiCaiaacYcacaWGXbaapaqabaGcpeGaamOzamaabmaapaqaa8qacaWGHbaacaGLOaGaayzkaaGaeyypa0ZdamaaxababaWdbiaabYgacaqGPbGaaeyBaaWcpaqaa8qacaWG4bGaeyOKH4QaamOyaaWdaeqaaOGaaeiia8qacaGGGcGaaiiOa8aadaahaaWcbeqaa8qacaWGIbaaaOGaamira8aadaWgaaWcbaWdbiaadchacaGGSaGaamyCaaWdaeqaaOWdbiaadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaa@5466@ if it exists and it is finite.

Definition 2.4 [26]

If f:[ a,b ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbaa@4B01@ is a continuous function and 0<a<b, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamyyaiabgYda8iaadkgacaGGSaaaaa@3D64@ then the (p, q) - integral is defined by

a b f( x ) d p,q x=( pq )( ba ) k=0 f ( q k p k+1 b+( 1 q k p k+1 )a ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbqaaiaadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbGaaiilaiaadghaa8aabeaak8qacaWG4bGaeyypa0ZaaeWaa8aabaWdbiaadchacqGHsislcaWGXbaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadkgacqGHsislcaWGHbaacaGLOaGaayzkaaWaaabmaeaacaWGMbaaleaacaWGRbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aOWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGXbWdamaaCaaaleqabaWdbiaadUgaaaaak8aabaWdbiaadchapaWaaWbaaSqabeaapeGaam4AaiabgUcaRiaaigdaaaaaaOGaamOyaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaaWbaaSqabeaapeGaam4AaaaaaOWdaeaapeGaamiCa8aadaahaaWcbeqaa8qacaWGRbGaey4kaSIaaGymaaaaaaaakiaawIcacaGLPaaacaWGHbaacaGLOaGaayzkaaaaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aaaa@6A4B@

with 0<q<p1. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamyCaiabgYda8iaadchacqGHKjYOcaaIXaGaaiOlaaaa@3FF4@

Definition 2.5 [27]

If f:[ a,b ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbaa@4B01@ is a continuous function and 0<a<b, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamyyaiabgYda8iaadkgacaGGSaaaaa@3D64@ then the (p, q)a - integral is defined by

a x f ( x ) a d p,q x=( pq )( xa ) k=0 f ( q k p k+1 x+( 1 q k p k+1 )a ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbqaaiaadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacaWGKbWdamaaBaaaleaapeGaamiCaiaacYcacaWGXbaapaqabaGcpeGaamiEaiabg2da9maabmaapaqaa8qacaWGWbGaeyOeI0IaamyCaaGaayjkaiaawMcaamaabmaapaqaa8qacaWG4bGaeyOeI0IaamyyaaGaayjkaiaawMcaamaaqadabaGaamOzaaWcbaGaam4Aaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakmaabmaapaqaa8qadaWcaaWdaeaapeGaamyCa8aadaahaaWcbeqaa8qacaWGRbaaaaGcpaqaa8qacaWGWbWdamaaCaaaleqabaWdbiaadUgacqGHRaWkcaaIXaaaaaaakiaadIhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaCaaaleqabaWdbiaadUgaaaaak8aabaWdbiaadchapaWaaWbaaSqabeaapeGaam4AaiabgUcaRiaaigdaaaaaaaGccaGLOaGaayzkaaGaamyyaaGaayjkaiaawMcaaaWcbaGaamyyaaqaaiaadIhaa0Gaey4kIipaaaa@6BE7@

with 0<q<p1. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamyCaiabgYda8iaadchacqGHKjYOcaaIXaGaaiOlaaaa@3FF4@

Definition 2.6 [16]

If f:[ a,b ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbaa@4B01@ is a continuous function and 0<a<b, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamyyaiabgYda8iaadkgacaGGSaaaaa@3D64@ then the (p, q)b - integral is defined by

x b f ( x ) b d p,q x=( pq )( bx ) k=0 f ( q k p k+1 b+( 1 q k p k+1 )x ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbqaaiaadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGIbaaaOGaamiza8aadaWgaaWcbaWdbiaadchacaGGSaGaamyCaaWdaeqaaOWdbiaadIhacqGH9aqpdaqadaWdaeaapeGaamiCaiabgkHiTiaadghaaiaawIcacaGLPaaadaqadaWdaeaapeGaamOyaiabgkHiTiaadIhaaiaawIcacaGLPaaadaaeWaqaaiaadAgaaSqaaiaadUgacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGcdaqadaWdaeaapeWaaSaaa8aabaWdbiaadghapaWaaWbaaSqabeaapeGaam4AaaaaaOWdaeaapeGaamiCa8aadaahaaWcbeqaa8qacaWGRbGaey4kaSIaaGymaaaaaaGccaWGIbGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaamyCa8aadaahaaWcbeqaa8qacaWGRbaaaaGcpaqaa8qacaWGWbWdamaaCaaaleqabaWdbiaadUgacqGHRaWkcaaIXaaaaaaaaOGaayjkaiaawMcaaiaadIhaaiaawIcacaGLPaaaaSqaaiaadIhaaeaacaWGIbaaniabgUIiYdaaaa@6BCD@

with 0<q<p1. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamyCaiabgYda8iaadchacqGHKjYOcaaIXaGaaiOlaaaa@3FF4@

In [14], Ali et al. established the Hermite-Hadamard type inequlities on post quantum calculus.

Theorem 2.7

If f:[ a,b ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbaa@4B01@ is a convex differentiable function on [a,b], then the (p, q)b - Hermite-Hadamard inequalities are as follows:

f( pa+qb p+q ) 1 p( ba ) pa+( 1p )b b f ( x ) b d p,q x qf( a )+pf( b ) p+q . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGWbGaamyyaiabgUcaRiaadghacaWGIbaapaqaa8qacaWGWbGaey4kaSIaamyCaaaaaiaawIcacaGLPaaacqGHKjYOdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCamaabmaapaqaa8qacaWGIbGaeyOeI0IaamyyaaGaayjkaiaawMcaaaaadaWdXbqaaiaadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGIbaaaOGaamiza8aadaWgaaWcbaWdbiaadchacaGGSaGaamyCaaWdaeqaaOWdbiaadIhacqGHKjYOdaWcaaWdaeaapeGaamyCaiaadAgadaqadaWdaeaapeGaamyyaaGaayjkaiaawMcaaiabgUcaRiaadchacaWGMbWaaeWaa8aabaWdbiaadkgaaiaawIcacaGLPaaaa8aabaWdbiaadchacqGHRaWkcaWGXbaaaaWcbaGaamiCaiaadggacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadchaaiaawIcacaGLPaaacaWGIbaabaGaamOyaaqdcqGHRiI8aOGaaiOlaaaa@6EC9@

In [27], Tunc and Gov extend the Holdër inequalies ion post-quantum calculus.

Theorem 2.8

If f:[ a,b ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHsgIRtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1risbaa@4B01@ is a continuous function and r, s > 0 with 1 r + 1 s =1, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaam4CaaaacqGH9aqpcaaIXaGaaiilaaaa@3F79@ then

a b | f( x )g( x ) | a d p,q x (   a b | f( x ) | r a d p,q x ) 1 r ( a b   | g( x ) | s a d p,q x ) 1 s . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbqaamaaemaapaqaa8qacaWGMbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacaWGNbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaamiza8aadaWgaaWcbaWdbiaadchacaGGSaGaamyCaaWdaeqaaOWdbiaadIhacqGHKjYOdaqadaWdaeaapeGaaeiOamaapehabaaaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aOWaaqWaa8aabaWdbiaadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbGaaiilaiaadghaa8aabeaak8qacaWG4baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGYbaaaaaakmaabmaapaqaa8qadaWdXbqaaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipakiaabckadaabdaWdaeaapeGaam4zamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadohaaaGcpaWaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaamiza8aadaWgaaWcbaWdbiaadchacaGGSaGaamyCaaWdaeqaaOWdbiaadIhaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadohaaaaaaOGaaiOlaaWcbaGaamyyaaqaaiaadkgaa0Gaey4kIipaaaa@7F12@

In [28], H. Kalsoom, et al. introduced the following notions of post-quantum partial derivatives:

Definition 2.9

Suppose that f:[ a,b ]×[ c,d ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHxdaTdaWadaWdaeaapeGaam4yaiaacYcacaWGKbaacaGLBbGaayzxaaGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIuaaa@51AA@ is a continuous function of two variables. Then the derivatives are given by

  a,c p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x     c p 2 , q 2 y = 1 ( p 1 q 1 )( p 2 q 2 )( xa )( yc ) [ f( q 1 x+( 1 q 1 )a, q 2 y+( 1 q 2 )c ) f( q 1 x+( 1 q 1 )a, p 2 y+( 1 p 2 )c ) f( p 1 x+( 1 p 1 )a, q 2 y+( 1 q 2 )c ) +f( p 1 x+( 1 p 1 )a, p 2 y+( 1 p 2 )c ) ], × MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacaGGSaGaam4yaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadIhapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadMhaaaGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aaeaqabeaapeWaaeWaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaadaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsislcaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWG4bGaeyOeI0IaamyyaaGaayjkaiaawMcaamaabmaapaqaa8qacaWG5bGaeyOeI0Iaam4yaaGaayjkaiaawMcaaaqaamaadeaapaqaa8qacaWGMbWaaeWaa8aabaWdbiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiEaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGHbGaaiilaiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaamyEaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGJbaacaGLOaGaayzkaaaacaGLBbaaaeaacqGHsislcaWGMbWaaeWaa8aabaWdbiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiEaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGHbGaaiilaiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaamyEaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGJbaacaGLOaGaayzkaaaabaGaeyOeI0IaamOzamaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadIhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaamyyaiaacYcacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadMhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaam4yaaGaayjkaiaawMcaaaqaamaadiaapaqaa8qacqGHRaWkcaWGMbWaaeWaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiEaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGHbGaaiilaiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaamyEaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGJbaacaGLOaGaayzkaaaacaGLDbaacaGGSaaaaaGaey41aqlaaa@E697@

for xa, yc. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyiyIKRaamyyaiaacYcacaqGGaGaamyEaiabgcMi5kaadogacaGGUaaaaa@4181@

  c b p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x     c p 2 , q 2 y = 1 ( p 1 q 1 )( p 2 q 2 )( bx )( yc ) [ f( q 1 x+( 1 q 1 )b, p 2 y+( 1 p 2 )c ) f( p 1 x+( 1 p 1 )b, p 2 y+( 1 p 2 )c ) f( q 1 x+( 1 q 1 )b, q 2 y+( 1 q 2 )c ) +f( p 1 x+( 1 p 1 )a, q 2 y+( 1 q 2 )c ) ], × MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogaa8aabaWdbiaadkgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGIbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiEa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamyEaaaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaqaabeqaa8qadaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadkgacqGHsislcaWG4baacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadMhacqGHsislcaWGJbaacaGLOaGaayzkaaaabaWaamqaa8aabaWdbiaadAgadaqadaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG4bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadkgacaGGSaGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWG5bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadogaaiaawIcacaGLPaaaaiaawUfaaaqaaiabgkHiTiaadAgadaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG4bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadkgacaGGSaGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWG5bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadogaaiaawIcacaGLPaaaaeaacqGHsislcaWGMbWaaeWaa8aabaWdbiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiEaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGIbGaaiilaiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaamyEaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGJbaacaGLOaGaayzkaaaabaWaamGaa8aabaWdbiabgUcaRiaadAgadaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG4bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadggacaGGSaGaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWG5bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadogaaiaawIcacaGLPaaaaiaaw2faaiaacYcaaaaacqGHxdaTaaa@E5D0@

for xb, yc. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyiyIKRaamOyaiaacYcacaqGGcGaamyEaiabgcMi5kaadogacaGGUaaaaa@4202@

  a d p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x    d p 2 , q 2 y = 1 ( p 1 q 1 )( p 2 q 2 )( xa )( dy ) [ f( p 1 x+( 1 p 1 )a, q 2 y+( 1 q 2 )d ) f( q 1 x+( 1 q 1 )a, q 2 y+( 1 q 2 )d ) f( p 1 x+( 1 p 1 )a, p 2 y+( 1 p 2 )d ) +f( q 1 x+( 1 q 1 )a, p 2 y+( 1 p 2 )d ) ], × MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggaa8aabaWdbiaadsgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG4bWdamaaDaaaleaapeGaaiiOaiaacckaa8aabaWdbiaadsgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaiabg2da9maalaaapaqaa8qacaaIXaaapaabaeqabaWdbmaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaadaqadaWdaeaapeGaamiEaiabgkHiTiaadggaaiaawIcacaGLPaaadaqadaWdaeaapeGaamizaiabgkHiTiaadMhaaiaawIcacaGLPaaaaeaadaWabaWdaeaapeGaamOzamaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadIhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaamyyaiaacYcacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadMhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaamizaaGaayjkaiaawMcaaaGaay5waaaabaGaeyOeI0IaamOzamaabmaapaqaa8qacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadIhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaamyyaiaacYcacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadMhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaamizaaGaayjkaiaawMcaaaqaaiabgkHiTiaadAgadaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG4bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadggacaGGSaGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWG5bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadsgaaiaawIcacaGLPaaaaeaadaWacaWdaeaapeGaey4kaSIaamOzamaabmaapaqaa8qacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadIhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaamyyaiaacYcacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadMhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaamizaaGaayjkaiaawMcaaaGaayzxaaGaaiilaaaaaiabgEna0caa@E3A8@

for xa, yd, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyiyIKRaamyyaiaacYcacaqGGaGaamyEaiabgcMi5kaadsgacaGGSaaaaa@4180@

and

  b,d p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x      d p 2 , q 2 y = 1 ( p 1 q 1 )( p 2 q 2 )( bx )( dy ) [ f( q 1 x+( 1 q 1 )b, q 2 y+( 1 q 2 )d ) f( p 1 x+( 1 p 1 )b, q 2 y+( 1 q 2 )d ) f( q 1 x+( 1 q 1 )b, p 2 y+( 1 p 2 )d ) +f( p 1 x+( 1 p 1 )b, p 2 y+( 1 p 2 )d ) ], × MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGIbGaaiilaiaadsgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGIbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiEa8aadaqhaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckaa8aabaWdbiaadsgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaiabg2da9maalaaapaqaa8qacaaIXaaapaabaeqabaWdbmaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaadaqadaWdaeaapeGaamOyaiabgkHiTiaadIhaaiaawIcacaGLPaaadaqadaWdaeaapeGaamizaiabgkHiTiaadMhaaiaawIcacaGLPaaaaeaadaWabaWdaeaapeGaamOzamaabmaapaqaa8qacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadIhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaamOyaiaacYcacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadMhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaamizaaGaayjkaiaawMcaaaGaay5waaaabaGaeyOeI0IaamOzamaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadIhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaamOyaiaacYcacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadMhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaamizaaGaayjkaiaawMcaaaqaaiabgkHiTiaadAgadaqadaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG4bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadkgacaGGSaGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWG5bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadsgaaiaawIcacaGLPaaaaeaadaWacaWdaeaapeGaey4kaSIaamOzamaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadIhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaamOyaiaacYcacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadMhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaamizaaGaayjkaiaawMcaaaGaayzxaaGaaiilaaaaaiabgEna0caa@E66A@

for xb, yd. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyiyIKRaamOyaiaacYcacaqGGcGaamyEaiabgcMi5kaadsgacaGGUaaaaa@4203@

Definition 2.10 [28]

Suppose that f:[ a,b ]×[ c,d ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHxdaTdaWadaWdaeaapeGaam4yaiaacYcacaWGKbaacaGLBbGaayzxaaGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIuaaa@51AA@ is a continuous function of two variables. Then the definite (p1, p2, q1, q2) - integral are given by

  a x c y f ( t,s ) c d p 2 , q 2 s a d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGGcWaa8qCaeaadaGfWbqabSWdaeaapeGaam4yaaWdaeaapeGaamyEaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4CaaGaayjkaiaawMcaa8aadaWgaaWcbaWdbiaadogaa8aabeaak8qacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4Ca8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaWcbaGaamyyaaqaaiaadIhaa0Gaey4kIipaaaa@58A5@

=( p 1 q 1 )( p 2 q 2 )( xa )( yc ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadIhacqGHsislcaWGHbaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadMhacqGHsislcaWGJbaacaGLOaGaayzkaaaaaa@4FDC@

× n=0 m=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( q 1 n p 1 n+1 x+( 1 q 1 n p 1 n+1 )a, q 2 m p 2 m+1 y+( 1 q 2 m p 2 m+1 )c ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHxdaTdaaeWaqaamaaqadabaWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamOzamaabmaapaqaa8qadaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaGccaWG4bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaaakiaawIcacaGLPaaacaWGHbGaaiilamaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaakiaadMhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaaaOGaayjkaiaawMcaaiaadogaaiaawIcacaGLPaaacaGGSaaaleaacaWGTbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaWcbaGaamOBaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaaa@874F@

for ( x,y )[ a,b ]×[ c,d ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaGaeyicI48aamWaa8aabaWdbiaadggacaGGSaGaamOyaaGaay5waiaaw2faaiabgEna0oaadmaapaqaa8qacaWGJbGaaiilaiaadsgaaiaawUfacaGLDbaacaGGUaaaaa@49E5@

Suppose that f:[ a,b ]×[ c,d ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHxdaTdaWadaWdaeaapeGaam4yaiaacYcacaWGKbaacaGLBbGaayzxaaGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIuaaa@51AA@ is a continuous function of two variables. Then the definite (p1, p2, q1, q2) - integral are given by

  x b c y f ( t,s ) c d p 2 , q 2 s b d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGGcWaa8qCaeaadaGfWbqabSWdaeaapeGaam4yaaWdaeaapeGaamyEaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4CaaGaayjkaiaawMcaa8aadaWgaaWcbaWdbiaadogaa8aabeaak8qacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4Ca8aadaahaaWcbeqaa8qacaWGIbaaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaSqaaiaadIhaaeaacaWGIbaaniabgUIiYdaaaa@5889@

=( p 1 q 1 )( p 2 q 2 )( bx )( yc ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadkgacqGHsislcaWG4baacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadMhacqGHsislcaWGJbaacaGLOaGaayzkaaaaaa@4FDD@

× n=0 n=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( q 1 n p 1 n+1 x+( 1 q 1 n p 1 n+1 )b, q 2 m p 2 m+1 y+( 1 q 2 m p 2 m+1 )c ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHxdaTdaaeWaqaamaaqadabaWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamOzamaabmaapaqaa8qadaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaGccaWG4bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaaakiaawIcacaGLPaaacaWGIbGaaiilamaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaakiaadMhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaaaOGaayjkaiaawMcaaiaadogaaiaawIcacaGLPaaacaGGSaaaleaacaWGUbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaWcbaGaamOBaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaaa@8751@

for ( x,y )[ a,b ]×[ c,d ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaGaeyicI48aamWaa8aabaWdbiaadggacaGGSaGaamOyaaGaay5waiaaw2faaiabgEna0oaadmaapaqaa8qacaWGJbGaaiilaiaadsgaaiaawUfacaGLDbaacaGGUaaaaa@49E5@

Suppose that f:[ a,b ]×[ c,d ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHxdaTdaWadaWdaeaapeGaam4yaiaacYcacaWGKbaacaGLBbGaayzxaaGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIuaaa@51AA@ is a continuous function of two variables. Then the definite (p1, p2, q1, q2) - integral are given by

a x y d f ( t,s ) c d p 2 , q 2 s a d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbqaamaawahabeWcpaqaa8qacaWG5baapaqaa8qacaWGKbaan8aabaWdbiabgUIiYdaakiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaWdamaaBaaaleaapeGaam4yaaWdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aaaa@5783@

 =( p 1 q 1 )( p 2 q 2 )( xa )( dy ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGGcGaeyypa0ZaaeWaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaadaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsislcaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWG4bGaeyOeI0IaamyyaaGaayjkaiaawMcaamaabmaapaqaa8qacaWGKbGaeyOeI0IaamyEaaGaayjkaiaawMcaaaaa@5100@

× n=0 n=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( q 1 n p 1 n+1 x+( 1 q 1 n p 1 n+1 )a, q 2 m p 2 m+1 y+( 1 q 2 m p 2 m+1 )d ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHxdaTdaaeWaqaamaaqadabaWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamOzamaabmaapaqaa8qadaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaGccaWG4bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaaakiaawIcacaGLPaaacaWGHbGaaiilamaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaakiaadMhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaaaOGaayjkaiaawMcaaiaadsgaaiaawIcacaGLPaaacaGGSaaaleaacaWGUbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaWcbaGaamOBaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaaa@8751@

for ( x,y )[ a,b ]×[ c,d ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaGaeyicI48aamWaa8aabaWdbiaadggacaGGSaGaamOyaaGaay5waiaaw2faaiabgEna0oaadmaapaqaa8qacaWGJbGaaiilaiaadsgaaiaawUfacaGLDbaaaaa@4933@

and

Suppose that f:[ a,b ]×[ c,d ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHxdaTdaWadaWdaeaapeGaam4yaiaacYcacaWGKbaacaGLBbGaayzxaaGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIuaaa@51AA@ is a continuous function of two variables. Then the definite (p1, p2, q1, q2) -integral are given by

x b y d f ( t,s ) c d p 2 , q 2 s a d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWG5baapaqaa8qacaWGKbaan8aabaWdbiabgUIiYdaakiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaWdamaaBaaaleaapeGaam4yaaWdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baal8aabaGaamiEaaqaaiaadkgaa0Gaey4kIipaaaa@5793@

=( p 1 q 1 )( p 2 q 2 )( bx )( dy ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadkgacqGHsislcaWG4baacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadsgacqGHsislcaWG5baacaGLOaGaayzkaaaaaa@4FDE@

× n=0 m=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( q 1 n p 1 n+1 x+( 1 q 1 n p 1 n+1 )b, q 2 m p 2 m+1 y+( 1 q 2 m p 2 m+1 )d ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHxdaTdaaeWaqaamaaqadabaWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamOzamaabmaapaqaa8qadaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaGccaWG4bGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaaakiaawIcacaGLPaaacaWGIbGaaiilamaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaakiaadMhacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaaaOGaayjkaiaawMcaaiaadsgaaiaawIcacaGLPaaacaGGSaaaleaacaWGTbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaWcbaGaamOBaiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoaaaa@8751@

for ( x,y )[ a,b ]×[ c,d ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaGaeyicI48aamWaa8aabaWdbiaadggacaGGSaGaamOyaaGaay5waiaaw2faaiabgEna0oaadmaapaqaa8qacaWGJbGaaiilaiaadsgaaiaawUfacaGLDbaacaGGUaaaaa@49E5@

Lemma 2.11 [25] (p1, p2, q1, q2) - Hölder’s inequality for functions of two variables

Let f, g be (p1, p2, q1, q2) - integrable functions on [ a,b ]×[ c,d ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWadaWdaeaapeGaamyyaiaacYcacaWGIbaacaGLBbGaayzxaaGaey41aq7aamWaa8aabaWdbiaadogacaGGSaGaamizaaGaay5waiaaw2faaaaa@435C@ and 1 r + 1 s =1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaam4CaaaacqGH9aqpcaaIXaaaaa@3EC9@ with r, s > 1. Then, we have

a x c y | f( t,s )g( t,s ) | c d p 2 , q 2 s a d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbqaamaawahabeWcpaqaa8qacaWGJbaapaqaa8qacaWG5baan8aabaWdbiabgUIiYdaakmaaemaapaqaa8qacaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4CaaGaayjkaiaawMcaaiaadEgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaBaaaleaapeGaam4yaaWdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aaaa@5FF8@

(   a x c y | f( t,s ) | r c d p 2 , q 2 s a d p 1 , q 1 t ) 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOdaqadaWdaeaapeGaaeiOamaapehabaWaaybCaeqal8aabaWdbiaadogaa8aabaWdbiaadMhaa0WdaeaapeGaey4kIipaaOWaaqWaa8aabaWdbiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGcpaWaaSbaaSqaa8qacaWGJbaapaqabaGcpeGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohapaWaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaSqaaiaadggaaeaacaWG4baaniabgUIiYdaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkhaaaaaaaaa@62E6@

× (   a x c y | g( t,s ) | s c d p 2 , q 2 s a d p 1 , q 1 t ) 1 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHxdaTdaqadaWdaeaapeGaaeiOamaapehabaWaaybCaeqal8aabaWdbiaadogaa8aabaWdbiaadMhaa0WdaeaapeGaey4kIipaaOWaaqWaa8aabaWdbiaadEgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadohaaaGcpaWaaSbaaSqaa8qacaWGJbaapaqabaGcpeGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohapaWaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaSqaaiaadggaaeaacaWG4baaniabgUIiYdaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadohaaaaaaaaa@634B@

for all ( x,y )[ a,b ]×[ c,d ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaGaeyicI48aamWaa8aabaWdbiaadggacaGGSaGaamOyaaGaay5waiaaw2faaiabgEna0oaadmaapaqaa8qacaWGJbGaaiilaiaadsgaaiaawUfacaGLDbaacaGGUaaaaa@49E5@

Lemma 2.12 [25] (p1, p2, q1, q2) - power mean inequality for functions of two variables

Let f, g be (p1, p2, q1, q2) - integrable functions on [ a,b ]×[ c,d ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWadaWdaeaapeGaamyyaiaacYcacaWGIbaacaGLBbGaayzxaaGaey41aq7aamWaa8aabaWdbiaadogacaGGSaGaamizaaGaay5waiaaw2faaaaa@435C@ and   1. Then, we have

a x c y | f( t,s )g( t,s ) | c d p 2 , q 2 s a d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbqaamaawahabeWcpaqaa8qacaWGJbaapaqaa8qacaWG5baan8aabaWdbiabgUIiYdaakmaaemaapaqaa8qacaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4CaaGaayjkaiaawMcaaiaadEgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaBaaaleaapeGaam4yaaWdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aaaa@5FF8@

(   a x c y | f( t,s ) | c d p 2 , q 2 s a d p 1 , q 1 t ) 1 1 α MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOdaqadaWdaeaapeGaaeiOamaapehabaWaaybCaeqal8aabaWdbiaadogaa8aabaWdbiaadMhaa0WdaeaapeGaey4kIipaaOWaaqWaa8aabaWdbiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaBaaaleaapeGaam4yaaWdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaeqySdegaaaaaaaa@63E9@

(   a x c y | g( t,s ) | α c d p 2 , q 2 s a d p 1 , q 1 t ) 1 α MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOdaqadaWdaeaapeGaaeiOamaapehabaWaaybCaeqal8aabaWdbiaadogaa8aabaWdbiaadMhaa0WdaeaapeGaey4kIipaaOWaaqWaa8aabaWdbiaadEgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabeg7aHbaak8aadaWgaaWcbaWdbiaadogaa8aabeaak8qacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4Ca8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaWcbaGaamyyaaqaaiaadIhaa0Gaey4kIipaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaeqySdegaaaaaaaa@6437@

for all ( x,y )[ a,b ]×[ c,d ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaGaeyicI48aamWaa8aabaWdbiaadggacaGGSaGaamOyaaGaay5waiaaw2faaiabgEna0oaadmaapaqaa8qacaWGJbGaaiilaiaadsgaaiaawUfacaGLDbaacaGGUaaaaa@49E5@

3. Main results

Lemma 3.1

Let f:[ a,b ]×[ c,d ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbGaaiOoamaadmaapaqaa8qacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHxdaTdaWadaWdaeaapeGaam4yaiaacYcacaWGKbaacaGLBbGaayzxaaGaeyOKH46efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIuaaa@51AA@ be a twice partially (p1, p2, q1, q2) - differentiable function on ( a,b )×( c,d ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeGaamyyaiaacYcacaWGIbaacaGLOaGaayzkaaGaey41aq7aaeWaa8aabaWdbiaadogacaGGSaGaamizaaGaayjkaiaawMcaaiaac6caaaa@433C@ If a,c p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x     c p 2 , q 2 y ,   c b p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x     c p 2 , q 2 y ,   a d p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x    d p 2 , q 2 y ,   b,d p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x      d p 2 , q 2 y MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaadaWgaaWcbaWdbiaadggacaGGSaGaam4yaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadIhapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadMhaaaGaaiilamaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaaWdaeaapeGaamOyaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadkgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG4bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaiaacYcadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggaa8aabaWdbiaadsgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG4bWdamaaDaaaleaapeGaaiiOaiaacckaa8aabaWdbiaadsgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaiaacYcadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGIbGaaiilaiaadsgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGIbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiEa8aadaqhaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckaa8aabaWdbiaadsgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaaaa@EC75@ are continuous and (p1, p2, q1, q2) -integrable on [ a,b ]×[ c,d ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWadaWdaeaapeGaamyyaiaacYcacaWGIbaacaGLBbGaayzxaaGaey41aq7aamWaa8aabaWdbiaadogacaGGSaGaamizaaGaay5waiaaw2faaiaac6caaaa@440E@ Then we have

1 p 1 p 2 q 1 q 2 ( nm ) 2 ( lk ) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@4CCC@

× [ a+bn a+b[ ( 1 p 1 )n+ p 1 m ]   c+dl c+d[ ( 1 p 2 )l+ p 2 k ] f( t,s ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHxdaTdaWabaWdaeaapeWaaybCaeqal8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaiaad6gacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaad2gaaiaawUfacaGLDbaaa0WdaeaapeGaey4kIipaaOGaaeiiamaawahabeWcpaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSWdbiaawIcacaGLPaaacaWGSbGaey4kaSIaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaWGRbaacaGLBbGaayzxaaaan8aabaWdbiabgUIiYdaakiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaay5waaaaaa@7E88@

+ a+b[ ( 1 p 1 )m+ p 1 n ] a+bm c+dl c+d[ ( 1 p 2 )l+ p 2 k ] f( t,s ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaiaad2gacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaad6gaaiaawUfacaGLDbaaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaaGaamiBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaam4AaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4CaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaaa@7B95@

+ a+bn a+b[ ( 1 p 1 )n+ p 1 m ] c+d[ ( 1 p 2 )k+ p 2 l ] c+dk f( t,s ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaaGaamOBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaamyBaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcpeGaayjkaiaawMcaaiaadUgacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaadYgaaiaawUfacaGLDbaaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4Aaaqdpaqaa8qacqGHRiI8aaGccaqGnaIaamOzamaabmaapaqaa8qacaWG0bGaaiilaiaadohaaiaawIcacaGLPaaacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaaa@7C45@

a+b[ ( 1 p 1 )m+ p 1 n ] a+bm   c+d[ ( 1 p 2 )k+ p 2 l ] c+dk f( t,s ) d p 2 , q 2 s d p 1 , q 1 t ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeWaaybCaeqal8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSWdbiaawIcacaGLPaaacaWGTbGaey4kaSIaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaWGUbaacaGLBbGaayzxaaaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaa0WdaeaapeGaey4kIipaaOGaaeiiamaawahabeWcpaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaaGaam4AaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaamiBaaGaay5waiaaw2faaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaan8aabaWdbiabgUIiYdaakiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayzxaaaaaa@7C72@

1 p 2 ( nm ) ( lk ) 2 [ c+dl c+d[ ( 1 p 2 )l+ p 2 k ] f( a+bm,s ) d p 2 , q 2 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiBaiabgkHiTiaadUgaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaWabaWdaeaapeWaaybCaeqal8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcpeGaayjkaiaawMcaaiaadYgacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaadUgaaiaawUfacaGLDbaaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4CaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaacaGLBbaaaaa@6ED5@

+ c+dl c+d[ ( 1 p 2 )l+ p 2 k ] f( a+bn,s ) d p 2 , q 2 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaaGaamiBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaam4AaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaa@6081@

+ c+d[ ( 1 p 2 )k+ p 2 l ] c+dk f( a+bm,s ) d p 2 , q 2 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcpeGaayjkaiaawMcaaiaadUgacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaadYgaaiaawUfacaGLDbaaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4Aaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaa@607F@

c+d[ ( 1 p 2 )k+ p 2 l ] c+dk f( a+bn,s ) d p 2 , q 2 s ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeWaaybCaeqal8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSWdbiaawIcacaGLPaaacaWGRbGaey4kaSIaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaWGSbaacaGLBbGaayzxaaaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4CaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaacaGLDbaaaaa@60BB@

1 p 1 ( nm ) 2 ( lk ) [ a+bn a+b[ ( 1 p 1 )n+ p 1 m ] f( t,c+dk ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaaadaWabaWdaeaapeWaaybCaeqal8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaiaad6gacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaad2gaaiaawUfacaGLDbaaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWG0bGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawUfaaaaa@7607@

+ a+b[ ( 1 p 1 )m+ p 1 n ] a+bm f( t,c+dk ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaiaad2gacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaad6gaaiaawUfacaGLDbaaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaaa@67B2@

+ a+bn a+b[ ( 1 p 1 )n+ p 1 m ] f( t,c+dl ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaaGaamOBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaamyBaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaaa@67B4@

a+b[ ( 1 p 1 )m+ p 1 n ] a+bm f( t,c+dl ) d p 2 , q 2 s d p 1 , q 1 t ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeWaaybCaeqal8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSWdbiaawIcacaGLPaaacaWGTbGaey4kaSIaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaWGUbaacaGLBbGaayzxaaaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWG0bGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaaw2faaaaa@67EE@

+ 1 ( nm )( lk ) [ ( a+bm,c+dk )+( a+bn,c+dk ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaad6gacqGHsislcaWGTbaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadYgacqGHsislcaWGRbaacaGLOaGaayzkaaaaamaadeaapaqaa8qadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaiabgUcaRmaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaacaGLOaGaayzkaaaacaGLBbaaaaa@5BE9@

+( a+bm,c+dl )+( a+bn,c+dl ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaaiaawIcacaGLPaaacqGHRaWkdaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaGaayjkaiaawMcaaaGaayzxaaaaaa@51F5@

= a,c b,d J p 1 , p 2 , q 1 , q 2 f( t,s ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqppaWaa0baaSqaa8qacaWGHbGaaiilaiaadogaa8aabaWdbiaadkgacaGGSaGaamizaaaakiaadQeapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4CaaGaayjkaiaawMcaaaaa@4FA2@

where

  a,c b,d J p 1 , p 2 , q 1 , q 2 f( t,s ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiaacYcacaWGJbaapaqaa8qacaWGIbGaaiilaiaadsgaaaGccaWGkbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamOzamaabmaapaqaa8qacaWG0bGaaiilaiaadohaaiaawIcacaGLPaaaaaa@4FBF@

0 1 0 1 ts   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a+b[ tm+( 1t )n ],c+d[ sk+( 1s )l ] ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbqaamaapehabaGaamiDaiaadohaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdaaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbiaadshacaWGTbGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWG0baacaGLOaGaayzkaaGaamOBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qacaWGZbGaam4AaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaaiaadYgaaiaawUfacaGLDbaaaiaawIcacaGLPaaacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaaa@A60D@

0 1 0 1 ts   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a+b[ ( 1t )m+tn ],c+d[ sk+( 1s )l ] ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbqaamaapehabaGaamiDaiaadohadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaacaWGTbGaey4kaSIaamiDaiaad6gaaiaawUfacaGLDbaacaGGSaGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeGaam4CaiaadUgacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaacaWGSbaacaGLBbGaayzxaaaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdaaaa@A534@

0 1 0 1 ts   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a+b[ tm+( 1t )n ],c+d[ ( 1s )k+sl ] ) d p 2 , q 2 s d p 1 , q 1 tt MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbqaamaapehabaGaamiDaiaadohadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbiaadshacaWGTbGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWG0baacaGLOaGaayzkaaGaamOBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaacaWGRbGaey4kaSIaam4CaiaadYgaaiaawUfacaGLDbaaaiaawIcacaGLPaaacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bGaamiDaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdaaaa@A19D@

0 1 0 1 ts   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a+b[ ( 1t )m+tn ],c+d[ ( 1s )k+sl ] ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbqaamaapehabaGaamiDaiaadohadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaacaWGTbGaey4kaSIaamiDaiaad6gaaiaawUfacaGLDbaacaGGSaGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaGaam4AaiabgUcaRiaadohacaWGSbaacaGLBbGaayzxaaaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdaaaa@A115@

for m,n[ a,b ],k,l[ c,d ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGTbGaaiilaiaad6gacqGHiiIZdaWadaWdaeaapeGaamyyaiaacYcacaWGIbaacaGLBbGaayzxaaGaaiilaiaadUgacaGGSaGaamiBaiabgIGiopaadmaapaqaa8qacaWGJbGaaiilaiaadsgaaiaawUfacaGLDbaaaaa@4A23@ and m<n,k<l. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGTbGaeyipaWJaamOBaiaacYcacaWGRbGaeyipaWJaamiBaiaac6caaaa@3F55@

Proof:

By the definition 2.9, we have

  a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a+b[ tm+( 1t )n ],c+d[ sk+( 1s )l ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeGaamiDaiaad2gacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaacaWGUbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbiaadohacaWGRbGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaGaamiBaaGaay5waiaaw2faaaGaayjkaiaawMcaaaaa@8DED@

= 1 ( p 1 q 1 )( p 2 q 2 )t( nm )s( lk ) [ f( a+b[ ( 1 q 1 t )n+ q 1 tm,c+d[ ( 1 q 2 s )l+ q 2 sk ] ] ) f( a+b[ ( 1 q 1 t )n+ q 1 tm,c+d[ ( 1 p 2 s )l+ p 2 sk ] ] ) f( a+b[ ( 1 p 1 t )n+ p 1 tm,c+d[ ( 1 q 2 s )l+ q 2 sk ] ] ) +f( a+b[ ( 1 p 1 t )n+ p 1 tm,c+d[ ( 1 p 2 s )l+ p 2 sk ] ] ) ]. × MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaqaabeqaa8qadaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaamiDamaabmaapaqaa8qacaWGUbGaeyOeI0IaamyBaaGaayjkaiaawMcaaiaadohadaqadaWdaeaapeGaamiBaiabgkHiTiaadUgaaiaawIcacaGLPaaaaeaadaWabaWdaeaapeGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiDaaGaayjkaiaawMcaaiaad6gacqGHRaWkcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadshacaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGZbaacaGLOaGaayzkaaGaamiBaiabgUcaRiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4CaiaadUgaaiaawUfacaGLDbaaaiaawUfacaGLDbaaaiaawIcacaGLPaaaaiaawUfaaaqaaiabgkHiTiaadAgadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadshaaiaawIcacaGLPaaacaWGUbGaey4kaSIaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG0bGaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4CaaGaayjkaiaawMcaaiaadYgacqGHRaWkcaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadohacaWGRbaacaGLBbGaayzxaaaacaGLBbGaayzxaaaacaGLOaGaayzkaaaabaGaeyOeI0IaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiDaaGaayjkaiaawMcaaiaad6gacqGHRaWkcaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadshacaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGZbaacaGLOaGaayzkaaGaamiBaiabgUcaRiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4CaiaadUgaaiaawUfacaGLDbaaaiaawUfacaGLDbaaaiaawIcacaGLPaaaaeaadaWacaWdaeaapeGaey4kaSIaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiDaaGaayjkaiaawMcaaiaad6gacqGHRaWkcaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadshacaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGZbaacaGLOaGaayzkaaGaamiBaiabgUcaRiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4CaiaadUgaaiaawUfacaGLDbaaaiaawUfacaGLDbaaaiaawIcacaGLPaaaaiaaw2faaiaac6caaaaacqGHxdaTaaa@F79D@

Moreover,

0 1 0 1 ts   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a+b[ tm+( 1t )n ],c+d[ sk+( 1s )l ] ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbqaamaapehabaGaamiDaiaadohadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeGaamiDaiaad2gacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaacaWGUbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbiaadohacaWGRbGaey4kaSYaaeWaa8aabaWdbiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaGaamiBaaGaay5waiaaw2faaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdaaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aaaa@A603@

= 0 1 0 1 ts 1 ( p 1 q 1 )( p 2 q 2 )t( nm )s( lk ) × MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaqGnaYaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaaeydGiaadshacaWGZbWaaSaaa8aabaWdbiaaigdaa8aabaWdbmaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaWG0bWaaeWaa8aabaWdbiaad6gacqGHsislcaWGTbaacaGLOaGaayzkaaGaam4Camaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaaacqGHxdaTaaa@60D5@

[ f( a+b[ ( 1 q 1 t )n+ q 1 tm ],c+d[ ( 1 q 2 s )l+ q 2 sk ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWabaWdaeaapeGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiDaaGaayjkaiaawMcaaiaad6gacqGHRaWkcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadshacaWGTbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGZbaacaGLOaGaayzkaaGaamiBaiabgUcaRiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4CaiaadUgaaiaawUfacaGLDbaaaiaawIcacaGLPaaaaiaawUfaaaaa@6082@

f( a+b[ ( 1 q 1 t )n+ q 1 tm ],c+d[ ( 1 p 2 s )l+ p 2 sk ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsislcaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG0baacaGLOaGaayzkaaGaamOBaiabgUcaRiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiDaiaad2gaaiaawUfacaGLDbaacaGGSaGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadohaaiaawIcacaGLPaaacaWGSbGaey4kaSIaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGZbGaam4AaaGaay5waiaaw2faaaGaayjkaiaawMcaaaaa@6053@

f( a+b[ ( 1 p 1 t )n+ p 1 tm ],c+d[ ( 1 q 2 s )l+ q 2 sk ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsislcaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG0baacaGLOaGaayzkaaGaamOBaiabgUcaRiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiDaiaad2gaaiaawUfacaGLDbaacaGGSaGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadohaaiaawIcacaGLPaaacaWGSbGaey4kaSIaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGZbGaam4AaaGaay5waiaaw2faaaGaayjkaiaawMcaaaaa@6053@

+f( a+b[ ( 1 p 1 t )n+ p 1 tm ],c+d[ ( 1 p 2 s )l+ p 2 sk ] ) ] d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSIaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiDaaGaayjkaiaawMcaaiaad6gacqGHRaWkcaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadshacaWGTbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGZbaacaGLOaGaayzkaaGaamiBaiabgUcaRiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4CaiaadUgaaiaawUfacaGLDbaaaiaawIcacaGLPaaaaiaaw2faaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaaa@6FCC@

= 1 ( p 1 q 1 )( p 2 q 2 )( nm )( lk ) [ f( a+b[ ( 1 q 1 t )n+ q 1 tm ],c+d[ ( 1 q 2 s )l+ q 2 sk ] ) f( a+b[ ( 1 q 1 t )n+ q 1 tm ],c+d[ ( 1 p 2 s )l+ p 2 sk ] ) f( a+b[ ( 1 p 1 t )n+ p 1 tm ],c+d[ ( 1 q 2 s )l+ q 2 sk ] ) +f( a+b[ ( 1 p 1 t )n+ p 1 tm ],c+d[ ( 1 p 2 s )l+ p 2 sk ] ) ] d p 2 , q 2 s d p 1 , q 1 t 0 1 0 1 = 1 ( p 1 q 1 )( p 2 q 2 )( nm )( lk ) [ I 1 I 2 I 3 + I 4 ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaaaaaaWdbiabg2da9maalaaapaqaa8qacaaIXaaapaabaeqabaWdbmaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiBaiabgkHiTiaadUgaaiaawIcacaGLPaaaaeaadaWabaWdaeaapeGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiDaaGaayjkaiaawMcaaiaad6gacqGHRaWkcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadshacaWGTbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGZbaacaGLOaGaayzkaaGaamiBaiabgUcaRiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4CaiaadUgaaiaawUfacaGLDbaaaiaawIcacaGLPaaaaiaawUfaaaqaaiabgkHiTiaadAgadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadshaaiaawIcacaGLPaaacaWGUbGaey4kaSIaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG0bGaamyBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4CaaGaayjkaiaawMcaaiaadYgacqGHRaWkcaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadohacaWGRbaacaGLBbGaayzxaaaacaGLOaGaayzkaaaabaGaeyOeI0IaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiDaaGaayjkaiaawMcaaiaad6gacqGHRaWkcaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadshacaWGTbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGZbaacaGLOaGaayzkaaGaamiBaiabgUcaRiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4CaiaadUgaaiaawUfacaGLDbaaaiaawIcacaGLPaaaaeaadaWacaWdaeaapeGaey4kaSIaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiDaaGaayjkaiaawMcaaiaad6gacqGHRaWkcaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadshacaWGTbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGZbaacaGLOaGaayzkaaGaamiBaiabgUcaRiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4CaiaadUgaaiaawUfacaGLDbaaaiaawIcacaGLPaaaaiaaw2faaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaaaadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaqGnaYaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaaeydGaqaaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qadaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaad6gacqGHsislcaWGTbaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadYgacqGHsislcaWGRbaacaGLOaGaayzkaaaaamaadmaapaqaa8qacaWGjbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaadMeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0Iaamysa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHRaWkcaWGjbWdamaaBaaaleaapeGaaGinaaWdaeqaaaGcpeGaay5waiaaw2faaiaac6caaaaa@3183@

By definition 2.10, we have

I 1 = 0 1 0 1 f( a+b[ ( 1 q 1 t )n+ q 1 tm, ]c+d[ ( 1 q 2 s )l+ q 2 sk ] ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGjbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9maapehabaWaa8qCaeaacaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG0baacaGLOaGaayzkaaGaamOBaiabgUcaRiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiDaiaad2gacaGGSaaacaGLBbGaayzxaaGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadohaaiaawIcacaGLPaaacaWGSbGaey4kaSIaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGZbGaam4AaaGaay5waiaaw2faaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdaaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aaaa@7890@

= n=0 m=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( a+b[ ( 1 q 1 n+1 p 1 n+1 )n+ q 1 n+1 p 1 n+1 m ],c+d[ ( 1 q 2 m+1 p 2 m+1 )l+ q 2 m+1 p 2 m+1 k ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaGfWbqabSWdaeaapeGaamOBaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGcdaGfWbqabSWdaeaapeGaamyBaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGcdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaGcdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbGaey4kaSIaaGymaaaaaaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaaaaaOGaayjkaiaawMcaaiaad6gacqGHRaWkdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOGaamyBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbGaey4kaSIaaGymaaaaaaaakiaawIcacaGLPaaacaWGSbGaey4kaSYaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbGaey4kaSIaaGymaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaakiaadUgaaiaawUfacaGLDbaaaiaawIcacaGLPaaaaaa@98BB@

= p 1 p 2 q 1 q 2 n=0 m=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( a+b[ ( 1 q 1 n p 1 n+1 p 1 )n+ q 1 n p 1 n+1 p 1 m ],c+d[ ( 1 q 2 m p 2 m+1 p 2 )l+ q 2 m p 2 m+1 p 2 k ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaGcpeWaaybCaeqal8aabaWdbiaad6gacqGH9aqpcaaIWaaapaqaa8qacqGHEisPa0WdaeaapeGaeyyeIuoaaOWaaybCaeqal8aabaWdbiaad2gacqGH9aqpcaaIWaaapaqaa8qacqGHEisPa0WdaeaapeGaeyyeIuoaaOWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaaaakiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaamOBaiabgUcaRmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaaaakiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamyBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaakiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaamiBaiabgUcaRmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaakiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4AaaGaay5waiaaw2faaaGaayjkaiaawMcaaaaa@A39C@

p 2 q 1 q 2 n=0 q 1 n p 1 n+1 f( a+b[ ( 1 q 1 n p 1 n+1 p 1 )n+ q 1 n p 1 n+1 p 1 m ],c+dk ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8qacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaOWdbmaawahabeWcpaqaa8qacaWGUbGaeyypa0JaaGimaaWdaeaapeGaeyOhIukan8aabaWdbiabggHiLdaakmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaaaakiaadAgadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaGccaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaad6gacqGHRaWkdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaGccaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaad2gaaiaawUfacaGLDbaacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaacaGLOaGaayzkaaaaaa@76B9@

p 1 q 1 q 2 m=0 q 2 m p 2 m+1 f( a+bm,c+d[ ( 1 q 2 m p 2 m+1 p 2 )l+ q 2 m p 2 m+1 p 2 k ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaOWdbmaawahabeWcpaqaa8qacaWGTbGaeyypa0JaaGimaaWdaeaapeGaeyOhIukan8aabaWdbiabggHiLdaakmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaakiaadAgadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGSbGaey4kaSYaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGRbaacaGLBbGaayzxaaaacaGLOaGaayzkaaaaaa@76B7@

+ 1 q 1 q 2 ( a+bm,c+dk ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaak8qadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaiaac6caaaa@4A83@

I 2 = 0 1 0 1 f( a+b[ ( 1 q 1 t )n+ q 1 tm ],c+d[ ( 1 p 2 s )l+ p 2 sk ] ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGjbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9maapehabaWaa8qCaeaacaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG0baacaGLOaGaayzkaaGaamOBaiabgUcaRiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiDaiaad2gaaiaawUfacaGLDbaacaGGSaGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadohaaiaawIcacaGLPaaacaWGSbGaey4kaSIaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGZbGaam4AaaGaay5waiaaw2faaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdaaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aaaa@788F@

= n=0 m=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( a+b[ ( 1 q 1 n+1 p 1 n+1 )n+ q 1 n+1 p 1 n+1 m ],c+d[ ( 1 q 2 m p 2 m )l+ q 2 m p 2 m k ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaGfWbqabSWdaeaapeGaamOBaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGcdaGfWbqabSWdaeaapeGaamyBaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGcdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaGcdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbGaey4kaSIaaGymaaaaaaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaaaaaOGaayjkaiaawMcaaiaad6gacqGHRaWkdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOGaamyBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gaaaaaaaGccaGLOaGaayzkaaGaamiBaiabgUcaRmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gaaaaaaOGaam4AaaGaay5waiaaw2faaaGaayjkaiaawMcaaaaa@9247@

= p 1 q 1 n=0 m=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( a+b[ ( 1 q 1 n p 1 n+1 p 1 )n+ q 1 n p 1 n+1 p 1 m ],c+d[ ( 1 q 2 m p 2 m+1 p 2 )l+ q 2 m p 2 m+1 p 2 k ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaaak8qadaGfWbqabSWdaeaapeGaamOBaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGcdaGfWbqabSWdaeaapeGaamyBaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGcdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaGcdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbGaey4kaSIaaGymaaaaaaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGUbGaey4kaSYaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGTbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGSbGaey4kaSYaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGRbaacaGLBbGaayzxaaaacaGLOaGaayzkaaaaaa@9F51@

1 q 1 m=0 q 2 m p 2 m+1 f( a+bm,c+d[ ( 1 q 2 m p 2 m+1 p 2 )l+ q 2 m p 2 m+1 p 2 k ] ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeWaaybCaeqal8aabaWdbiaad2gacqGH9aqpcaaIWaaapaqaa8qacqGHEisPa0WdaeaapeGaeyyeIuoaaOGaaeydGmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaakiaadAgadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGSbGaey4kaSYaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGRbaacaGLBbGaayzxaaaacaGLOaGaayzkaaGaaiOlaaaa@74A9@

I 3 = 0 1 0 1 f( a+b[ ( 1 p 1 t )n+ p 1 tm ],c+d[ ( 1 q 2 s )l+ q 2 sk ] ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGjbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9maawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakiaadAgadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadshaaiaawIcacaGLPaaacaWGUbGaey4kaSIaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG0bGaamyBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4CaaGaayjkaiaawMcaaiaadYgacqGHRaWkcaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadohacaWGRbaacaGLBbGaayzxaaaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaaa@796E@

= n=0 m=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( a+b[ ( 1 q 1 n p 1 n )n+ q 1 n p 1 n m ],c+d[ ( 1 q 2 m+1 p 2 m+1 )l+ q 2 m+1 p 2 m+1 k ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaGfWbqabSWdaeaapeGaamOBaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGcdaGfWbqabSWdaeaapeGaamyBaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGcdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaGcdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbGaey4kaSIaaGymaaaaaaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaaaaaaaakiaawIcacaGLPaaacaWGUbGaey4kaSYaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaaaaaaGccaWGTbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbGaey4kaSIaaGymaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaaaOGaayjkaiaawMcaaiaadYgacqGHRaWkdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaam4AaaGaay5waiaaw2faaaGaayjkaiaawMcaaaaa@9247@

= p 2 q 2 n=0 m=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( a+b[ ( 1 q 1 n p 1 n+1 p 1 )n+ q 1 n p 1 n+1 p 1 m ],c+d[ ( 1 q 2 m p 2 m+1 p 2 )l+ q 2 m p 2 m+1 p 2 k ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8qacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaak8qadaGfWbqabSWdaeaapeGaamOBaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGcdaGfWbqabSWdaeaapeGaamyBaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGcdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaGcdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbGaey4kaSIaaGymaaaaaaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGUbGaey4kaSYaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGTbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGSbGaey4kaSYaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGRbaacaGLBbGaayzxaaaacaGLOaGaayzkaaaaaa@9F53@

1 q 2 m=0 q 2 m p 2 m+1 f( a+b[ ( 1 q 1 n p 1 n+1 p 1 )n+ q 1 n p 1 n+1 p 1 m ],c+dk ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaGcpeWaaybCaeqal8aabaWdbiaad2gacqGH9aqpcaaIWaaapaqaa8qacqGHEisPa0WdaeaapeGaeyyeIuoaaOWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaaaakiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaamOBaiabgUcaRmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaaaakiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamyBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaiaawIcacaGLPaaacaGGUaaaaa@73FA@

I 4 = 0 1 0 1 f( a+b[ ( 1 p 1 t )n+ p 1 tm ],c+d[ ( 1 p 2 s )l+ p 2 sk ] ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGjbWdamaaBaaaleaapeGaaGinaaWdaeqaaOWdbiabg2da9maawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakiaadAgadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadshaaiaawIcacaGLPaaacaWGUbGaey4kaSIaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG0bGaamyBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4CaaGaayjkaiaawMcaaiaadYgacqGHRaWkcaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadohacaWGRbaacaGLBbGaayzxaaaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaaa@796D@

= n=0 m=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( a+b[ ( 1 q 1 n p 1 n+1 p 1 )n+ q 1 n p 1 n+1 p 1 m ],c+d[ ( 1 q 2 m p 2 m+1 p 2 )l+ q 2 m p 2 m+1 p 2 k ] ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaGfWbqabSWdaeaapeGaamOBaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGcdaGfWbqabSWdaeaapeGaamyBaiabg2da9iaaicdaa8aabaWdbiabg6HiLcqdpaqaa8qacqGHris5aaGcdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbGaey4kaSIaaGymaaaaaaGcdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbGaey4kaSIaaGymaaaaaaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGUbGaey4kaSYaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGTbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaWGSbGaey4kaSYaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGRbaacaGLBbGaayzxaaaacaGLOaGaayzkaaaaaa@9AD9@

So that,

0 1 0 1 ts   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a+b[ tm+( 1t )n ],c+d[ sk+( 1s )l ] ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bGaam4Camaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qacaWG0bGaamyBaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiDaaGaayjkaiaawMcaaiaad6gaaiaawUfacaGLDbaacaGGSaGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeGaam4CaiaadUgacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaacaWGSbaacaGLBbGaayzxaaaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaaa@A6E1@

= 1 ( p 1 q 1 )( p 2 q 2 )( nm )( lk ) [ ( p 1 q 1 )( p 2 q 2 ) q 1 q 2 n=0 m=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( a+b[ ( 1 q 1 n p 1 n )n+ q 1 n p 1 n m ],c+d[ ( 1 q 2 m+1 p 2 m+1 )l+ q 2 m+1 p 2 m+1 k ] ) ( p 2 q 2 ) q 1 q 2 n=0 m=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( a+bm,c+d[ ( 1 q 2 m p 2 m+1 p 2 )l+ q 2 m p 2 m+1 p 2 k ] ) ( p 1 q 1 ) q 1 q 2 n=0 m=0 q 1 n p 1 n+1 q 2 m p 2 m+1 f( a+b[ ( 1 q 1 n p 1 n+1 p 1 )n+ q 1 n p 1 n+1 p 1 m ],c+dk ) + 1 q 1 q 2 ( a+bm,c+dk ) × MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaqaabeqaa8qadaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaWaaeWaa8aabaWdbiaad6gacqGHsislcaWGTbaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadYgacqGHsislcaWGRbaacaGLOaGaayzkaaaabaWaamqaa8aabaWdbmaalaaapaqaa8qadaqadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdacqGHsisla8aabeaak8qacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qacaWGXbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaOWdbmaawahabeWcpaqaa8qacaWGUbGaeyypa0JaaGimaaWdaeaapeGaeyOhIukan8aabaWdbiabggHiLdaakmaawahabeWcpaqaa8qacaWGTbGaeyypa0JaaGimaaWdaeaapeGaeyOhIukan8aabaWdbiabggHiLdaakmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaaaakmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaaakiaadAgadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaaaaOGaayjkaiaawMcaaiaad6gacqGHRaWkdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaaakiaad2gaaiaawUfacaGLDbaacaGGSaGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gacqGHRaWkcaaIXaaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaaGccaGLOaGaayzkaaGaamiBaiabgUcaRmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbGaey4kaSIaaGymaaaaaaGccaWGRbaacaGLBbGaayzxaaaacaGLOaGaayzkaaaacaGLBbaaaeaacqGHsisldaWcaaWdaeaapeWaaeWaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaGcpeWaaybCaeqal8aabaWdbiaad6gacqGH9aqpcaaIWaaapaqaa8qacqGHEisPa0WdaeaapeGaeyyeIuoaaOWaaybCaeqal8aabaWdbiaad2gacqGH9aqpcaaIWaaapaqaa8qacqGHEisPa0WdaeaapeGaeyyeIuoaaOWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbGaey4kaSIaaGymaaaaaaGccaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadYgacqGHRaWkdaWcaaWdaeaapeGaamyCa8aadaqhaaWcbaWdbiaaikdaa8aabaWdbiaad2gaaaaak8aabaWdbiaadchapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbGaey4kaSIaaGymaaaaaaGccaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadUgaaiaawUfacaGLDbaaaiaawIcacaGLPaaaaeaacqGHsisldaWcaaWdaeaapeWaaeWaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIXaGaeyOeI0capaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaGcpeWaaybCaeqal8aabaWdbiaad6gacqGH9aqpcaaIWaaapaqaa8qacqGHEisPa0WdaeaapeGaeyyeIuoaaOWaaybCaeqal8aabaWdbiaad2gacqGH9aqpcaaIWaaapaqaa8qacqGHEisPa0WdaeaapeGaeyyeIuoaaOWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGUbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaiabgUcaRiaaigdaaaaaaOWaaSaaa8aabaWdbiaadghapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWGTbaaaaGcpaqaa8qacaWGWbWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaamyBaiabgUcaRiaaigdaaaaaaOGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaaaakiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaamOBaiabgUcaRmaalaaapaqaa8qacaWGXbWdamaaDaaaleaapeGaaGymaaWdaeaapeGaamOBaaaaaOWdaeaapeGaamiCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaad6gacqGHRaWkcaaIXaaaaaaakiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamyBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaiaawIcacaGLPaaaaeaacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaak8qadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaaaaiabgEna0caa@75F6@

= 1 q 1 q 2 [ 1 p 1 p 2 ( nm ) 2 ( lk ) 2 a+bn a+b[ ( 1 p 1 )n+ p 1 m ]   c+dl c+d[ ( 1 p 2 )l+ p 2 k ] f( t,s ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaak8qadaWabaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaakmaawahabeWcpaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSWdbiaawIcacaGLPaaacaWGUbGaey4kaSIaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaWGTbaacaGLBbGaayzxaaaan8aabaWdbiabgUIiYdaakiaabccadaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaaGaamiBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaam4AaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4CaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawUfaaaaa@9331@

1 p 2 ( nm ) ( lk ) 2 c+dl c+d[ ( 1 p 2 )l+ p 2 k ] f( a+bm,s ) d p 2 , q 2 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiBaiabgkHiTiaadUgaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaaGaamiBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaam4AaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaa@6DBB@

1 p 1 ( nm ) 2 ( lk ) a+bn a+b[ ( 1 p 1 )n+ p 1 m ] f( t,c+dk ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaaadaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaaGaamOBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaamyBaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaaa@74ED@

+ 1 ( nm )( lk ) ( a+bm,c+dk ) ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbmaabmaapaqaa8qacaWGUbGaeyOeI0IaamyBaaGaayjkaiaawMcaamaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaaadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaGaayzxaaGaaiOlaaaa@5045@

Similarly, by the equality, we obtain the identities

0 1 0 1 ts   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a+b[ ( 1t )m+tn ],c+d[ sk+( 1s )l ] ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bGaam4Camaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiDaaGaayjkaiaawMcaaiaad2gacqGHRaWkcaWG0bGaamOBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qacaWGZbGaam4AaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaaiaadYgaaiaawUfacaGLDbaaaiaawIcacaGLPaaacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaaa@A612@

= 1 q 1 q 2 [ 1 p 1 p 2 ( nm ) 2 ( lk ) 2 a+b[ ( 1 p 1 )m+ p 1 n ] a+bm c+dl c+d[ ( 1 p 2 )l+ p 2 k ] f( t,s ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaak8qadaWabaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaakmaawahabeWcpaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaaGaamyBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaamOBaaGaay5waiaaw2faaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSWdbiaawIcacaGLPaaacaWGSbGaey4kaSIaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaWGRbaacaGLBbGaayzxaaaan8aabaWdbiabgUIiYdaakiaab2aicaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4CaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawUfaaaaa@933D@

1 p 2 ( nm ) ( lk ) 2 c+dl c+d[ ( 1 p 2 )l+ p 2 k ] f( a+bn,s ) d p 2 , q 2 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiBaiabgkHiTiaadUgaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaaGaamiBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaam4AaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGccaqGnaIaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4CaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaa@6E6C@

1 p 1 ( nm ) 2 ( lk ) a+b[ ( 1 p 1 )m+ p 1 n ] a+bm f( t,c+dk ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaaadaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaiaad2gacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaad6gaaiaawUfacaGLDbaaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaaa@74EC@

+ 1 ( nm )( lk ) ( a+bn,c+dk ) ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbmaabmaapaqaa8qacaWGUbGaeyOeI0IaamyBaaGaayjkaiaawMcaamaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaaadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaGaayzxaaGaaiOlaaaa@5046@

0 1 0 1 ts   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a+b[ tm+( 1t )n ],c+d[ ( 1s )k+sl ] ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bGaam4Camaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeGaamiDaiaad2gacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaacaWGUbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaaiaadUgacqGHRaWkcaWGZbGaamiBaaGaay5waiaaw2faaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaaa@A182@

= 1 q 1 q 2 [ 1 p 1 p 2 ( nm ) 2 ( lk ) 2 a+bn a+b[ ( 1 p 1 )n+ p 1 m ] c+d[ ( 1 p 2 )k+ p 2 l ] c+dk f( t,s ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaak8qadaWabaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaakmaawahabeWcpaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSWdbiaawIcacaGLPaaacaWGUbGaey4kaSIaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaWGTbaacaGLBbGaayzxaaaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaaGaam4AaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaamiBaaGaay5waiaaw2faaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaan8aabaWdbiabgUIiYdaakiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaay5waaaaaa@928D@

1 p 2 ( nm ) ( lk ) 2 c+d[ ( 1 p 2 )k+ p 2 l ] c+dk f( a+bm,s ) d p 2 , q 2 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiBaiabgkHiTiaadUgaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcpeGaayjkaiaawMcaaiaadUgacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaadYgaaiaawUfacaGLDbaaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4Aaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaa@6DBA@

1 p 1 ( nm ) 2 ( lk ) a+bn a+b[ ( 1 p 1 )n+ p 1 m ] f( t,,c+dl ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaaadaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaaGaamOBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaamyBaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGccaqGnaIaamOzamaabmaapaqaa8qacaWG0bGaaiilaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaaiaawIcacaGLPaaacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaaa@764E@

+ 1 ( nm )( lk ) ( a+bm,c+dl ) ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbmaabmaapaqaa8qacaWGUbGaeyOeI0IaamyBaaGaayjkaiaawMcaamaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaaadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaGaayjkaiaawMcaaaGaayzxaaGaaiOlaaaa@5046@

0 1 0 1 ts   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a+b[ ( 1t )m+tn ],c+d[ ( 1s )k+sl ] ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bGaam4Camaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiDaaGaayjkaiaawMcaaiaad2gacqGHRaWkcaWG0bGaamOBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaacaWGRbGaey4kaSIaam4CaiaadYgaaiaawUfacaGLDbaaaiaawIcacaGLPaaacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaaa@A1F3@

= 1 q 1 q 2 [ 1 p 1 p 2 ( nm ) 2 ( lk ) 2 a+b[ ( 1 p 1 )m+ p 1 n ] a+bm c+d[ ( 1 p 2 )k+ p 2 l ] c+dk f( t,s ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaak8qadaWabaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadchapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaakmaawahabeWcpaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaaGaamyBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaamOBaaGaay5waiaaw2faaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaaGaam4AaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaamiBaaGaay5waiaaw2faaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaan8aabaWdbiabgUIiYdaakiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaay5waaaaaa@928C@

1 p 2 ( nm ) ( lk ) 2 c+d[ ( 1 p 2 )k+ p 2 l ] c+dk f( a+bn,s ) d p 2 , q 2 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiBaiabgkHiTiaadUgaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcpeGaayjkaiaawMcaaiaadUgacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaadYgaaiaawUfacaGLDbaaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4Aaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaa@6DBB@

1 p 1 ( nm ) 2 ( lk ) a+b[ ( 1 p 1 )m+ p 1 n ] a+bm f( t,c+dl ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaaadaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaiaad2gacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaad6gaaiaawUfacaGLDbaaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaaa@74ED@

+ 1 ( nm )( lk ) ( a+bn,c+dl ) ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbmaabmaapaqaa8qacaWGUbGaeyOeI0IaamyBaaGaayjkaiaawMcaamaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaaadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaGaayjkaiaawMcaaaGaayzxaaGaaiOlaaaa@5047@

Thus, we have

1 p 1 p 2 q 1 q 2 ( nm ) 2 ( lk ) 2 [ a+bn a+b[ ( 1 p 1 )n+ p 1 m ]   c+dl c+d[ ( 1 p 2 )l+ p 2 k ] f( t,s ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGWbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaaakmaadeaapaqaa8qadaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaaGaamOBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaamyBaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGccaqGGaWaaybCaeqal8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcpeGaayjkaiaawMcaaiaadYgacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaadUgaaiaawUfacaGLDbaaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWG0bGaaiilaiaadohaaiaawIcacaGLPaaacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLBbaaaaa@9122@

+ a+b[ ( 1 p 1 )m+ p 1 n ] a+bm c+dl c+d[ ( 1 p 2 )l+ p 2 k ] f( t,s ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaiaad2gacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaad6gaaiaawUfacaGLDbaaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaaGaamiBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaam4AaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4CaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaaa@7B95@

+ a+bn a+b[ ( 1 p 1 )n+ p 1 m ] c+d[ ( 1 p 2 )k+ p 2 l ] c+dk f( t,s ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaaGaamOBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaamyBaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcpeGaayjkaiaawMcaaiaadUgacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaadYgaaiaawUfacaGLDbaaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4Aaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4CaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaaa@7B95@

a+b[ ( 1 p 1 )m+ p 1 n ] a+bm   c+d[ ( 1 p 2 )k+ p 2 l ] c+dk f( t,s ) d p 2 , q 2 s d p 1 , q 1 t ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeWaaybCaeqal8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSWdbiaawIcacaGLPaaacaWGTbGaey4kaSIaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaWGUbaacaGLBbGaayzxaaaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaa0WdaeaapeGaey4kIipaaOGaaeiiamaawahabeWcpaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaaGaam4AaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaamiBaaGaay5waiaaw2faaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaan8aabaWdbiabgUIiYdaakiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayzxaaaaaa@7C72@

1 p 2 ( nm ) ( lk ) 2 [ c+dl c+d[ ( 1 p 2 )l+ p 2 k ] f( a+bm,s ) d p 2 , q 2 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiBaiabgkHiTiaadUgaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaWabaWdaeaapeWaaybCaeqal8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaqcba6daeaapeGaam4yaiabgUcaRiaadsgacqGHsisllmaadmaajeaOpaqaaSWdbmaabmaajeaOpaqaa8qacaaIXaGaeyOeI0IaamiCaSWdamaaBaaajiaObaWdbiaaikdaa8aabeaaaKqaG+qacaGLOaGaayzkaaGaamiBaiabgUcaRiaadchal8aadaWgaaqccaAaa8qacaaIYaaapaqabaqcba6dbiaadUgaaiaawUfacaGLDbaaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4CaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaacaGLBbaaaaa@737B@

+ c+dl c+d[ ( 1 p 2 )l+ p 2 k ] f( a+bn,s ) d p 2 , q 2 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOaGaayzkaaGaamiBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaam4AaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaa@6081@

+ c+d[ ( 1 p 2 )k+ p 2 l ] c+dk f( a+bm,s ) d p 2 , q 2 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcpeGaayjkaiaawMcaaiaadUgacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaadYgaaiaawUfacaGLDbaaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4Aaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaa@607F@

c+d[ ( 1 p 2 )k+ p 2 l ] c+dk f( a+bn,s ) d p 2 , q 2 s ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeWaaybCaeqal8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSWdbiaawIcacaGLPaaacaWGRbGaey4kaSIaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaWGSbaacaGLBbGaayzxaaaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4CaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaacaGLDbaaaaa@60BB@

1 p 1 ( nm ) 2 ( lk ) [ a+bn a+b[ ( 1 p 1 )n+ p 1 m ] f( t,c+dk ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qadaqadaWdaeaapeGaamOBaiabgkHiTiaad2gaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacaWGSbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaaaadaWabaWdaeaapeWaaybCaeqal8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaiaad6gacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaad2gaaiaawUfacaGLDbaaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWG0bGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawUfaaaaa@7607@

+ a+b[ ( 1 p 1 )m+ p 1 n ] a+bm f( t,c+dk ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcpeGaayjkaiaawMcaaiaad2gacqGHRaWkcaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaad6gaaiaawUfacaGLDbaaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaaa@67B2@

+ a+bn a+b[ ( 1 p 1 )n+ p 1 m ] f( t,c+dl ) d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qacaGLOaGaayzkaaGaamOBaiabgUcaRiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaamyBaaGaay5waiaaw2faaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaaa@67B4@

a+b[ ( 1 p 1 )m+ p 1 n ] a+bm f( t,c+dl ) d p 2 , q 2 s d p 1 , q 1 t ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeWaaybCaeqal8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSWdbiaawIcacaGLPaaacaWGTbGaey4kaSIaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaWGUbaacaGLBbGaayzxaaaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWG0bGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaaw2faaaaa@67EE@

+ 1 ( nm )( lk ) [ ( a+bm,c+dk )+( a+bn,c+dk ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaad6gacqGHsislcaWGTbaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadYgacqGHsislcaWGRbaacaGLOaGaayzkaaaaamaadeaapaqaa8qadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaiabgUcaRmaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaacaGLOaGaayzkaaaacaGLBbaaaaa@5BE9@

+( a+bm,c+dl )+( a+bn,c+dl ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaaiaawIcacaGLPaaacqGHRaWkdaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaGaayjkaiaawMcaaaGaayzxaaaaaa@51F5@

= a,c b,d J p 1 , p 2 , q 1 , q 2 f( t,s ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqppaWaa0baaSqaa8qacaWGHbGaaiilaiaadogaa8aabaWdbiaadkgacaGGSaGaamizaaaakiaadQeapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4CaaGaayjkaiaawMcaaiaac6caaaa@5054@

Corollary 3.2

If we set p1, p2 = 1, then the Lemma 3.1 reduces to the following equality.

4 q 1 q 2 ( nm ) 2 ( lk ) 2 a+bn a+bm   c+dl c+dk f( t,s ) d q 2 s d q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaGinaaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGXbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbmaabmaapaqaa8qacaWGUbGaeyOeI0IaamyBaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaadYgacqGHsislcaWGRbaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaOWaaybCaeqal8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaan8aabaWdbiabgUIiYdaakiaabccadaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWG0bGaaiilaiaadohaaiaawIcacaGLPaaacaWGKbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaaa@6F11@

1 ( nm ) ( lk ) 2 [ 2 c+dl c+dk f( a+bm,s ) d q 2 s MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaad6gacqGHsislcaWGTbaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadYgacqGHsislcaWGRbaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaOWaamqaa8aabaWdbiaaikdadaGfWbqabSWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4CaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaacaGLBbaaaaa@5F13@

+2 c+dl c+dk f( a+bn,s ) d q 2 s ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSIaaGOmamaawahabeWcpaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4Aaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGZbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaiaaw2faaaaa@5401@

1 ( nm ) 2 ( lk ) [ 2 a+bn a+bm f( t,c+dk ) d q 2 s d q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaad6gacqGHsislcaWGTbaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaamiBaiabgkHiTiaadUgaaiaawIcacaGLPaaaaaWaamqaa8aabaWdbiaaikdadaGfWbqabSWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaa0WdaeaapeGaey4kIipaaOGaamOzamaabmaapaqaa8qacaWG0bGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawUfaaaaa@6370@

+2 a+bn a+bm f( t,c+dl ) d q 2 s d q 1 t ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSIaaGOmamaawahabeWcpaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaqdpaqaa8qacqGHRiI8aaGccaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayzxaaaaaa@585E@

+ 1 ( nm )( lk ) [ ( a+bm,c+dk )+( a+bn,c+dk ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaad6gacqGHsislcaWGTbaacaGLOaGaayzkaaWaaeWaa8aabaWdbiaadYgacqGHsislcaWGRbaacaGLOaGaayzkaaaaamaadeaapaqaa8qadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaGaayjkaiaawMcaaiabgUcaRmaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaacaGLOaGaayzkaaaacaGLBbaaaaa@5BE9@

+( a+bm,c+dl )+( a+bn,c+dl ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaaiaawIcacaGLPaaacqGHRaWkdaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaGaayjkaiaawMcaaaGaayzxaaaaaa@51F5@

= a,c b,d J q 1 , q 2 f( t,s ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqppaWaa0baaSqaa8qacaWGHbGaaiilaiaadogaa8aabaWdbiaadkgacaGGSaGaamizaaaakiaadQeapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4CaaGaayjkaiaawMcaaaaa@49F5@

where

  a,c b,d J q 1 , q 2 f( t,s ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiaacYcacaWGJbaapaqaa8qacaWGIbGaaiilaiaadsgaaaGccaWGkbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamOzamaabmaapaqaa8qacaWG0bGaaiilaiaadohaaiaawIcacaGLPaaaaaa@4A12@

= 0 1 0 1 ts   a+bn,c+dl q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( a+b[ tm+( 1t )n ],c+d[ sk+( 1s )l ] ) d q 2 s d q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bGaam4Camaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTmaadmaapaqaa8qacaWG0bGaamyBaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiDaaGaayjkaiaawMcaaiaad6gaaiaawUfacaGLDbaacaGGSaGaam4yaiabgUcaRiaadsgacqGHsisldaWadaWdaeaapeGaam4CaiaadUgacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaacaWGSbaacaGLBbGaayzxaaaacaGLOaGaayzkaaGaamiza8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaaa@96E0@

+ 0 1 0 1 ts   c+dl a+bm q 1 , q 2   a+bm q 1 t     c+dl q 2 s f( a+b[ ( 1t )m+tn ],c+d[ sk+( 1s )l ] ) d q 2 s d q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bGaam4Camaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiDaaGaayjkaiaawMcaaiaad2gacqGHRaWkcaWG0bGaamOBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qacaWGZbGaam4AaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaaiaadYgaaiaawUfacaGLDbaaaiaawIcacaGLPaaacaWGKbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaaa@95ED@

+ 0 1 0 1 ts   a+bn c+dk q 1 , q 2   a+bn q 1 t c+dk q 2 s f( a+b[ tm+( 1t )n ],c+d[ ( 1s )k+sl ] ) d q 2 s d q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bGaam4Camaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsisldaWadaWdaeaapeGaamiDaiaad2gacqGHRaWkdaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaacaWGUbaacaGLBbGaayzxaaGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaaiaadUgacqGHRaWkcaWGZbGaamiBaaGaay5waiaaw2faaaGaayjkaiaawMcaaiaadsgapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaaa@915D@

+ 0 1 0 1 ts   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm q 1 t c+dk q 2 s f( a+b[ ( 1t )m+tn ],c+d[ ( 1s )k+sl ] ) d q 2 s d q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bGaam4Camaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0YaamWaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiDaaGaayjkaiaawMcaaiaad2gacqGHRaWkcaWG0bGaamOBaaGaay5waiaaw2faaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTmaadmaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaacaWGRbGaey4kaSIaam4CaiaadYgaaiaawUfacaGLDbaaaiaawIcacaGLPaaacaWGKbWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaaa@977B@

Theorem 3.3

If the conditions of Lemma 3.1 hold and

a,c p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x     c p 2 , q 2 y ,   c b p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x     c p 2 , q 2 y ,   a d p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x    d p 2 , q 2 y ,   b,d p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x      d p 2 , q 2 y MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaadaWgaaWcbaWdbiaadggacaGGSaGaam4yaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadIhapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadMhaaaGaaiilamaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaaWdaeaapeGaamOyaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadkgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG4bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaiaacYcadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggaa8aabaWdbiaadsgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG4bWdamaaDaaaleaapeGaaiiOaiaacckaa8aabaWdbiaadsgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaiaacYcadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGIbGaaiilaiaadsgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGIbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiEa8aadaqhaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckaa8aabaWdbiaadsgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaaaa@EC75@

are coordinated convex, then we have the following inequality:

|   a,c b,d J p 1 , p 2 , q 1 , q 2 f( t,s ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaabdaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacaGGSaGaam4yaaWdaeaapeGaamOyaiaacYcacaWGKbaaaOGaamOsa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@5300@

1 [ 2 ] p 1 , q 1 [ 2 ] p 2 , q 2 [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) |+|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOdaWcaaWdaeaapeGaaGymaaWdaeaapeWaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaGOmaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaak8qadaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaay5waaaaaa@CBFA@

+|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) |+|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@B8C6@

+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) |+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@B764@

+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) |+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@B766@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) |+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@AE06@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) |+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@AE08@

+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) |+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaaa@AEE8@

+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) |+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaaw2faaaaa@B007@

1 [ 3 ] p 1 , q 1 [ 3 ] p 2 , q 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaG4maaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaaaaa@4A43@

× [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) |+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHxdaTdaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUfaaaaa@BA8B@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) |+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaaaaa@AFBE@

[ 3 ] p 2 , q 2 [ 2 ] p 2 , q 2 [ 3 ] p 1 , q 1 [ 2 ] p 2 , q 2 [ 3 ] p 2 , q 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacqGHsisldaWadaWdaeaapeGaaGOmaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbmaadmaapaqaa8qacaaIZaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaG4maaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaaaaa@62BA@

× [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) |+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHxdaTdaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUfaaaaa@BA8D@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) |+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaaaaa@AFBC@

[ 3 ] p 1 , q 1 [ 2 ] p 1 , q 1 [ 2 ] p 1 , q 1 [ 3 ] p 1 , q 1 [ 3 ] p 2 , q 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacqGHsisldaWadaWdaeaapeGaaGOmaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaaGcbaWdbmaadmaapaqaa8qacaaIYaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaG4maaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaaaaa@62B4@

× [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) |+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHxdaTdaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUfaaaaa@BA8B@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) |+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaaaaa@AFBE@

( [ 3 ] p 1 , q 1 [ 2 ] p 1 , q 1 )( [ 3 ] p 2 , q 2 [ 2 ] p 2 , q 2 ) [ 2 ] p 1 , q 1 [ 2 ] p 2 , q 2 [ 3 ] p 1 , q 1 [ 3 ] p 2 , q 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeWaaeWaa8aabaWdbmaadmaapaqaa8qacaaIZaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaeyOeI0YaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaaaOWdbiaawIcacaGLPaaadaqadaWdaeaapeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacqGHsisldaWadaWdaeaapeGaaGOmaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcpeGaayjkaiaawMcaaaWdaeaapeWaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaGOmaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbmaadmaapaqaa8qacaaIZaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaaaaaa@7F74@

× [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) |+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHxdaTdaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUfaaaaa@BA8D@

|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) |+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaGaaiOlaaaa@AF8C@

proof:

From the result of lemma 3.1 and Jensen-Mercer inequality, we have

|   a,c b,d J p 1 , p 2 , q 1 , q 2 f( t,s ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaabdaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacaGGSaGaam4yaaWdaeaapeGaamOyaiaacYcacaWGKbaaaOGaamOsa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@5300@

0 1 0 1 ts [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) |+|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bGaam4Camaadeaapaqaa8qadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaacaGLBbaaaaa@C53C@

+|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) |+|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@B8C6@

ts|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) |t( 1s )|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsislcaWG0bGaam4Camaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaeyOeI0IaamiDamaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaamaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@C034@

( 1t )s|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) |( 1t )( 1s )|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | ] d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaeWaa8aabaWdbiaaigdacqGHsislcaWG0baacaGLOaGaayzkaaGaam4Camaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaeyOeI0YaaeWaa8aabaWdbiaaigdacqGHsislcaWG0baacaGLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaaw2faaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaaa@D65C@

+ 0 1 0 1 ts [ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) |+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bGaam4Camaadeaapaqaa8qadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaay5waaaaaa@C2CB@

+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) |+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaaa@B728@

( 1t )s|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) |( 1t )( 1s )|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaacaWGZbWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiabgkHiTmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiDaaGaayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaamaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@C536@

ts|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) |t( 1s )|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | ] d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0IaamiDaiaadohadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaeyOeI0IaamiDamaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaamaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaaw2faaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaaa@CE1E@

+ 0 1 0 1 ts [ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | +|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bGaam4Camaadeaapaqaa8qadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUfaaiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaaa@B9AB@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) |+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@AE08@

t( 1s )|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) |ts|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsislcaWG0bWaaeWaa8aabaWdbiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaeyOeI0IaamiDaiaadohadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@B576@

( 1t )( 1s )|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) |( 1t )s|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | ] d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaeWaa8aabaWdbiaaigdacqGHsislcaWG0baacaGLOaGaayzkaaWaaeWaa8aabaWdbiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaeyOeI0YaaeWaa8aabaWdbiaaigdacqGHsislcaWG0baacaGLOaGaayzkaaGaam4Camaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaaa@CB9E@

+ 0 1 0 1 ts [ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) |+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bGaam4Camaadeaapaqaa8qadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaay5waaaaaa@BA8D@

+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) |+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaaa@AEEA@

( 1t )( 1s )|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaadaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@7C36@

( 1t )s|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaacaWGZbWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaaa@78E7@

t( 1s )|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsislcaWG0bWaaeWaa8aabaWdbiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaaa@78E7@

ts|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | ] d p 2 , q 2 s d p 1 , q 1 t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0IaamiDaiaadohadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaacaGLDbaacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baaaa@851E@

= 1 [ 2 ] p 1 , q 1 [ 2 ] p 2 , q 2 [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeWaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaGOmaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaak8qadaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUfaaaaa@8AFB@

+|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaaa@7875@

+|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaaa@7875@

+|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaaa@7876@

+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@77A5@

+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@77A6@

+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@77A6@

+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@77A7@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@7315@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@7316@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@7316@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@7317@

+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@7386@

+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@7387@

+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@7387@

+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaaaaa@74A5@

1 [ 3 ] p 1 , q 1 [ 3 ] p 2 , q 2 [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaG4maaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaak8qadaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUfaaaaa@8AF8@

+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@77BA@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@732A@

+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaaaaa@74B9@

[ 3 ] p 2 , q 2 [ 2 ] p 2 , q 2 [ 3 ] p 1 , q 1 [ 2 ] p 2 , q 2 [ 3 ] p 2 , q 2 [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacqGHsisldaWadaWdaeaapeGaaGOmaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbmaadmaapaqaa8qacaaIZaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaG4maaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaak8qadaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUfaaaaa@A370@

+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@77BB@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@7329@

+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaaaaa@74B8@

[ 3 ] p 1 , q 1 [ 2 ] p 1 , q 1 [ 2 ] p 1 , q 1 [ 3 ] p 1 , q 1 [ 3 ] p 2 , q 2 [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacqGHsisldaWadaWdaeaapeGaaGOmaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaaGcbaWdbmaadmaapaqaa8qacaaIYaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaG4maaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaak8qadaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUfaaaaa@A36A@

+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@77B9@

+|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@732B@

+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaaaaa@74B8@

( [ 3 ] p 1 , q 1 [ 2 ] p 1 , q 1 )( [ 3 ] p 2 , q 2 [ 2 ] p 2 , q 2 ) [ 2 ] p 1 , q 1 [ 2 ] p 2 , q 2 [ 3 ] p 1 , q 1 [ 3 ] p 2 , q 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeWaaeWaa8aabaWdbmaadmaapaqaa8qacaaIZaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaeyOeI0YaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaaaOWdbiaawIcacaGLPaaadaqadaWdaeaapeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacqGHsisldaWadaWdaeaapeGaaGOmaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcpeGaayjkaiaawMcaaaWdaeaapeWaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaGOmaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbmaadmaapaqaa8qacaaIZaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaaaaaa@7F74@

× [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) |+|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHxdaTdaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaacaGLBbaaaaa@BA6E@

|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) |+|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaGaaiOlaaaa@AF8C@

Corollary 3.4

If we set p1, p2 = 1, then the Theorem 3.2 reduces to the following inequality.

|   a,c b,d J q 1 , q 2 f( t,s ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaabdaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacaGGSaGaam4yaaWdaeaapeGaamOyaiaacYcacaWGKbaaaOGaamOsa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@4D53@

1 [ 2 ] q 1 [ 2 ] q 2 [ |   a+bn,c+dl q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( a,c ) |+|   a+bn,c+dl q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOdaWcaaWdaeaapeGaaGymaaWdaeaapeWaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaGOmaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaak8qadaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaay5waaaaaa@AF99@

+|   a+bn,c+dl q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( b,c ) |+|   a+bn,c+dl q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@A212@

+|   c+dl a+bm q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( a,c ) |+|   c+dl a+bm q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@A0B0@

+|   c+dl a+bm q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( b,c ) |+|   c+dl a+bm q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@A0B2@

+|   a+bn c+dk q 1 , q 2   a+bn q 1 t c+dk q 2 s f( a,c ) |+|   a+bn c+dk q 1 , q 2   a+bn q 1 t c+dk q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@9752@

+|   a+bn c+dk q 1 , q 2   a+bn q 1 t c+dk q 2 s f( b,c ) |+|   a+bn c+dk q 1 , q 2   a+bn q 1 t c+dk q 2 s f( b,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaaa@9754@

+|   a+bm,c+dk q 1 , q 2   a+bm q 1 t c+dk q 2 s f( a,c ) |+|   a+bm,c+dk q 1 , q 2   a+bm q 1 t c+dk q 2 s f( a,d ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaaa@9834@

+|   a+bm,c+dk q 1 , q 2   a+bm q 1 t c+dk q 2 s f( b,c ) |+|   a+bm,c+dk q 1 , q 2   a+bm q 1 t c+dk q 2 s f( b,d ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaaw2faaaaa@9953@

1 [ 3 ] q 1 [ 3 ] q 2 [ |   a+bn,c+dl q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( m,k ) |+|   c+dl a+bm q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( n,k ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaG4maaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaak8qadaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUfaaaaa@AE4B@

+|   a+bn c+dk q 1 , q 2   a+bn q 1 t c+dk q 2 s f( m,l ) |+|   a+bm,c+dk q 1 , q 2   a+bm q 1 t c+dk q 2 s f( n,l ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaaaaa@990A@

( q 2 ) 2 [ 3 ] q 1 [ 2 ] q 2 [ 3 ] q 2 [ |   a+bn,c+dl q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( m,l ) |+|   c+dl a+bm q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( n,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeWaaeWaa8aabaWdbiaadghapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbmaadmaapaqaa8qacaaIZaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaG4maaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaak8qadaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUfaaaaa@B7BC@

+|   a+bn c+dk q 1 , q 2   a+bn q 1 t c+dk q 2 s f( m,k ) |+|   a+bm,c+dk q 1 , q 2   a+bm q 1 t c+dk q 2 s f( n,k ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaaaaa@9908@

( q 1 ) 2 [ 2 ] q 1 [ 3 ] q 1 [ 3 ] q 2 [ |   a+bn,c+dl q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( n,k ) |+|   c+dl a+bm q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( m,k ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeWaaeWaa8aabaWdbiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbmaadmaapaqaa8qacaaIYaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaG4maaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaak8qadaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoaaiaawUfaaaaa@B7B8@

+|   a+bn c+dk q 1 , q 2   a+bn q 1 t c+dk q 2 s f( n,l ) |+|   a+bm,c+dk q 1 , q 2   a+bm q 1 t c+dk q 2 s f( m,l ) | ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaaaaa@990A@

( q 1 ) 2 ( q 2 ) 2 [ 2 ] q 1 [ 2 ] q 2 [ 3 ] q 1 [ 3 ] q 2 [ |   a+bn,c+dl q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( n,l ) |+|   c+dl a+bm q 1 , q 2   a+bn q 1 t     c+dl q 2 s f( m,l ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeWaaeWaa8aabaWdbiaadghapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeWaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaaGOmaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbmaadmaapaqaa8qacaaIZaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaaiodaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaaGcpeWaamqaa8aabaWdbmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaacaGLBbaaaaa@C1E4@

|   a+bn c+dk q 1 , q 2   a+bn q 1 t c+dk q 2 s f( n,k ) |+|   a+bm,c+dk q 1 , q 2   a+bm q 1 t c+dk q 2 s f( m,k ) | ]. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7aaGaayzxaaGaaiOlaaaa@98D8@

Theorem 3.5

Suppose that tha assumptions of Lemma 3.1 are hold. If

| a,c p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x     c p 2 , q 2 y | β , |   c b p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x     c p 2 , q 2 y | β , |   a d p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x    d p 2 , q 2 y | β , |   b,d p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x      d p 2 , q 2 y | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaabdaWdaeaapeWaaSaaa8aabaWaaSbaaSqaa8qacaWGHbGaaiilaiaadogaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG4bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGccaGGSaWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaaWdaeaapeGaamOyaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadkgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG4bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGccaGGSaWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaaWdaeaapeGaamizaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadIhapaWaa0baaSqaa8qacaGGGcGaaiiOaaWdaeaapeGaamizaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadMhaaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiaacYcadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamOyaiaacYcacaWGKbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamOzamaabmaapaqaa8qacaWG4bGaaiilaiaadMhaaiaawIcacaGLPaaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamOyaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadIhapaWaa0baaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcaapaqaa8qacaWGKbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamyEaaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@014B@

are coordinated convex function on [ a,b ]×[ c,d ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWadaWdaeaapeGaamyyaiaacYcacaWGIbaacaGLBbGaayzxaaGaey41aq7aamWaa8aabaWdbiaadogacaGGSaGaamizaaGaay5waiaaw2faaaaa@435C@ , then we have the inequality

|   a,c b,d J p 1 , p 2 , q 1 , q 2 f( t,s ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaabdaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacaGGSaGaam4yaaWdaeaapeGaamOyaiaacYcacaWGKbaaaOGaamOsa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@5300@

( 1 [ α+1 ] p 1 , q 1 [ α+1 ] p 2 , q 2 ) 1 α { |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | β + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOdaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbmaadmaapaqaa8qacqaHXoqycqGHRaWkcaaIXaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiabeg7aHjabgUcaRiaaigdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacqaHXoqyaaaaaOWaaiqaa8aabaWdbmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaOGaay5Eaaaaaa@D9AD@

+ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | β + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaaaaa@BCAA@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | β + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@BB0A@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | β + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@BB0C@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | β + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaaa@B1EA@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | β + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaaa@B1EC@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | β + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@B2CC@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | β + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@B2CE@

1 [ β+1 ] p 1 , q 1 [ β+1 ] p 2 , q 2 [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | β + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeWaamWaa8aabaWdbiabek7aIjabgUcaRiaaigdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaeqOSdiMaey4kaSIaaGymaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaak8qadaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaGccaGLBbaaaaa@D44C@

+ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | β + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaaaaa@BCD2@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | β + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@BB32@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | β + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@BB34@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | β + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaaa@B212@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | β + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaaa@B214@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | β + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@B2F4@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | β + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | β ] } 1 β . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaGacaWdaeaapeWaamGaa8aabaWdbiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaaakiaaw2faaaGaayzFaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacqaHYoGyaaaaaOGaaiOlaaaa@B90B@

where 1 α + 1 β =1,β>1. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaeqySdegaaiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacqaHYoGyaaGaeyypa0JaaGymaiaacYcacqaHYoGycqGH+aGpcaaIXaGaaiOlaaaa@44E0@

Proof:

From the Lemma 3.1 and and Jensen-Mercer inequality by using the Hölder inequality and the convexity of | a,c p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x     c p 2 , q 2 y | β , |   c b p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x     c p 2 , q 2 y | β , |   a d p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x    d p 2 , q 2 y | β , |   b,d p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x      d p 2 , q 2 y | β , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaabdaWdaeaapeWaaSaaa8aabaWaaSbaaSqaa8qacaWGHbGaaiilaiaadogaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG4bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGccaGGSaWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaaWdaeaapeGaamOyaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadkgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG4bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGccaGGSaWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaaWdaeaapeGaamizaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadIhapaWaa0baaSqaa8qacaGGGcGaaiiOaaWdaeaapeGaamizaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadMhaaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiaacYcadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamOyaiaacYcacaWGKbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamOzamaabmaapaqaa8qacaWG4bGaaiilaiaadMhaaiaawIcacaGLPaaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamOyaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadIhapaWaa0baaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcaapaqaa8qacaWGKbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamyEaaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaaiilaaaa@0205@ we obtain

|   a,c b,d J p 1 , p 2 , q 1 , q 2 f( t,s ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaabdaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacaGGSaGaam4yaaWdaeaapeGaamOyaiaacYcacaWGKbaaaOGaamOsa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@5300@

( 0 1 0 1 t α s α d p 2 , q 2 s d p 1 , q 1 t ) 1 α [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | β + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaamiDa8aadaahaaWcbeqaa8qacqaHXoqyaaGccaWGZbWdamaaCaaaleqabaWdbiabeg7aHbaakiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiabeg7aHbaaaaGcdaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaGccaGLBbaaaaa@E023@

+ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | β + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaaaaa@BCAA@

|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | β ( 0 1 0 1 t β s β d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGcdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaaeydGmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakiaab2aicaWG0bWdamaaCaaaleqabaWdbiabek7aIbaakiaadohapaWaaWbaaSqabeaapeGaeqOSdigaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaaa@9A74@

|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | β ( 0 1 0 1 ( 1t ) β ( 1s ) β d p 2 , q 2 s d p 1 , q 1 t ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiDaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacqaHYoGyaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqOSdigaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaGaayzxaaaaaa@A0D3@

|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | β ( 0 1 0 1 ( 1t ) β ( 1s ) β d p 2 , q 2 s d p 1 , q 1 t ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiDaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacqaHYoGyaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqOSdigaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaGaayzxaaaaaa@A0D3@

|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | β ( 0 1 0 1 ( 1t ) β ( 1s ) β d p 2 , q 2 s d p 1 , q 1 t ) ] 1 β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiDaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacqaHYoGyaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqOSdigaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaGaayzxaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacqaHYoGyaaaaaaaa@A3C9@

+ ( 0 1 0 1 t α s α d p 2 , q 2 s d p 1 , q 1 t ) 1 α [ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | β + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaamiDa8aadaahaaWcbeqaa8qacqaHXoqyaaGccaWGZbWdamaaCaaaleqabaWdbiabeg7aHbaakiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiabeg7aHbaaaaGcdaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaOGaay5waaaaaa@DDB2@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | β + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@BB0C@

|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | β ( 0 1 0 1 ( 1t ) β ( 1s ) β d p 2 , q 2 s d p 1 , q 1 t ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiDaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacqaHYoGyaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqOSdigaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaGaayzxaaaaaa@A0D3@

|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | β ( 0 1 0 1 ( 1t ) β ( 1s ) β d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakmaabmaapaqaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqOSdigaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiabek7aIbaakiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaaaaa@9EE6@

|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | β ( 0 1 0 1 t β s β d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakmaabmaapaqaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaqGnaYaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaaeydGiaadshapaWaaWbaaSqabeaapeGaeqOSdigaaOGaam4Ca8aadaahaaWcbeqaa8qacqaHYoGyaaGccaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLOaGaayzkaaaaaa@99A6@

|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | β ( 0 1 0 1 t β ( 1s ) β d p 2 , q 2 s d p 1 , q 1 t ) ] 1 β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGcdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaamiDa8aadaahaaWcbeqaa8qacqaHYoGyaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqOSdigaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaGaayzxaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacqaHYoGyaaaaaaaa@9FAA@

+ ( 0 1 0 1 t α s α d p 2 , q 2 s d p 1 , q 1 t ) 1 α [ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | β + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaamiDa8aadaahaaWcbeqaa8qacqaHXoqyaaGccaWGZbWdamaaCaaaleqabaWdbiabeg7aHbaakiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiabeg7aHbaaaaGcdaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaaakiaawUfaaaaa@D492@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | β + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaaa@B1EC@

|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | β ( 0 1 0 1 t β ( 1s ) β d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakiaadshapaWaaWbaaSqabeaapeGaeqOSdigaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiabek7aIbaakiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaaaaa@9705@

|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | β ( 0 1 0 1 t β s β d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakiaab2aidaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaqGnaIaamiDa8aadaahaaWcbeqaa8qacqaHYoGyaaGccaWGZbWdamaaCaaaleqabaWdbiabek7aIbaakiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaaaaa@9516@

|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | β ( 0 1 0 1 ( 1t ) β ( 1s ) β d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmac0bOfWbqajqhGl8aabGaDa+qacGaDaIimaaWdaeac0b4dbiac0biIXaaan8aabGaDa+qacWaDaA4kIipaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiabek7aIbaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacqaHYoGyaaGccaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLOaGaayzkaaaaaa@A236@

|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | β ( 0 1 0 1 ( 1t ) β s β d p 2 , q 2 s d p 1 , q 1 t ) ] 1 β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakmaabmaapaqaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqOSdigaaOGaam4Ca8aadaahaaWcbeqaa8qacqaHYoGyaaGccaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLOaGaayzkaaaacaGLDbaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiabek7aIbaaaaaaaa@9B1A@

+ ( 0 1 0 1 t α s α d p 2 , q 2 s d p 1 , q 1 t ) 1 α [ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | β + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaamiDa8aadaahaaWcbeqaa8qacqaHXoqyaaGccaWGZbWdamaaCaaaleqabaWdbiabeg7aHbaakiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiabeg7aHbaaaaGcdaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaOGaay5waaaaaa@D574@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | β + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@B2CE@

|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | β ( 0 1 0 1 ( 1t ) β ( 1s ) β d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakmaabmaapaqaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqOSdigaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiabek7aIbaakiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaaaaa@9AC6@

|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | β ( 0 1 0 1 ( 1t ) β s β d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakmaabmaapaqaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqOSdigaaOGaam4Ca8aadaahaaWcbeqaa8qacqaHYoGyaaGccaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLOaGaayzkaaaaaa@9777@

|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | β ( 0 1 0 1 t β ( 1s ) β d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakmaabmaapaqaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bWdamaaCaaaleqabaWdbiabek7aIbaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacqaHYoGyaaGccaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLOaGaayzkaaaaaa@9777@

|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 ,= q 1 t c+dk p 2 , q 2 s f( n,l ) | β ( 0 1 0 1 t β s β d p 2 , q 2 s d p 1 , q 1 t ) ] 1 β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiabg2da9iaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGcdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaaeydGmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakiaab2aicaWG0bWdamaaCaaaleqabaWdbiabek7aIbaakiaadohapaWaaWbaaSqabeaapeGaeqOSdigaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaGaayzxaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacqaHYoGyaaaaaaaa@9AA1@

= ( 1 [ α+1 ] p 1 , q 1 [ α+1 ] p 2 , q 2 ) 1 α { |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | β + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbmaadmaapaqaa8qacqaHXoqycqGHRaWkcaaIXaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiabeg7aHjabgUcaRiaaigdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacqaHXoqyaaaaaOWaaiqaa8aabaWdbmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaOGaay5Eaaaaaa@D8FE@

+ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | β + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaaaaa@BCAA@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | β + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@BB0A@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | β + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@BB0C@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | β + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaaa@B1EA@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | β + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaaa@B1EC@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | β + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@B2CC@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | β + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@B2CE@

1 [ β+1 ] p 1 , q 1 [ β+1 ] p 2 , q 2 [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | β + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeWaamWaa8aabaWdbiabek7aIjabgUcaRiaaigdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qadaWadaWdaeaapeGaeqOSdiMaey4kaSIaaGymaaGaay5waiaaw2faa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaaak8qadaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaGccaGLBbaaaaa@D44C@

+ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | β + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaaaaa@BCD2@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | β + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@BB32@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | β + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@BB34@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | β + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaaa@B212@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | β + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaaaaa@B214@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | β + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | β MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiabek7aIbaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaaaa@B2F4@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | β + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | β ] } 1 β . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaGacaWdaeaapeWaamGaa8aabaWdbiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaeqOSdigaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacqaHYoGyaaaakiaaw2faaaGaayzFaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacqaHYoGyaaaaaOGaaiOlaaaa@B90B@

Theorem 3.6

Suppose that tha assumptions of Lemma 3.1 are hold. If

| a,c p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x     c p 2 , q 2 y | r , |   c b p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x     c p 2 , q 2 y | r , |   a d p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x    d p 2 , q 2 y | r , |   b,d p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x      d p 2 , q 2 y | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaabdaWdaeaapeWaaSaaa8aabaWaaSbaaSqaa8qacaWGHbGaaiilaiaadogaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG4bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilamaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogaa8aabaWdbiaadkgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGIbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiEa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamyEaaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiaacYcadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbaapaqaa8qacaWGKbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamOzamaabmaapaqaa8qacaWG4bGaaiilaiaadMhaaiaawIcacaGLPaaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiEa8aadaqhaaWcbaWdbiaacckacaGGGcaapaqaa8qacaWGKbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamyEaaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiaacYcadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamOyaiaacYcacaWGKbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamOzamaabmaapaqaa8qacaWG4bGaaiilaiaadMhaaiaawIcacaGLPaaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamOyaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadIhapaWaa0baaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcaapaqaa8qacaWGKbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamyEaaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaaaaa@FEA3@

are coordinated convex function on [ a,b ]×[ c,d ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWadaWdaeaapeGaamyyaiaacYcacaWGIbaacaGLBbGaayzxaaGaey41aq7aamWaa8aabaWdbiaadogacaGGSaGaamizaaGaay5waiaaw2faaaaa@435C@ for r1, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGYbGaeyyzImRaaGymaiaacYcaaaa@3C4D@ then we have the inequality

|   a,c b,d J p 1 , p 2 , q 1 , q 2 f( t,s ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaabdaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacaGGSaGaam4yaaWdaeaapeGaamOyaiaacYcacaWGKbaaaOGaamOsa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@5300@

( 1 [ 2 ] p 1 , q 1 [ 2 ] p 2 , q 2 ) 1 1 r { |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | r + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOdaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbmaadmaapaqaa8qacaaIYaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaaaaGcdaGabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaakiaawUhaaaaa@D459@

+ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | r + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaaaaa@BB56@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | r + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B9B6@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | r + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B9B8@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | r + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaaaa@B096@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | r + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaaaa@B098@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | r + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B178@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | r + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B17A@

1 [ r+1 ] p 1 , q 1 [ r+1 ] p 2 , q 2 [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | r + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeWaamWaa8aabaWdbiaadkhacqGHRaWkcaaIXaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaadkhacqGHRaWkcaaIXaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaaaOWdbmaadeaapaqaa8qadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaaaOGaay5waaaaaa@D1A4@

+ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | r + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaaaaa@BB7E@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | r + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B9DE@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | r + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B9E0@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | r + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaaaa@B0BE@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | r + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaaaa@B0C0@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | r + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B1A0@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | r + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | r ] } 1 r . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaGacaWdaeaapeWaamGaa8aabaWdbiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaaaOGaayzxaaaacaGL9baapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkhaaaaaaOGaaiOlaaaa@B70D@

Proof:

From the Lemma 3.1 and and Jensen-Mercer inequality by using the power-mean inequality and the convexity of | a,c p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x     c p 2 , q 2 y | r , |   c b p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x     c p 2 , q 2 y | r , |   a d p 1 , p 2 , q 1 , q 2 f( x,y )   a p 1 , q 1 x    d p 2 , q 2 y | r , |   b,d p 1 , p 2 , q 1 , q 2 f( x,y )   b p 1 , q 1 x      d p 2 , q 2 y | r , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaabdaWdaeaapeWaaSaaa8aabaWaaSbaaSqaa8qacaWGHbGaaiilaiaadogaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG4bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWG5baaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOGaaiilamaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadogaa8aabaWdbiaadkgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGMbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGIbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiEa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamyEaaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiaacYcadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbaapaqaa8qacaWGKbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamOzamaabmaapaqaa8qacaWG4bGaaiilaiaadMhaaiaawIcacaGLPaaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiEa8aadaqhaaWcbaWdbiaacckacaGGGcaapaqaa8qacaWGKbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamyEaaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiaacYcadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamOyaiaacYcacaWGKbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamOzamaabmaapaqaa8qacaWG4bGaaiilaiaadMhaaiaawIcacaGLPaaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamOyaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadIhapaWaa0baaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcaapaqaa8qacaWGKbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaamyEaaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiaacYcaaaa@FF5D@ we obtain

|   a,c b,d J p 1 , p 2 , q 1 , q 2 f( t,s ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaabdaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacaGGSaGaam4yaaWdaeaapeGaamOyaiaacYcacaWGKbaaaOGaamOsa8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWGZbaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@5300@

( 0 1 0 1 ts d p 2 , q 2 s d p 1 , q 1 t ) 1 1 r [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | r + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaamiDaiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaaaaGcdaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaakiaawUfaaaaa@DBE5@

+ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | r + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaaaaa@BB56@

|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | r ( 0 1 0 1 t r s r d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakiaab2aidaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaqGnaIaamiDa8aadaahaaWcbeqaa8qacaWGYbaaaOGaam4Ca8aadaahaaWcbeqaa8qacaWGYbaaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaaa@9876@

|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | r ( 0 1 0 1 t r ( 1s ) r d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakiaadshapaWaaWbaaSqabeaapeGaamOCaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGYbaaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaaa@9A67@

|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | r ( 0 1 0 1 ( 1t ) r s r d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaabmaapaqaa8qacaaIXaGaeyOeI0IaamiDaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGYbaaaOGaam4Ca8aadaahaaWcbeqaa8qacaWGYbaaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaaa@9A67@

|   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | r ( 0 1 0 1 ( 1t ) r ( 1s ) r d p 2 , q 2 s d p 1 , q 1 t ) ] 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakmaabmaapaqaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaamOCaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGYbaaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaGaayzxaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGYbaaaaaaaaa@A121@

+ ( 0 1 0 1 ts d p 2 , q 2 s d p 1 , q 1 t ) 1 1 r [ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | r + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaaeydGmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakiaab2aicaWG0bGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGymaiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGYbaaaaaakmaadeaapaqaa8qadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaakiaawUfaaaaa@DAD4@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | r + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B9B8@

|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | r ( 0 1 0 1 ( 1t ) r s r d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGcdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadkhaaaGccaWGZbWdamaaCaaaleqabaWdbiaadkhaaaGccaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLOaGaayzkaaaaaa@9997@

|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | r ( 0 1 0 1 ( 1t ) r ( 1s ) r d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGcdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadkhaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaamOCaaaakiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaaaaa@9CE8@

|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | r ( 0 1 0 1 t r s r d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGcdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaaeydGmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakiaab2aicaWG0bWdamaaCaaaleqabaWdbiaadkhaaaGccaWGZbWdamaaCaaaleqabaWdbiaadkhaaaGccaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLOaGaayzkaaaaaa@97A8@

|   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | r ( 0 1 0 1 t r ( 1s ) r d p 2 , q 2 s d p 1 , q 1 t ) ] 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakiaadshapaWaaWbaaSqabeaapeGaamOCaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGYbaaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaGaayzxaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGYbaaaaaaaaa@9D02@

+ ( 0 1 0 1 ts d p 2 , q 2 s d p 1 , q 1 t ) 1 1 r [ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | r + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaamiDaiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaaaaGcdaWabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaaaOGaay5waaaaaa@D054@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | r + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaaaa@B098@

|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | r ( 0 1 0 1 t r ( 1s ) r d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakmaabmaapaqaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaWG0bWdamaaCaaaleqabaWdbiaadkhaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaamOCaaaakiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaaaaa@9507@

|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | r ( 0 1 0 1 t r s r d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakmaabmaapaqaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaqGnaYaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaaeydGiaadshapaWaaWbaaSqabeaapeGaamOCaaaakiaadohapaWaaWbaaSqabeaapeGaamOCaaaakiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaaaaa@9318@

|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | r ( 0 1 0 1 ( 1t ) r ( 1s ) r d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakmaabmaapaqaa8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadshaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaamOCaaaakmaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4CaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGYbaaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaaa@9858@

|   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | r ( 0 1 0 1 ( 1t ) r s r d p 2 , q 2 s d p 1 , q 1 t ) ] 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaDaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGcdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadkhaaaGccaWGZbWdamaaCaaaleqabaWdbiaadkhaaaGccaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLOaGaayzkaaaacaGLDbaapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkhaaaaaaaaa@9872@

+ ( 0 1 0 1 ts d p 2 , q 2 s d p 1 , q 1 t ) 1 1 r [ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | r + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaaeydGiaadshacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkhaaaaaaOWaamqaa8aabaWdbmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaaaOGaay5waaaaaa@D1E6@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | r + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B17A@

|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | r ( 0 1 0 1 ( 1t ) r ( 1s ) r d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGcdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadkhaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTiaadohaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaamOCaaaakiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshaaiaawIcacaGLPaaaaaa@98C8@

|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | r ( 0 1 0 1 ( 1t ) r s r d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGcdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWG0baacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadkhaaaGccaWGZbWdamaaCaaaleqabaWdbiaadkhaaaGccaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLOaGaayzkaaaaaa@9579@

|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | r ( 0 1 0 1 t r ( 1s ) r d p 2 , q 2 s d p 1 , q 1 t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGcdaqadaWdaeaapeWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0WdaeaapeGaey4kIipaaOGaamiDa8aadaahaaWcbeqaa8qacaWGYbaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWGZbaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadkhaaaGccaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaiaadsgapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0baacaGLOaGaayzkaaaaaa@9579@

|   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 ,= q 1 t c+dk p 2 , q 2 s f( n,l ) | r ( 0 1 0 1 t r s r d p 2 , q 2 s d p 1 , q 1 t ) ] 1 r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWacaWdaeaapeGaeyOeI0YaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaCaaaleqabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiabg2da9iaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOWaaeWaa8aabaWdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbiabgUIiYdaakiaab2aidaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaaGymaaqdpaqaa8qacqGHRiI8aaGccaqGnaIaamiDa8aadaahaaWcbeqaa8qacaWGYbaaaOGaam4Ca8aadaahaaWcbeqaa8qacaWGYbaaaOGaamiza8aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohacaWGKbWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDaaGaayjkaiaawMcaaaGaayzxaaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGYbaaaaaaaaa@97F9@

= ( 1 [ 2 ] p 1 , q 1 [ 2 ] p 2 , q 2 ) 1 1 r { |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | r + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbmaadmaapaqaa8qacaaIYaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaaikdaaiaawUfacaGLDbaapaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaaaaaaGcdaGabaWdaeaapeWaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaiaacYcacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaaaOqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaakiaawUhaaaaa@D3AA@

+ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | r + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaam4yaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadsgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaaaaa@BB56@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,c ) | r + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( a,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B9B6@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,c ) | r + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( b,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B9B8@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | r + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGHbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadggacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaaaa@B096@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | r + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGIbGaaiilaiaadogaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaadkgacaGGSaGaamizaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaaaa@B098@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,c ) | r + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( a,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B178@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,c ) | r + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( b,d ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGJbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOyaiaacYcacaWGKbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B17A@

1 [ r+1 ] p 1 , q 1 [ r+1 ] p 2 , q 2 [ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | r + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeWaamWaa8aabaWdbiaadkhacqGHRaWkcaaIXaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeWaamWaa8aabaWdbiaadkhacqGHRaWkcaaIXaaacaGLBbGaayzxaaWdamaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaaaOWdbmaadeaapaqaa8qadaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaaaOGaay5waaaaaa@D1A4@

+ |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | r + |   a+bn,c+dl p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaSbaaSqaa8qacaGGGcGaaiiOaiaacckacaGGGcGaam4yaiabgUcaRiaadsgacqGHsislcaWGSbaapaqabaGcpeGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaam4AaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaOGaey4kaSYaaqWaa8aabaWdbmaalaaapaqaa8qacaqGGcWdamaaBaaaleaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGUbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaBaaaleaapeGaaiiOaiaacckacaGGGcGaaiiOaiaadogacqGHRaWkcaWGKbGaeyOeI0IaamiBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaaaaa@BB7E@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,k ) | r + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( m,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B9DE@

+ |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,k ) | r + |   c+dl a+bm p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t     c+dl p 2 , q 2 s f( n,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamyBaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaWgaaWcbaWdbiaacckacaGGGcGaaiiOaiaacckacaWGJbGaey4kaSIaamizaiabgkHiTiaadYgaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamOBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B9E0@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | r + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGTbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad2gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaaaa@B0BE@

+ |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | r + |   a+bn c+dk p 1 , p 2 , q 1 , q 2   a+bn p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaa0baaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaSbaaSqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad6gaa8aabeaak8qacqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaqhaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaWgaaWcbaWdbiaadggacqGHRaWkcaWGIbGaeyOeI0IaamOBaaWdaeqaaOWdbiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleqaaOWdbiaadshapaWaaWbaaSqabeaapeGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaGcpeGaam4CaaaacaWGMbWaaeWaa8aabaWdbiaad6gacaGGSaGaamiBaaGaayjkaiaawMcaaaGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWGYbaaaaaa@B0C0@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,k ) | r + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( m,l ) | r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGRbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaGccqGHRaWkdaabdaWdaeaapeWaaSaaa8aabaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbGaaiilaiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIXaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaaGcbaWdbiaabckapaWaaWbaaSqabeaapeGaamyyaiabgUcaRiaadkgacqGHsislcaWGTbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqabaGcpeGaamiDa8aadaahaaWcbeqaa8qacaWGJbGaey4kaSIaamizaiabgkHiTiaadUgaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbeaak8qacaWGZbaaaiaadAgadaqadaWdaeaapeGaamyBaiaacYcacaWGSbaacaGLOaGaayzkaaaacaGLhWUaayjcSdWdamaaCaaaleqabaWdbiaadkhaaaaaaa@B1A0@

+ |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,k ) | r + |   a+bm,c+dk p 1 , p 2 , q 1 , q 2   a+bm p 1 , q 1 t c+dk p 2 , q 2 s f( n,l ) | r ] } 1 r . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaGacaWdaeaapeWaamGaa8aabaWdbiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadUgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaakiabgUcaRmaaemaapaqaa8qadaWcaaWdaeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gacaGGSaGaam4yaiabgUcaRiaadsgacqGHsislcaWGRbaaaOGaeyOaIy7damaaBaaaleaapeGaamiCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamiCa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyCa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqabaaakeaapeGaaeiOa8aadaahaaWcbeqaa8qacaWGHbGaey4kaSIaamOyaiabgkHiTiaad2gaaaGccqGHciITpaWaaSbaaSqaa8qacaWGWbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGXbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWG0bWdamaaCaaaleqabaWdbiaadogacqGHRaWkcaWGKbGaeyOeI0Iaam4AaaaakiabgkGi2+aadaWgaaWcbaWdbiaadchapaWaaSbaaWqaa8qacaaIYaaapaqabaWcpeGaaiilaiaadghapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleqaaOWdbiaadohaaaGaamOzamaabmaapaqaa8qacaWGUbGaaiilaiaadYgaaiaawIcacaGLPaaaaiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamOCaaaaaOGaayzxaaaacaGL9baapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkhaaaaaaOGaaiOlaaaa@B70D@

Conclusion

In this paper, we have established several new Hermite-Hadamard-Mercer type inequalities on coordinates using post-quantum (p, q)-calculus. These results generalize existing inequalities and provide a unified framework encompassing both classical and quantum cases. Our work extends the literature by presenting double-integral identities under (p1, p2, q1, q2) - partial differentiability and integrability assumptions.Further research may explore: Higher-dimensional generalizations, Inequalities for other convexity types (e.g., s-convex, log-convex) and the applications in optimization or quantum information theory.

Data availability

All data required for this paper is included within this paper.

The Author would like to express their sincere to the editor and the anonmous reviewers for their helpful comments and suggestions.

Funding

The work was supportes by the National Science and Techenology Council (NSTC 113-2115-M-027-002-).

  1. Mercer AM. A variant of Jensen’s inequality. J Inequal Pure Appl Math. 2003;4:1–6. Available from: https://eudml.org/doc/123826
  2. Kian M, Moslehian MS. Refinements of the operator Jensen-Mercer inequality. Electron J Linear Algebra. 2013;26:742–753. Available from: https://journals.uwyo.edu/index.php/ela/article/view/1303/1303
  3. Ali MA, Budak H, Abbas HM, Chu YM. Quantum Hermite-Hadamard-type inequalities for functions with convex absolute value of second derivatives. Adv Differ Equ. 2021;2021:1–12. Available from: https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-03163-1
  4. Ali MA, Chu YM, Budak H, Akkurt A, Yildirim H, Zahid MA. Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables. Adv Differ Equ. 2021;2021:25. Available from: https://doi.org/10.1186/s13662-020-03195-7
  5. Aljinović AA, Kovačević D, Puljiz M, Keko AZ. On Ostrowski inequality for quantum calculus. Appl Math Comput. 2021;410:1264454. Available from: https://doi.org/10.1016/j.amc.2021.126454
  6. Budak H, Ali MA, Tunç T. Quantum Ostrowski-type integral inequalities for functions of two variables. Math Methods Appl Sci. 2020;:5857–5872. Available from: https://doi.org/10.1002/mma.7153
  7. Butt SI, Aftab MN, Nabwey HA, Etemad S. Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus. AIMS Math. 2024;9(3):5523–5549. Available from: https://www.aimspress.com/article/doi/10.3934/math.2024268
  8. Butt SI, Umar M, Budak H. New study on the quantum midpoint-type inequalities for twice q-differentiable functions via the Jensen-Mercer inequality. Symmetry. 2023;15:1038. Available from: https://www.mdpi.com/2073-8994/15/5/1038
  9. Ciurdariu L, Grecu E. Several quantum Hermite-Hadamard-type integral inequalities for convex functions. Fractal Fract. 2023;7:463. Available from: https://doi.org/10.3390/fractalfract7060463
  10. Kalsoom H, Vivas-Cortez M. q1q2​-Ostrowski-type integral inequalities involving property of generalized higher-order strongly n-polynomial preinvexity. Symmetry. 2022;14:717. Available from: https://doi.org/10.3390/sym14040717
  11. Kalsoom H, Idrees M, Baleanu D, Chu YM. New estimates of q1q2-Ostrowski-type integral inequalities within a class of n-polynomial preinvexity of functions. J Funct Spaces. 2020;2020:Article ID 3720798. Available from: https://doi.org/10.1155/2020/3720798
  12. Wannalookkhee F, Nonlaopon K, Ntouyas S, Sarikaya MZ, Budak H, Ali MA. Some new quantum Hermite-Hadamard inequalities for co-ordinated convex functions. Mathematics. 2022;10:1962. Available from: https://doi.org/10.3390/math10121962
  13. Sarikaya MZ, Ertugral F. On the generalized Hermite-Hadamard inequalities. Ann Univ Craiova Math Comp Sci Ser. 2020;47(1):193–213. Available from: http://inf.ucv.ro/~ami/index.php/ami/article/viewFile/1139/724
  14. Ali MAA, Budak H, Kalsoom H, Chu YM. Post-quantum Hermite-Hadamard inequalities involving newly defined (p,q)-integral. Authorea. 2020;1–19. Available from: https://doi.org/10.22541/au.160465507.75463188/v1
  15. Ali MAA, Budak H, Myrtaza G, Chu YM. Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions. J Inequal Appl. 2021;2021:84. Available from: https://doi.org/10.1186/s13660-021-02619-6
  16. Chu YM, Awan MU, Talib S, Noor MA, Noor KI. New post quantum analogues of Ostrowski-type inequalities using new definition/s of left-right (p,q)-derivatives and definite integrals. Adv Differ Equ. 2020;2020:634. Available from: https://doi.org/10.1186/s13662-020-03094-x
  17. Gulshan G, Hussain R, Ali A. Post quantum-Hermite-Hadamard type inequalities for differentiable convex functions involving the notion of (p,q)b -integral. J Sci Arts. 2022;22(1):45–54. Available from: https://www.josa.ro/docs/josa_2022_1/a_04_Gulshan_45-54_10p.pdf
  18. Kalsoom H, Amer M, Junjua MD, Hassain S, Shahzadi G. Some (p,q)-estimates of Hermite-Hadamard-type inequalities for coordinated convex and quasi convex functions. Mathematics. 2019;7:683. Available from: https://doi.org/10.3390/math7080683
  19. Kunt M, Isan I, Alp N, Sarikaya MZ. (p,q)-Hermite-Hadamard inequalities and (p,q)-estimates for midpoint type inequalities via convex and quasi-convex functions. Rev Real Acad Cienc Exactas Fis Nat Ser A Mat. 2018;112:969–992. Available from: http://dx.doi.org/10.1007/s13398-017-0402-y
  20. Luangboon W, Nonlaopon K, Tariboon J, Ntouyas SK, Budak H. Post-quantum Ostrowski-type integral inequalities for twice (p,q)-differentiable functions. J Math Inequal. 2022;16(3):1129–1144. Available from: https://jmi.ele-math.com/16-75/Post-quantum-Ostrowski-type-integral-inequalities-for-twice-(p,q)-differentiable-functions
  21. Nasiruzzaman MD, Mukheimer A, Mursaleen M. Some Opial-type integral inequalities via (p,q)-calculus. J Inequal Appl. 2019;2019:1–11. Available from: https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-019-2247-8
  22. Prabseang J, Nonlaopon K, Tariboon J. (p,q)-Hermite-Hadamard inequalities for double integral and (p,q)-differentiable convex function. Axioms. 2019;8:1–10. Available from: https://www.researchgate.net/publication/333438671_p_q-Hermite-Hadamard_Inequalities_for_Double_Integral_and_p_q-Differentiable_Convex_Functions
  23. Sitthiwirattham T, Murtaza G, Ali MA, Ntouyas SK, Adeel M, Soontharanon J. On some new trapezoidal type inequalities for twice (p,q)-differentiable convex functions in post-quantum calculus. Symmetry. 2021;13:1605. Available from: https://doi.org/10.3390/sym13091605
  24. Wannalookkhee F, Nonlaopon K, Tariboon J, Ntouyas SK. On Hermite-Hadamard type inequalities for coordinated convex functions via (p,q)-calculus. Mathematics. 2021;9:698. Available from: https://doi.org/10.3390/math9070698
  25. Wannalookkhee F, Nonlaopon K, Ntouyas K, Sarikaya MZ, Budak H. Post quantum Ostrowski-type inequalities for coordinated convex functions. Math Methods Appl Sci. 2023;46:4159–4183. Available from: https://doi.org/10.1002/mma.8748
  26. Sadjang PN. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Results Math. 2016;73:1–21. Available from: https://www.researchgate.net/publication/256606098_On_the_Fundamental_Theorem_of_pq_-Calculus_and_Some_pq_-Taylor_Formulas
  27. Tunc M, Göv E. (p,q)-integral inequalities. RGMIA Res Rep Coll. 2016;19:1–13. Available from: https://rgmia.org/papers/v19/v19a97.pdf
  28. Kalsoom H, Rashid S, Idrees M, Safda F, Akram S, Baleanu D, et al. Post quantum inequalities of Hermite-Hadamard type associated with co-ordinated higher-order generalized strong pre-invex and quasi-pre-invex mapping. Symmetry. 2020;12:443. Available from: http://dx.doi.org/10.3390/sym12030443
  29. Ali MM, Köbis E. Some new q-Hermite-Hadamard-Mercer inequalities and related estimates in quantum calculus. J Nonlinear Var Anal. 2023;7(1):49–66. Available from: https://jnva.biemdas.com/archives/1880
  30. Araci S, Duran U, Acikgoz M, Srivastava HM. A certain (p,q)-derivative operator and associated divided differences. J Inequal Appl. 2016;2016:301. Available from: https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-016-1240-8
  31. Awan MU, Talib S, Noor MA, Noor KI, Chu YM. On post quantum integral inequalities. J Math Inequal. 2021;15(2):629–654. Available from: https://jmi.ele-math.com/15-46/On-post-quantum-integral-inequalities
  32. Awan MU, Talib S, Noor MA, Chu YM, Noor KI. On post quantum estimates of upper bounds involving twice (p,q)-differentiable preinvex function. J Inequal Appl. 2020;2020:229. Available from: https://doi.org/10.1186/s13660-020-02496-5
  33. Bin-Mohsin B, Saba M, Javed MZ, Awan MU, Budak H, Nonlaopon K. A quantum calculus view of Hermite-Hadamard-Jensen-Mercer inequalities with applications. Symmetry. 2022;14:1246. Available from: https://doi.org/10.3390/sym14061246
  34. Budak H, Pehlivan E, Kösem P. On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals. Sahand Commun Math Anal. 2021;18(1):73–88. Available from: https://doi.org/10.22130/scma.2020.121963.759
  35. Ciurdariu L, Grecu E. Post-quantum integral inequalities for three-times (p,q)-differentiable functions. Symmetry. 2023;15:246. Available from: https://doi.org/10.3390/sym15010246
  36. Dragomir SS. On Hadamard inequality for convex functions on the coordinates in a rectangle from the plane. Taiwan J Math. 2001;4:775–788. Available from: https://www.jstor.org/stable/43834484
  37. Duran U, Acikgoz M, Esi A, Araci S. A note on the (p,q)-Hermite-Hadamard polynomials. Appl Math Inf Sci. 2018;12:227–231. Available from: https://scispace.com/pdf/a-note-on-the-p-q-hermite-polynomials-2n7qwl6ufz.pdf
  38. Ernst T. A comprehensive treatment of q-calculus. Basel: Springer; 2002. Available from: https://link.springer.com/book/10.1007/978-3-0348-0431-8
  39. Kac V, Cheung P. Quantum calculus. New York: Springer; 2002. Available from: https://cdn.preterhuman.net/texts/math/quantum_calculus.pdf
  40. Latif MA, Kunt M, Dragomir SS, Iscan I. Post-quantum trapezoid type inequalities. AIMS Math. 2020;5:4011–4026. Available from: https://doi.org/10.3934/math.2020258
  41. Latif MA, Kunt M, Dragomir SS, Iscan I. (p,q)-trapezoid type inequalities. Rev R Acad Cienc Exactas Fís Nat Ser A Mat. 2018;112:969–992.
  42. Li C, Yang D, Bai SC. Some Opial inequalities in (p,q)-calculus. AIMS Math. 2020;5:5893–5902. Available from: https://doi.org/10.3934/math.2020377
  43. Liko R, Kashuri A. Some new refinement post quantum trapezium like inequalities pertaining twice (p,q)-differentiable convex functions. J Appl Math Comput Appl. 2021;2(1):58–85.
  44. Luangboon W, Nonlaopon K, Tariboon J, Ntouyas SK, Budak H. Some (p,q)-integral inequalities of Hermite-Hadamard inequalities for (p,q)-differentiable convex functions. Mathematics. 2022;10:826. Available from: https://doi.org/10.3390/math10050826
  45. Neang P, Nonlaopon K, Tariboon J, Ntouyas SK. Fractional (p,q)-calculus on finite intervals and some integral inequalities. Symmetry. 2021;13:504. Available from: https://doi.org/10.3390/sym13030504
  46. Neang P, Nonlaopon K, Tariboon J, Ntouyas SK, Agarwal P. Some trapezoid and midpoint type inequalities via fractional (p,q)-calculus. Adv Differ Equ. 2021;2021:333. Available from: https://doi.org/10.1186/s13662-021-03487-6
  47. Sadjang PN. On the (p,q)-gamma and (p,q)-beta functions. arXiv. 2015. Available from: https://arxiv.org/abs/1506.07394
  48. Sarikaya MZ. On the Hermite–Hadamard type inequalities for co-ordinated convex function via fractional integrals. Integr Transf Spec Funct. 2014;25(2):134–147. Available from: http://dx.doi.org/10.1080/10652469.2013.824436
  49. Sontharanon J, Sitthiwirattham T. Fractional (p,q)-calculus. Adv Differ Equ. 2020;2020:1–18. Available from: https://advancesincontinuousanddiscretemodels.springeropen.com/articles/10.1186/s13662-020-2512-7
  50. Thongjob S, Nonlaopon K, Ntouyas SK. Some (p,q)-Hardy type inequalities for (p,q)-integrable functions. AIMS Math. 2020;6:77–89. Available from: https://doi.org/10.3934/math.2021006
  51. Tunc M, Göv E. (p,q)-integral inequalities via (p,q)-calculus on finite intervals. RGMIA Res Rep Coll. 2016;19:1–12. Available from: https://rgmia.org/papers/v19/v19a97.pdf
  52. Vivas-Cortez M, Ali MA, Budak H, Kalsoom H, Agarwal P. Some new Hermite-Hadamard and related inequalities for convex functions via (p,q)-integral. Entropy. 2021;23(7):828. Available from: https://doi.org/10.3390/e23070828
  53. Yu X, Ali MA, Kalsoom H, Soontharanon J, Sitthiwirattham T. On some new Hermite-Hadamard and Ostrowski type inequalities for s-convex functions in (p,q)-calculus with applications. De Gruyter Math. 2020;20:707–723. Available from: http://dx.doi.org/10.1515/math-2022-0037
 

Help ?