ISSN: 2689-7636

Annals of Mathematics and Physics

Research Article       Open Access      Peer-Reviewed

Asymmetry in Spectral Graph Theory: Harmonic Analysis on Directed Networks via Biorthogonal Bases

Chandrasekhar Gokavarapu*

Department of Mathematics, Government College, Rajahmundry, Andhra Pradesh, India

Author and article information

*Corresponding author: Chandrasekhar Gokavarapu, Department of Mathematics, Government College, Rajahmundry, Andhra Pradesh, India, E-mail: [email protected]
Received: 29 December, 2025 | Accepted: 12 January, 2026 | Published: 13 January, 2026
Keywords: Directed graphs; Random walks; Non-normal matrices; Biorthogonal eigenvectors; Graph Fourier transform; Sampling; Reversibility

Cite this as

Gokavarapu C. Asymmetry in Spectral Graph Theory: Harmonic Analysis on Directed Networks via Biorthogonal Bases. Ann Math Phys. 2026;9(1):001-006. Available from: 10.17352/amp.000174

Copyright License

© 2026 Gokavarapu C. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The operator-theoretic dichotomy underlying diffusion on directed networks is symmetry versus non-self-adjointness of the Markov transition operator. In the reversible (detailedbalance) regime, a directed random walk P is self-adjoint in a stationary p-weighted inner product and admits orthogonal spectral coordinates; outside reversibility, P is genuinely non-self-adjoint (often non-normal), and stability is governed by biorthogonal geometry and eigenvector conditioning. In this paper, we develop an original harmonic-analysis framework for directed graphs anchored on the random-walk transition matrix P = Dout−1A and the random-walk Laplacian Lrw = I−P. Using biorthogonal left/right eigenvectors, we define a Biorthogonal Graph Fourier Transform (BGFT) adapted to directed diffusion, propose a diffusion-consistent frequency ordering based on decay rates ℜ(1 −λ), and derive operator norm stability bounds for iterated diffusion and for BGFT spectral filters. We prove sampling and reconstruction theorems for P-bandlimited (equivalently Lrw -bandlimited) signals and quantify noise amplification through the conditioning of the biorthogonal eigenbasis. A simulation protocol on directed cycles and perturbed non-normal digraphs demonstrates that asymmetry alone does not dictate instability, whereas non-normality and eigenvector illconditioning drive reconstruction sensitivity, making BGFT the correct analytical language for directed diffusion processes.

2020 Mathematics Subject Classification: Primary 05C50; Secondary 15A18, 47A10, 60 J10, 94A12.

1. Introduction

1.1 Symmetry vs. non-self-adjointness: Markov operators on directed networks

A directed network naturally carries a one-step evolution operator: the random-walk (Markov) transition matrix

P= D out   1 A, P1=1, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGqbGaeyypa0JaamiramaaBaaaleaacaWGVbGaamyDaiaadshaaeqaaOGaaiiOa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaamyqaiaacYcacaqGGcGaamiuaiaaigdacqGH9aqpcaaIXaGaaiilaaaa@47A2@

and its generator Lrw = I−P. From the operator-theoretic viewpoint, the central dichotomy is not "directed vs. undirected" per se, but symmetry vs. non-self-adjointness of the Markov operator.

The symmetry regime is the reversible (detailed-balance) case: there exists a stationary distribution p with Π = diag(π)such that

ΠP = P⊤Π,

equivalently, P is self-adjoint in the weighted Hilbert space (ℂn, 〈. , .〉π).). In that regime, P is similar to a symmetric matrix S = Π1/2PΠ−1/2, hence the spectrum is real, and there is an orthonormal eigenbasis in the p-metric. This is precisely the mechanism by which a directed diffusion can retain symmetry (in a stationary metric), recovering Parseval-type identities and a clean variational frequency ordering. The asymmetry regime is non-reversibility, where P is genuinely non-self-adjoint and may be non-normal; then orthogonality is lost, spectral coordinates can be ill-conditioned, and stability is governed by eigenvector conditioning and non-normal effects [1-3].

Our goal is to build a harmonic-analysis calculus that is native to the Markov operator P: it should reduce to the classical orthogonal theory in the reversible (symmetric) regime, and it should remain exact and analyzable in the non-reversible (non-self-adjoint) regime. The correct language here is biorthogonality: left/right eigenvectors provide an exact analysis/synthesis pair even when P is not normal.

1.2 Position relative to the graph: Fourier analysis

Graph Fourier analysis is often introduced through symmetric operators (undirected Laplacians/adjacencies), which guarantee orthogonal eigenvectors and stable spectral coordinates [4-7]. Directed graph settings typically replace symmetry by alternative constructions: optimization-based directed transforms that seek to minimize a directed variation [8], or transforms based on the Jordan decomposition of the adjacency matrix A [6]. While these approaches provide powerful tools for signal compression, they often decouple the transform from the underlying physics of diffusion. Our approach is complementary and more "operator first": we start from the canonical diffusion operator P and develop an exact biorthogonal Fourier calculus for directed diffusion, with a transparent symmetry/asymmetry interpretation in terms of reversibility [9,10]. Unlike methods that force orthogonality through isometric embeddings, our BGFT embraces the biorthogonal geometry inherent in non-reversible Markov chains.

1.3 Main contributions

Main contributions (original):

  1. (Markov-operator BGFT) We define the Biorthogonal Graph Fourier Transform (BGFT) for the random-walk operator P (equivalently, Lrw = I P) via left/right eigenvectors, yielding exact analysis/synthesis identities and diagonal dynamics for diffusion iterates.
  2. (Symmetry principle via reversibility) We identify reversibility (detailed balance) as the precise symmetry notion for directed diffusion: in the p-metric, reversible P becomes selfadjoint, restoring orthogonality/Parseval identities and an exact diffusion-variational frequency ordering.
  3. (Diffusion-consistent frequency) We propose a diffusion-consistent frequency ordering based on the decay rate ℜ(1−λ) (and magnitude alternatives), aligning with the symmetry limit and the long-time behavior ofxt+1 = Pxt.
  4. (Stability theorems for non-self-adjoint diffusion) We prove operator-norm bounds for diffusion iterates Pt and for BGFT spectral filters h(P), explicitly separating eigenvalue decay from eigenvector conditioning, the key instability driver in non-normal settings.
  5. (Sampling and reconstruction) We prove sampling/reconstruction theorems for P bandlimited signals and quantify noise amplification through σmin(PMVΩ) and conditioning of the biorthogonal eigenbasis.
  6. (Asymmetry vs. non-normality: numerical separation) We introduce simple indices for directedness and departure from normality and provide experiments (directed cycle vs. perturbed non-normal digraphs) showing that asymmetry alone need not cause instability, whereas non-normality and eigenvector ill-conditioning do.

1.4 Organization

Section 2 introduces directed diffusion operators and asymmetry/non-normality indices. Section 3 presents reversibility as the symmetry regime in the stationary metric. Sections 4-5 develop BGFT and stability bounds for diffusion and filtering. Section 6 presents sampling and reconstruction results, followed by algorithms and illustrative experiments.

2. Preliminaries: directed diffusion operators

2.1 Directed graphs, adjacency, and out-degree

Let G = (V, E,w) be a directed weighted graph with |V | = n and adjacency A ∈ Rn×n:

A ij ={ w(i,j), (i,j)E 0,  otherwise  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGbbWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacqGH9aqpdaGabaWdaeaafaqaaeGacaaabaWdbiaadEhacaGGOaGaamyAaiaacYcacaWGQbGaaiykaiaacYcaa8aabaWdbiaacIcacaWGPbGaaiilaiaadQgacaGGPaGaeyicI4SaamyraaWdaeaapeGaaGimaiaacYcaa8aabaWdbiaacckacaWGVbGaamiDaiaadIgacaWGLbGaamOCaiaadEhacaWGPbGaam4CaiaadwgacaGGGcaaaaGaay5Eaaaaaa@55E6@

Define out-degrees douti

= P j A ij  and  D out  =diag( d 1 out  ,, d n out  ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpcaqGqbWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiaadgeapaWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWdbiaacckacaWGHbGaamOBaiaadsgacaGGGcGaamira8aadaWgaaWcbaWdbiaad+gacaWG1bGaamiDaiaacckaa8aabeaak8qacqGH9aqpcaqGKbGaaeyAaiaabggacaqGNbWaaeWaa8aabaWdbiaadsgapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaWGVbGaamyDaiaadshacaGGGcaaaOGaaiilaiabgAci8kaacYcacaWGKbWdamaaDaaaleaapeGaamOBaaWdaeaapeGaam4BaiaadwhacaWG0bGaaiiOaaaaaOGaayjkaiaawMcaaiaac6caaaa@5F39@

2.2 Transition matrix and random-walk Laplacian

Definition 2.1 (Random-walk transition matrix). Assume douti > 0 for all  (no sinks). Define

P: = Dout−1A.

Then P is row-stochastic: P1 = 1.

Definition 2.2 (Random-walk Laplacian). Define

Lrw = I−P

Proposition 2.3 (Basic properties). (i) P1 = 1 and Lrw1 = 0. (ii) If P is irreducible and aperiodic, then the diffusion xt+1 = Pxt converges to the stationary component (Markov mixing perspective).

Proof. (i) Row-stochasticity gives P1 = 1, hence(I P)1 = 0.

(ii) This is standard Markov chain theory; see [2,9,10].

2.3 Asymmetry and non-normality indices

Definition 2.4 (Asymmetry index). For any matrix M, define α(M):=M M F /M F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHXoqycaGGOaGaamytaiaacMcacaGG6aGaeyypa0ZexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaGaa8NfGiaad2eacqGHsislcaWGnbWdamaaCaaaleqabaWefv3ySLgznfgDOfdarCqr1ngBPrginfgDObYtUvgaiyaapeGae4hPIujaaOGaa8NfG8aadaWgaaWcbaWdbiaadAeaa8aabeaak8qacaGGVaGaa8NfGiaad2eacaWFwaYdamaaBaaaleaapeGaamOraaWdaeqaaaaa@5D95@  (with α(0) = 0).

Definition 2.5 (Departure from normality). For any matrix M, define δ(M):=M M * M * M F /M 2   F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH0oazcaGGOaGaamytaiaacMcacaGG6aGaeyypa0Jaamytaiaad2eapaWaaWbaaSqabeaapeGaaeOkaaaakiabgkHiTiaad2eapaWaaWbaaSqabeaapeGaaeOkaaaakiaad2eapaWaaSbaaSqaa8qacaWGgbaapaqabaGcpeGaai4lamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqbaiaa=zbicaWGnbGaa8NfG8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiiOa8aadaWgaaWcbaWdbiaadAeaa8aabeaaaaa@564C@ (with δ(0) = 0).

Such non-normality measures (and related bounds) are classical in matrix analysis; see [3,11-14].

We will use these for M = P and M = Lrw to separate structural directedness from numerical instability drivers.

3. Reversibility as the symmetry regime for directed diffusion

Let PRn×n be row-stochastic (P1 = 1). Assume P has a stationary distribution π ∈ Rn with πi > 0 πP = π. Let Π:= diag(π).

Define the p-weighted inner product and norm by

x, y π := x Πyx π 2 :=x, x π MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaaabaqaaiaadIhaaiaawMYiaiaacYcadaaacaqaaiaadMhaaiaawQYia8aadaWgaaWcbaWdbiabec8aWbWdaeqaaOWdbiaacQdacqGH9aqpcaWG4bWdamaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaapeGae8hPIujaaOGaaeiOdiaadMhatCvAUfeBSn0BKvguHDwzZbqeh0uySDwDUbYrVrhAPngaiyaacaGFwaIaamiEaiaa+zbipaWaa0baaSqaa8qacqaHapaCa8aabaWdbiaaikdaaaGccaGG6aGaeyypa0ZaaaqaaeaacaWG4baacaGLPmcacaGGSaWaaaGaaeaacaWG4baacaGLQmcapaWaaSbaaSqaa8qacqaHapaCa8aabeaaaaa@67F7@

The adjoint of P with respect to ⟨·,·⟩π is

P := Π 1 P Π,  so that  Px , y π =x, P y π MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGqbWdamaaCaaaleqabaWdbiaaccciaaGccaGG6aGaeyypa0JaaeiOd8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOGaamiua8aadaahaaWcbeqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaWdbiab=rQivcaakiaabc6acaGGSaGaaeiOaiaacckacaqGZbGaae4BaiaabckacaqG0bGaaeiAaiaabggacaqG0bGaaiiOamaaaeaabaGaamiuaiaadIhaaiaawMYiaiaacYcadaaacaqaaiaadMhaaiaawQYia8aadaWgaaWcbaWdbiabec8aWbWdaeqaaOWdbiabg2da9iaadIhacaGGSaGaamiua8aadaahaaWcbeqaa8qacaGGGacaaOGaamyEa8aadaWgaaWcbaWdbiabec8aWbWdaeqaaaaa@66D6@

Definition 3.1 (Reversibility / detailed balance). P is reversible (w.r.t. p) if

ΠP= P Π,  equivalently, P=P. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGGoGaamiuaiabg2da9iaadcfapaWaaWbaaSqabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacqWFKksLaaGccaqGGoGaaiilaiaabckacaqGGcGaaeyzaiaabghacaqG1bGaaeyAaiaabAhacaqGHbGaaeiBaiaabwgacaqGUbGaaeiDaiaabYgacaqG5bGaaiilaiaacckacaWGqbGaeyypa0JaamiuaiaacccicaGGUaaaaa@5D18@

This detailed-balance condition is standard in reversible Markov chain theory; see [2,9,15].

Theorem 3.2 (Weighted symmetry equivalences). The following are equivalent:

  1. P is reversible ΠP = PΠ.
  2. P is self-adjoint in 〈. , .〉 π: P = P.
  3. The similarity transform S: = Π1/2PΠ−1/2 .is symmetric: S = S.

In this case, P has a complete p-orthonormal eigenbasis, and all eigenvalues are real.

Proof. (i) ⇔ (ii) is the definition of P†. For (i) ⇒ (iii), multiply ΠP = P⊤Π on the left by Π−1/2 and on the right by Π−1/2 to get Π1/2PΠ−1/2 = (Π1/2PΠ−1/2)⊤. Conversely, (iii) ⇒ (i) follows by reversing the steps. If S is symmetric, it is orthogonally diagonalizable with real eigenvalues, hence so is P by similarity.

See also [9,10] for related equivalences and consequences.

Remark 3.3 (Symmetry/asymmetry interpretation for this paper). Undirected diffusion is symmetric in the standard Euclidean inner product. Directed diffusion can still be symmetric in the weighted p-inner product exactly in the reversible regime. Non-reversibility is the correct notion of asymmetry for random-walk harmonic analysis.

4. Biorthogonal Graph Fourier Transform (BGFT) for randomwalk diffusion

4.1 Left/right eigenvectors and BGFT

Assumption 4.1 (Diagonalizability). Assume P is diagonalizable over C:

P=VΛ V 1 , Λ=diag( λ 1 ,, λ n ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGqbGaeyypa0JaamOvaiaabU5acaWGwbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGccaGGSaGaaeiOaiaabU5acqGH9aqpcaqGKbGaaeyAaiaabggacaqGNbWaaeWaa8aabaWdbiabeU7aS9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaeyOjGWRaaiilaiabeU7aS9aadaWgaaWcbaWdbiaad6gaa8aabeaaaOWdbiaawIcacaGLPaaacaGGSaaaaa@51B4@

with right eigenvectors V = [v1 ··· vn].

Remark 4.2 (Non-diagonalizable operators). While Assumption 4.1 holds for almost all transition matrices (diagonalizable matrices are dense in Cn×n), certain highly symmetric digraph structures can yield non-diagonalizable P. In such cases, the BGFT can be generalized using the Jordan canonical form or the Schur decomposition. However, the biorthogonal framework presented here focuses on the most common case where a complete set of eigenvectors exists, providing a direct physical link to decay modes.

Definition 4.3 (BGFT (diffusion version)). For a graph signal x ∈ Cn, define BGFT coefficients

x b:= U * X, x  b k = u * kX           (1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaaiiOaiaabkgacaGG6aGaeyypa0Jaamyva8aadaahaaWcbeqaa8qacaqGQaaaaOGaamiwaiaacYcacaqGGcGaamiEaiaacckacaqGIbWdamaaBaaaleaapeGaam4AaaWdaeqaaOWdbiabg2da9iaadwhapaWaaWbaaSqabeaapeGaaeOkaaaakiaadUgacaWGybGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabMcaaaa@53C2@

and synthesis

x=V x ^ = k=1 n v k x ^ k         (2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyypa0JaamOvaiqadIhagaqcaiabg2da9maawahabeWcpaqaa8qacaWGRbGaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGccaaMk8UaaGPcVlaadAhapaWaaSbaaSqaa8qacaWGRbaapaqabaGcpeGabmiEayaajaWdamaaBaaaleaapeGaam4AaaWdaeqaaOGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabMcaaaa@5275@

Theorem 4.4 (Perfect reconstruction). Under Assumption 4.1, for all x ∈ Cn,

n n I=Xvku*k, x=Xvku*kX k=1 k=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabmGaaaqaaabaaaaaaaaapeGaamOBaaWdaeaapeGaamOBaaWdaeaapeGaamysaiabg2da9iaabIfacaWG2bGaam4AaiaadwhacaqGQaGaam4AaiaacYcaa8aabaWdbiaadIhacqGH9aqpcaqGybGaamODaiaadUgacaWG1bGaaeOkaiaadUgacaWGybaapaqaa8qacaWGRbGaeyypa0JaaGymaaWdaeaapeGaam4Aaiabg2da9iaaigdaaaaaaa@503A@

Proof. Since U+V = I, we have V U+ = I; expand V U+ in columns/rows.

4.2 Diffusion dynamics are diagonal in BGFT coordinates

Theorem 4.5 (BGFT-domain diffusion). Let xt+1 = Pxt  with x0 ∈ Cn. Then

x bt= U * X t =Λtx b0, xt=V Λ t U *X0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaaiiOaiaabkgacaWG0bGaeyypa0Jaamyva8aadaWgaaWcbaWdbiaabQcaa8aabeaak8qacaWGybWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabg2da9iaabU5acaWG0bGaamiEaiaacckacaqGIbGaaGimaiaacYcacaqGGcGaamiEaiaadshacqGH9aqpcaWGwbGaae4Md8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacaWGvbWdamaaBaaaleaapeGaaeOkaiaadIfacaaIWaaapaqabaaaaa@53FF@

Equivalently, for Lrw = I P,

( L rw x ^ )=(IΛ) x ^ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGOaWaaecaaeaacaWGmbWdamaaBaaaleaapeGaaeOCaiaabEhaa8aabeaak8qacaWG4baacaGLcmaacaGGPaGaeyypa0JaaiikaiaadMeacqGHsislcaqGBoGaaiykaiqadIhagaqcaaaa@44B9@

Proof. Use P = V ΛU∗ and U+V = I. Then U+(Px) = Λ(U+x) and iterate.

4.3 Diffusion-consistent frequency ordering

For diffusion, the mode with eigenvalue l evolves as lt. If |λ| < 1, it decays; if λ ≈ 1, it is slowly varying (low frequency). We define the diffusion decay rate:

ω diff  (λ):=(1λ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHjpWDpaWaaSbaaSqaa8qacaWGKbGaamyAaiaadAgacaWGMbGaaiiOaaWdaeqaaOWdbiaacIcacqaH7oaBcaGGPaGaaiOoaiabg2da9mrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFCeIucaGGOaGaaGymaiabgkHiTiabeU7aSjaacMcacaGGUaaaaa@5544@

Low ωdiff corresponds to persistent/slow modes; high ωdiff  corresponds to fast decay. Compared to the imaginary-part ordering (phase) often used in adjacency-based GFTs, ℜ(1 − λ) provides a direct measure of spectral energy dissipation. This choice aligns with the variational property of the random-walk Laplacian, where ℜ(1 − λ) quantifies the smoothness of a mode relative to the one-step diffusion process.

5. Directed diffusion filtering and stability bounds

5.1 Spectral filters

Definition 5.1 (BGFT spectral filter for diffusion). Let h: C → C. Define

H:=Vh(Λ) U * . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGibGaaiOoaiabg2da9iaadAfacaWGObGaaiikaiaabU5acaGGPaGaamyva8aadaahaaWcbeqaa8qacaqGQaaaaOGaaiOlaaaa@4187@

Proposition 5.2 (Diagonal action in BGFT domain). For x = U+x, b

H x d = U * Hx=h(Λ)x.b Proof. Compute  U * Vh(Λ) U * x=h(Λ)x. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGibGaamiEa8aadaWgaaWcbaWdbiaabsgaa8aabeaak8qacqGH9aqpcaWGvbWdamaaCaaaleqabaWdbiaabQcaaaGccaWGibGaamiEaiabg2da9iaadIgacaGGOaGaae4MdiaacMcacaWG4bGaaiOlaiaabkgacaGGGcGaamiuaiaadkhacaWGVbGaam4BaiaadAgacaGGUaGaaiiOaiaadoeacaWGVbGaamyBaiaadchacaWG1bGaamiDaiaadwgacaGGGcGaamyva8aadaahaaWcbeqaa8qacaqGQaaaaOGaamOvaiaadIgacaGGOaGaae4MdiaacMcacaWGvbWdamaaCaaaleqabaWdbiaabQcaaaGccaWG4bGaeyypa0JaamiAaiaacIcacaqGBoGaaiykaiaadIhacaGGUaaaaa@654A@

5.2 Operator-norm stability: diffusion and filtering

Theorem 5.3 (Norm bound for diffusion iterates). Assume P = V ΛV −1. Then for every t ∈N,

P k t 2 cond(V)max | λ k | t , cond( MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGqbWdamaaDaaaleaapeGaam4AaaWdaeaapeGaamiDaaaak8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHKjYOcaqGJbGaae4Baiaab6gacaqGKbGaaiikaiaadAfacaGGPaGaaeyBaiaabggacaqG4bWaaqWaa8aabaWdbiabeU7aS9aadaWgaaWcbaWdbiaadUgaa8aabeaaaOWdbiaawEa7caGLiWoapaWaaWbaaSqabeaapeGaamiDaaaakiaacYcacaqGGcGaae4yaiaab+gacaqGUbGaaeizaiaacIcaaaa@54C7@

Proof. P t =V Λ t V 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGqbWdamaaCaaaleqabaWdbiaadshaaaGccqGH9aqpcaWGwbGaae4Md8aadaahaaWcbeqaa8qacaWG0baaaOGaamOva8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaaa@4169@ , hence P t 2 V 2 Λ t 2 V 1 2 =cond(V) max k | λ k | t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGqbWdamaaCaaaleqabaWdbiaadshaaaGcpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyizIm6exLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaGaa8NfGiaadAfacaWFwaYdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaabU5apaWaaWbaaSqabeaapeGaamiDaaaak8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGwbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGcpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0Jaae4yaiaab+gacaqGUbGaaeizaiaacIcacaWGwbGaaiyka8aadaWfqaqaa8qacaqGTbGaaeyyaiaabIhaaSWdaeaapeGaam4AaaWdaeqaaOWdbiaayQW7daabdaWdaeaapeGaeq4UdW2damaaBaaaleaapeGaam4AaaWdaeqaaaGcpeGaay5bSlaawIa7a8aadaahaaWcbeqaa8qacaWG0baaaaaa@6795@ .

Theorem 5.4 (Norm bound for spectral filters). Let H=Vh(Λ) V 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGibGaeyypa0JaamOvaiaadIgacaGGOaGaae4MdiaacMcacaWGwbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaaaaa@4109@ . Then H 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaaeaaaaaaaaa8qacaWFwaIaamisaiaa=zbipaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyizImkaaa@4810@

cond(V)max| h( λ k ) |. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGJbGaae4Baiaab6gacaqGKbGaaiikaiaadAfacaGGPaGaaeyBaiaabggacaqG4bWaaqWaa8aabaWdbiaadIgadaqadaWdaeaapeGaeq4UdW2damaaBaaaleaapeGaam4AaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaay5bSlaawIa7aiaac6caaaa@4A78@

Proof. H 2 V 2 h(Λ) 2 V 1 2 =cond(V) max k | h( λ k ) | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaaeaaaaaaaaa8qacaWFwaIaamisaiaa=zbipaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyizImQaa8NfGiaadAfacaWFwaYdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaa=zbicaWGObGaaiikaiaabU5acaGGPaGaa8NfG8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGwbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGcpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0Jaae4yaiaab+gacaqGUbGaaeizaiaacIcacaWGwbGaaiyka8aadaWfqaqaa8qacaqGTbGaaeyyaiaabIhaaSWdaeaapeGaam4AaaWdaeqaaOWdbiaayQW7daabdaWdaeaapeGaamiAamaabmaapaqaa8qacqaH7oaBpaWaaSbaaSqaa8qacaWGRbaapaqabaaak8qacaGLOaGaayzkaaaacaGLhWUaayjcSdaaaa@6B61@ .

Remark 5.5 (Symmetry/asymmetry and Instability). When  is normal and diagonalizable by a unitary basis, cond(V) = 1, and the bounds become tight and symmetry-like. It is critical to distinguish between structural asymmetry (α(P) > 0) and numerical instability (cond(V) ≫ 1). Asymmetry is a prerequisite for the loss of orthogonality, but it does not necessitate instability; for instance, the directed cycle is maximally asymmetric but remains normal and perfectly stable. For non-normal P, cond(V) can be large, creating instability even if |λk| ≤ 1. Our numerical experiments in Section 9 confirm that this ill-conditioning, rather than directedness per se, drives the reconstruction error.

6 BGFT energy in the stationary metric and its symmetry limit

Assume P is diagonalizable over C: P = V ΛV −1 and define U∗ := V −1. Let xb: = U+x be BGFT coefficients so that x = V x.

Theorem 6.1 (p-metric Parseval identity). For any x ∈ Cn,

x π 2 = x ^ * G π x ^ ,  G π := V * ΠV MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaaeaaaaaaaaa8qacaWFwaIaamiEaiaa=zbipaWaa0baaSqaa8qacqaHapaCa8aabaWdbiaaikdaaaGccqGH9aqpceWG4bGbaKaadaahaaWcbeqaaiaacQcaaaGccaWGhbWdamaaBaaaleaapeGaeqiWdahapaqabaGcpeGabmiEayaajaGaaiilaiaabckacaWGhbWdamaaBaaaleaapeGaeqiWdahapaqabaGcpeGaaiOoaiabg2da9iaadAfapaWaaWbaaSqabeaapeGaaeOkaaaakiaabc6acaWGwbaaaa@59BE@

Proof. Since x=Vx b,x 2   π = x * Πx=x b*(VV)x b MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyypa0JaamOvaiaadIhacaGGGcGaaeOyaiaacYcatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuaacaWFwaIaamiEaiaa=zbipaWaaWbaaSqabeaapeGaaGOmaaaakiaacckapaWaaSbaaSqaa8qacqaHapaCa8aabeaak8qacqGH9aqpcaWG4bWdamaaCaaaleqabaWdbiaabQcaaaGccaqGGoGaamiEaiabg2da9iaadIhacaGGGcGaaeOyaiaabQcacaGGOaGaamOvaiaabQcacaqGGoGaamOvaiaacMcacaWG4bGaaiiOaiaabkgaaaa@6220@ .

Corollary 6.2 (Two-sided bounds via conditioning in p). Let W: = Π1/2V. Then

σ min (W) 2 x ^ 2 2 x π 2 σ max (W) 2 x ^ 2 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHdpWCpaWaaSbaaSqaa8qacaqGTbGaaeyAaiaab6gaa8aabeaak8qacaGGOaGaam4vaiaacMcapaWaaWbaaSqabeaapeGaaGOmaaaatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuaakiaa=zbiceWG4bGbaKaacaWFwaYdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaaaakiabgsMiJkaa=zbicaWG4bGaa8NfG8aadaqhaaWcbaWdbiabec8aWbWdaeaapeGaaGOmaaaakiabgsMiJkabeo8aZ9aadaWgaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdaeqaaOWdbiaacIcacaWGxbGaaiyka8aadaahaaWcbeqaa8qacaaIYaaaaOGaa8NfGiqadIhagaqcaiaa=zbipaWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIYaaaaaaa@6511@

Equivalently, energy distortion is controlled by κ(W)= σ max (W)/ σ min (W) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH6oWAcaGGOaGaam4vaiaacMcacqGH9aqpcqaHdpWCpaWaaSbaaSqaa8qacaqGTbGaaeyyaiaabIhaa8aabeaak8qacaGGOaGaam4vaiaacMcacaGGVaGaeq4Wdm3damaaBaaaleaapeGaaeyBaiaabMgacaqGUbaapaqabaGcpeGaaiikaiaadEfacaGGPaaaaa@4C39@ .

6.1 Diffusion variation and frequency ordering

Define the random-walk Laplacian Lrw:= I P and the diffusion variation

TV π (x):= L rw x π 2 =(IP)x π 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGubGaaeOva8aadaWgaaWcbaWdbiabec8aWbWdaeqaaOWdbiaacIcacaWG4bGaaiykaiaacQdacqGH9aqpcaWGmbWdamaaBaaaleaapeGaaeOCaiaabEhaa8aabeaak8qacaWG4bWdamaaDaaaleaapeGaeqiWdahapaqaa8qacaaIYaaaaOGaeyypa0ZexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaGaa8NfGiaacIcacaWGjbGaeyOeI0IaamiuaiaacMcacaWG4bGaa8NfG8aadaqhaaWcbaWdbiabec8aWbWdaeaapeGaaGOmaaaaaaa@5C48@

Theorem 6.3 (BGFT-domain bounds for diffusion variation). With x = V x and W = Π1/2V , b n n

σ min (W) 2 X| 1 λ k |2|x bk|2TVπ(x) σ max (W) 2 X| 1 λ k |2|x bk|2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHdpWCpaWaaSbaaSqaa8qacaqGTbGaaeyAaiaab6gaa8aabeaak8qacaGGOaGaam4vaiaacMcapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaeiwamaaemaapaqaa8qacaaIXaGaeyOeI0Iaeq4UdW2damaaBaaaleaapeGaam4AaaWdaeqaaaGcpeGaay5bSlaawIa7aiaaikdacaGG8bGaamiEaiaacckacaqGIbGaam4AaiaacYhacaaIYaGaeyizImQaaeivaiaabAfacqaHapaCcaGGOaGaamiEaiaacMcacqGHKjYOcqaHdpWCpaWaaSbaaSqaa8qacaqGTbGaaeyyaiaabIhaa8aabeaak8qacaGGOaGaam4vaiaacMcapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaeiwamaaemaapaqaa8qacaaIXaGaeyOeI0Iaeq4UdW2damaaBaaaleaapeGaam4AaaWdaeqaaaGcpeGaay5bSlaawIa7aiaaikdacaGG8bGaamiEaiaacckacaqGIbGaam4AaiaacYhacaaIYaaaaa@72BA@

Proof. (IP)x=V(IΛ)x b MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGOaGaamysaiabgkHiTiaadcfacaGGPaGaamiEaiabg2da9iaadAfacaGGOaGaamysaiabgkHiTiaabU5acaGGPaGaamiEaiaacckacaqGIbaaaa@4627@ . Then (IP)x π = Π 1/2 V(IΛ)x  b 2 =W(IΛ)x b 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaaeaaaaaaaaa8qacaWFwaIaaiikaiaadMeacqGHsislcaWGqbGaaiykaiaadIhacaWFwaYdamaaBaaaleaapeGaeqiWdahapaqabaGcpeGaeyypa0JaaeiOd8aadaahaaWcbeqaa8qacaaIXaGaai4laiaaikdaaaGccaWGwbGaaiikaiaadMeacqGHsislcaqGBoGaaiykaiaadIhacaGGGcGaaeOya8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaWFwaIaam4vaiaacIcacaWGjbGaeyOeI0Iaae4MdiaacMcacaWG4bGaaiiOaiaabkgacaWFwaYdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa@6508@ . Apply σ min (W)z 2 Wz 2 σ max (W)z 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHdpWCpaWaaSbaaSqaa8qacaqGTbGaaeyAaiaab6gaa8aabeaak8qacaGGOaGaam4vaiaacMcatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuaacaWFwaIaamOEaiaa=zbipaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyizImQaa8NfGiaadEfacaWG6bGaa8NfG8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHKjYOcqaHdpWCpaWaaSbaaSqaa8qacaqGTbGaaeyyaiaabIhaa8aabeaak8qacaGGOaGaam4vaiaacMcacaWFwaIaamOEaiaa=zbipaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@6067@ to and z=(IΛ)x b MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG6bGaeyypa0JaaiikaiaadMeacqGHsislcaqGBoGaaiykaiaadIhacaGGGcGaaeOyaaaa@4165@ square.

Remark 6.4 (Exact symmetry limit). If P is reversible, one can choose Vp-orthonormal, hence W = Π1/2V is unitary and σmin(W) = σmax(W) = 1. Then the inequalities become equalities, and |1 − λk| becomes an exact diffusion frequency.

7 Sampling and reconstruction for diffusion-bandlimited signals

Let Ω ⊂ {1,...,n} with |Ω| = K represent the “low diffusion-frequency” modes (e.g. smallest ωdiff(λ) or largest ℜ(λ)). Let VΩ Cn×K contain {vk}k∈Ω.

Definition 7.1 (Diffusion-bandlimited signals). A signal x is Ω-bandlimited (relative to P) if x = VΩc for some c ∈ CK.

Bandlimited sampling on graphs has a substantial literature; see, e.g., [16-18]. Let M V, |M| = m, and PM ∈ {0,1}m×n be the restriction operator.

Theorem 7.2 (Exact recovery). If x = VΩc and PMVΩ has full column rank K, then x is uniquely determined by samples y = PMx and recovered by

bc= ( P M V Ω ) y,x b= V Ω bc MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaqGIbGaam4yaiabg2da9maabmaapaqaa8qacaWGqbWdamaaBaaaleaapeGaamytaaWdaeqaaOWdbiaadAfapaWaaSbaaSqaa8qacaqGPoaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaccciaaGccaWG5bGaaiilaiaadIhacaGGGcGaaeOyaiabg2da9iaadAfapaWaaSbaaSqaa8qacaqGPoaapaqabaGcpeGaaeOyaiaadogaaaa@4C58@

Proof. Full column rank makes PMVΩ injective; solve the linear system in least squares. Related sampling-set conditions and reconstruction stability on graphs are discussed in [16-19].

Theorem 7.3 (Noise sensitivity). If y = PMx+η, then the least-squares reconstruction satisfies.

x ^ x 2 V Ω 2 ( P M V Ω ) 2 η 2 = V Ω 2 η 2 σ min ( P M V Ω ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaaeaaaaaaaaa8qacaWFwaIabmiEayaajaGaeyOeI0IaamiEaiaa=zbipaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyizImQaamOva8aadaWgaaWcbaWdbiaabM6aa8aabeaakmaaBaaaleaapeGaaGOmaaWdaeqaaOWdbmaabmaapaqaa8qacaWGqbWdamaaBaaaleaapeGaamytaaWdaeqaaOWdbiaadAfapaWaaSbaaSqaa8qacaqGPoaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaccciaaGcpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaa8NfGiabeE7aOjaa=zbipaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaamOva8aadaWgaaWcbaWdbiaabM6aa8aabeaakmaaBaaaleaapeGaaGOmaaWdaeqaaOWdbmaalaaapaqaa8qacaWFwaIaeq4TdGMaa8NfG8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8qacqaHdpWCpaWaaSbaaSqaa8qacaqGTbGaaeyAaiaab6gaa8aabeaak8qadaqadaWdaeaapeGaamiua8aadaWgaaWcbaWdbiaad2eaa8aabeaak8qacaWGwbWdamaaBaaaleaapeGaaeyQdaWdaeqaaaGcpeGaayjkaiaawMcaaaaaaaa@6EF1@

Proof. b c c = (PMVΩ)η and xbx = VΩ(bc c).

8 Algorithms

Algorithm 1 BGFT for random-walk diffusion

Require: A (directed adjacency), Dout invertible, signal x

Ensure: BGFT coefficients x, eigenpairs (L, V)

1: P← , D out 1 A MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaDaaaleaacaWGVbGaamyDaiaadshaaeaacqGHsislcaaIXaaaaOGaamyqaaaa@3E5A@ Lrw ← I-P

2: Compute eigendecomposition P = V Λ V-1 (complex arithmetic)

3: U*← V-1

4: x ← U* xb

5: return (x,Λ,V) b

Algorithm 2: Diffusion filtering and bandlimited reconstruction

Require: P = V ΛV −1, response h(·), bandlimit Ω, sample set M, samples y Ensure: filtered signal Hx or reconstructed x

1: Filtering: H V h(Λ)V −1, output Hx Hx

2: Reconstruction: form VΩ, solve bc ← argmin | c |PMVWc  y| | 2 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSraaSqaaiaadogaaeqaaOGaaiiFaiaacYhacaqGqbGaaeytaiaabAfacaqGxbGaae4yaiaabccacaGGtaIaaeiiaiaabMhacaGG8bGaaiiFamaaDaaaleaacaaIYaaabaGaaGOmaaaaaaa@45FE@

3: x ^ VΩ c ^ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaajaGaeyiKHWQaamOvaiabgM6axjqadogagaqcaaaa@3E5D@

9 Experiments: directed cycle vs perturbed non-normal digraphs

9.1 Graphs

Use n ∈ {32,64,128} and compare: (Table 1)

  1. Undirected cycle Cn (convert to diffusion by symmetrizing and normalizing).
  2. Directed cycle   C n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWGdbWaaSbaaSqaaiaad6gaaeqaaaGccaGLxdcaaaa@3BAA@ : P is a permutation shift (asymmetric but normal/unitary).
  3. Perturbed directed cycle C n (ε) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWGdbWaaSbaaSqaaiaad6gaaeqaaaGccaGLxdcacaGGOaGaeqyTduMaaiykaaaa@3EAA@ : add a directed chord, then renormalize rows to keep P stochastic; this typically yields non-normal P and large cond (V).

9.2 Tasks and metrics

  • Diffusion filtering: low-pass via h(λ) = exp(−τ(1 − λ)) (BGFT-defined), compare smoothing strength on the three graphs.
  • Forecasting: iterate diffusion xt+1 = Pxt and compare || xt ||2 trends with Theorem 5.3.
  • Sampling/reconstruction: generate W-bandlimited signals and recover from m samples; report RelErr and σmin(PMVΩ).
  • Perturbed directed cycle  : add a directed chord from node 0 to node n/2 with weight ε = 20, then renormalize rows to keep P stochastic; this typically yields non-normal P and large cond (V).

Report tables/figures:

α(P),δ(P),cond(V),cond( P M V Ω ),RelErr= x ^ x 2 x 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHXoqycaGGOaGaamiuaiaacMcacaGGSaGaeqiTdqMaaiikaiaadcfacaGGPaGaaiilaiaabogacaqGVbGaaeOBaiaabsgacaGGOaGaamOvaiaacMcacaGGSaGaae4yaiaab+gacaqGUbGaaeizamaabmaapaqaa8qacaWGqbWdamaaBaaaleaapeGaamytaaWdaeqaaOWdbiaadAfapaWaaSbaaSqaa8qacaqGPoaapaqabaaak8qacaGLOaGaayzkaaGaaiilaiaabkfacaqGLbGaaeiBaiaabweacaqGYbGaaeOCaiabg2da9maalaaapaqaamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqba8qacaWFwaIabmiEayaajaGaeyOeI0IaamiEaiaa=zbipaWaaSbaaSqaa8qacaaIYaaapaqabaaakeaapeGaa8NfGiaadIhacaWFwaYdamaaBaaaleaapeGaaGOmaaWdaeqaaaaaaaa@6CCE@

Observed separation. The directed cycle is asymmetric (α(P) > 0) but normal (δ(P) = 0) with a well-conditioned eigenbasis (κ(V ) = 1), whereas the perturbed digraph remains asymmetric but becomes non-normal (δ(P) > 0) and strongly ill-conditioned (κ(V ) ≫ 1), leading to markedly larger reconstruction error, consistent with the stability bounds.

10 Conclusion

We developed an original diffusion-centered harmonic analysis for directed graphs using the random-walk transition matrix P and Laplacian Lrw = I P. The BGFT provides exact analysis/synthesis, diagonalizes diffusion dynamics, motivates a diffusion-consistent frequency ordering, and yields explicit stability bounds for iterated diffusion and spectral filtering governed by eigenvector conditioning. Sampling and reconstruction theorems quantify how non-normality amplifies noise through σmin(PMVΩ) and cond(V). This establishes a principled symmetry/asymmetry narrative: symmetry yields orthogonality and stability; asymmetry forces biorthogonal geometry; non-normality determines practical robustness.

Appendix-file

Acknowledgements

The author expresses his gratitude to the Commissioner of Collegiate Education (CCE), Government of Andhra Pradesh, and the Principal, Government College (Autonomous), Rajahmundry, for continued support and encouragement.

Author contributions

The author is solely responsible for conceptualization, methodology, analysis, software, validation, and writing.

Data availability statement

No external datasets were used. The code that generates the reported numerical table/figures will be provided as a reproducible script and (upon acceptance) via a public repository link.

References

  1. Marques AG, Segarra S, Mateos G. Signal processing on directed graphs. arXiv [Internet]. 2020. Available from: https://arxiv.org/abs/2008.00586
  2. Levin DA, Peres Y. Markov chains and mixing times. 2nd ed. Providence (RI): American Mathematical Society; 2017. Available from: https://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf
  3. Trefethen LN, Embree M. Spectra and pseudospectra: The behavior of nonnormal matrices and operators. Princeton (NJ): Princeton University Press; 2005. Available from: https://www.karlin.mff.cuni.cz/~kaplicky/pages/pages/2021l/book.pdf
  4. Chung F. Laplacians and the Cheeger inequality for directed graphs. Annals of Combinatorics. 2005;9(1):1–19. Available from: https://link.springer.com/article/10.1007/s00026-005-0237-z
  5. Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine. 2013;30(3):83–98. Available from: https://ieeexplore.ieee.org/document/6494675
  6. Sandryhaila A, Moura JMF. Discrete signal processing on graphs: Frequency analysis. IEEE Transactions on Signal Processing. 2014;62(12):3042–3054. Available from: https://ieeexplore.ieee.org/document/6808520
  7. Ortega A, Frossard P, Kovačević J, Moura JMF, Vandergheynst P. Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE. 2018;106(5):808–828. Available from: https://ieeexplore.ieee.org/document/8347162
  8. Sardellitti S, Barbarossa S, Di Lorenzo P. On the graph Fourier transform for directed graphs. IEEE Journal of Selected Topics in Signal Processing. 2017;11(6):796–811. Available from: https://ieeexplore.ieee.org/document/7979496
  9. Norris JR. Markov chains. Cambridge: Cambridge University Press; 1997. Available from: https://cape.fcfm.buap.mx/jdzf/cursos/procesos/libros/norris.pdf
  10. Seneta E. Non-negative matrices and Markov chains. 2nd ed. Berlin: Springer; 1981. Available from: https://link.springer.com/book/10.1007/0-387-32792-4
  11. Henrici P. Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices. Numerische Mathematik. 1962;4:24–40. Available from: https://link.springer.com/article/10.1007/BF01386294
  12. Lee SL. A practical upper bound for departure from normality. SIAM Journal on Matrix Analysis and Applications. 1995;16:462–468. Available from: https://doi.org/10.1137/S0895479893255184
  13. Elsner L, Paardekooper MHC. On measures of nonnormality of matrices. Linear Algebra and its Applications. 1987;92:107–124. Available from: https://doi.org/10.1016/0024-3795(87)90253-9
  14. Toh K-C, Trefethen LN. The Kreiss matrix theorem on a general complex domain. SIAM Journal on Matrix Analysis and Applications. 1999;20. Available from: https://doi.org/10.1137/S0895479897324020
  15. Kelly FP. Reversibility and stochastic networks. New York: Wiley; 1979. Available from: https://www.amazon.in/Reversibility-Stochastic-Networks-Cambridge-Mathematical/dp/1107401151
  16. Anis A, Gadde A, Ortega A. Efficient sampling set selection for bandlimited graph signals using graph spectral proxies. IEEE Transactions on Signal Processing. 2016. Available from: https://ieeexplore.ieee.org/document/7439829
  17. Pesenson I. Sampling in Paley–Wiener spaces on combinatorial graphs. Transactions of the American Mathematical Society. 2008;360:5603–5627. Available from: https://arxiv.org/html/2512.21770v1
  18. Marques AG, Segarra S, Mateos G. Signal processing on directed graphs: The role of edge directionality when processing and learning from network data. IEEE Signal Processing Magazine. 2020;37(6):99–116. Available from: https://ieeexplore.ieee.org/document/9244648
  19. Higham NJ. What is a (non)normal matrix? [Internet]. 2020. Available from: https://nhigham.com/2020/11/24/what-is-a-nonnormal-matrix/
 

Help ?