ISSN: 2689-7636

Annals of Mathematics and Physics

Research Article       Open Access      Peer-Reviewed

Uniqueness Analysis of Boundary Value Problems with Variable-order Caputo Fractional Derivatives

Tharmalingam Gunasekar1,2* and Jaya Priya Dhanasekar1

1Department of Mathematics, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai - 600062, Tamil Nadu, India
2Department of Mathematics, Srinivas University, Mukka, Mangaluru - 574146, Karnataka, India

Author and article information

*Corresponding author: Tharmalingam Gunasekar, Department of Mathematics, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai - 600062, Tamil Nadu, India, E-mail: [email protected]
Received: 24 November, 2025 | Accepted: 01 December, 2025 | Published: 03 December, 2025
Keywords: Solution uniqueness; Caputo derivatives; Fixed point methods; Boundary Value Problems(BVPs)

Cite this as

Gunasekar T, Dhanasekar JP. Uniqueness Analysis of Boundary Value Problems with Variable-order Caputo Fractional Derivatives. Ann Math Phys. 2025;8(6):252-255. Available from: 10.17352/amp.000170

Copyright License

© 2025 Gunasekar T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

This work is devoted to a boundary value problem for variable-order Caputo fractional derivatives. The obtained conditions guarantee the uniqueness of solutions under given boundary conditions. The main tool in the analysis is the Banach contraction principle, with which one can assert that the problem admits exactly one solution. A numerical example is also presented for illustration and confirmation of the theoretical results.

MSC 2020: 26A30; 34A12; 34K37; 65 L 03

1. Introduction

Fractional calculus has developed as a helpful method for modeling complex dynamical systems where memory and hereditary properties are present [1,2]. In contrast to classical integer-order derivatives, the fractional-order derivatives involve nonlocal effects innately, which become so important in describing dynamics in materials, diffusion processes, and control systems [3,4]. The Caputo fractional-order derivative can be applied in practice since it allows one to include common initial and boundary conditions naturally [5]. More recently, VariableOrder Fractional Differential Equations(VO-FDE) have also been developed, for which the order of differentiation depends on time, space, or state, offering thus more flexibility when modeling processes whose dynamics evolve with time [6,7].

BVPs involving VO-FDE appear commonly in engineering and physical applications, such as anomalous diffusion, viscoelastic materials, and biological models [8,9]. These problems include non-linearities in the source term or boundary conditions that provide a nontrivial framework for proving the occurrence and singularity of solutions. Applications of fixed point methods, including the Banach contraction and Krasnoselskii theorems, present the basic instruments to establish rigorous results for such BVPs and provide explicit conditions under which solutions are guaranteed to exist and be unique [10,11].

Despite the substantial theoretical developments, numerical examples and practical validations remain essential to demonstrate the applicability of these results [12,13]. Studies on variable-order fractional BVPs must consider singularity and stability of solutions under perturbations to ensure reliability in real-world modeling [14,15]. Motivated by these considerations, the present work focuses on a class of Caputo variable-order fractional BVPs, establishing sufficient conditions for uniqueness and illustrating the theoretical findings through numerical examples.

Motivated by prior studies on VO-FDEs [7,8,10]. Specifically, we consider the BVP

{   C D μ(t) u(t)+α(t)u(t)=f(t,u(t)), for t[ ρ 1 , ρ 2 ] u( ρ 1 )+(   ρ 1 I ζ u )(ξ)=β        (1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeqaaaqaaabaaaaaaaaapeWaaiqaa8aabaqbaeaabiqaaaqaa8qacaGGGcWdamaaCaaaleqabaWdbiaadoeaaaGccaWGebWdamaaCaaaleqabaWdbiabeY7aTjaacIcacaWG0bGaaiykaaaakiaadwhacaGGOaGaamiDaiaacMcacqGHRaWkcqaHXoqycaGGOaGaamiDaiaacMcacaWG1bGaaiikaiaadshacaGGPaGaeyypa0JaamOzaiaacIcacaWG0bGaaiilaiaadwhacaGGOaGaamiDaiaacMcacaGGPaGaaiilaiaacckacaWGMbGaam4BaiaadkhacaGGGcGaamiDaiabgIGiopaadmaapaqaa8qacqaHbpGCpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiabeg8aY9aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawUfacaGLDbaaa8aabaWdbiaadwhadaqadaWdaeaapeGaeqyWdi3damaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgUcaRmaabmaapaqaa8qacaGGGcWdamaaBaaaleaapeGaeqyWdi3damaaBaaameaapeGaaGymaaWdaeqaaaWcbeaak8qacaWGjbWdamaaCaaaleqabaWdbiabeA7a6baakiaadwhaaiaawIcacaGLPaaacaGGOaGaeqOVdGNaaiykaiabg2da9iabek7aIbaaaiaawUhaaaaapaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeykaaaa@8244@

where C(t) denotes the Caputo fractional derivative of variable order µ(t), and the function f : [ρ12] × R R is assumed to be smooth in all of its arguments, and the coefficient α(t) is a bounded real-valued function. The parameters β R are given constants, and ζ ∈ (0,1) represents a fractional order, and the scalar ξ ∈ (0, T) is a fixed interior point. Let t J = [ρ12] , where 0 ≤ ρ1 < ρ2 denotes a fixed interval.

The arrangement of the paper is as follows: Section 2 outlines the essential preliminary concepts and mathematical tools required for the analysis. In Section 3, we establish conditions that ensure the solution is exactly one for the BVP involving Caputo VO-FDE. Section 4 demonstrates a numerical example that validates the uniqueness of the solution. Finally, Section 5 summarizes the key conclusions concerning the uniqueness results obtained in this.

2. Preliminaries

This section presents the essential preliminaries and definitions associated with fractional differential equations of variable order.

Definition 2.1 ([5]) The variable-order Riemann-Liouville fractional integral of a function u with order µ(t) is expressed by

I μ(t) u(t)= ρ 1 t (tθ) μ(θ)1 Γ(μ(θ)) u(θ)dθ, t> ρ 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGjbWdamaaCaaaleqabaWdbiabeY7aTjaacIcacaqG0bGaaiykaaaakiaadwhacaGGOaGaaeiDaiaacMcacqGH9aqpdaWdXaqaaiaayQW7daWcaaWdaeaapeGaaiikaiaabshacqGHsislcqaH4oqCcaGGPaWdamaaCaaaleqabaWdbiabeY7aTjaacIcacqaH4oqCcaGGPaGaeyOeI0IaaGymaaaaaOWdaeaapeGaeu4KdCKaaiikaiabeY7aTjaacIcacqaH4oqCcaGGPaGaaiykaaaaaSqaaiabeg8aYnaaBaaameaacaaIXaaabeaaaSqaaiaadshaa0Gaey4kIipakiaadwhacaGGOaGaeqiUdeNaaiykaiaadsgacqaH4oqCcaGGSaGaaeiOaiaabshacqGH+aGpcqaHbpGCpaWaaSbaaSqaa8qacaaIXaaapaqabaaaaa@69EA@

Definition 2.2 ([5]) The Caputo variable-order µ(t) ∈ (0,1) fractional derivative for a function µ is defined as

C D μ(t) u(t)= ρ 1 t (tθ) μ(θ) Γ(1μ(θ)) u ' (θ)dθ, 0<μ(t)<1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaSqabeaaqaaaaaaaaaWdbiaadoeaaaGccaWGebWdamaaCaaaleqabaWdbiabeY7aTjaacIcacaqG0bGaaiykaaaakiaadwhacaGGOaGaaeiDaiaacMcacqGH9aqpdaWdXaqaaiaayQW7daWcaaWdaeaapeGaaiikaiaabshacqGHsislcqaH4oqCcaGGPaWdamaaCaaaleqabaWdbiabgkHiTiabeY7aTjaacIcacqaH4oqCcaGGPaaaaaGcpaqaa8qacqqHtoWrcaGGOaGaaGymaiabgkHiTiabeY7aTjaacIcacqaH4oqCcaGGPaGaaiykaaaaaSqaaiabeg8aYnaaBaaameaacaaIXaaabeaaaSqaaiaadshaa0Gaey4kIipakiaadwhapaWaaWbaaSqabeaapeGaai4jaaaakiaacIcacqaH4oqCcaGGPaGaamizaiabeI7aXjaacYcacaqGGcGaaGimaiabgYda8iabeY7aTjaacIcacaqG0bGaaiykaiabgYda8iaaigdaaaa@6F81@

If µ(t) = 0, then CDtµ(t)u(t) = u(t).

Theorem 2.1 ([4]) Consider a Banach space X and a closed subset B𝔽 ⊂ X. Let the operator 𝔽: B𝔽 → B𝔽 satisfy the contraction condition

 F( u ^ )F(u) L f u ^ u , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaeSyjIa1efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrcaGGOaGabmyDayaajaGaaiykaiabgkHiTiab=vi8gjaacIcacaWG1bGaaiykaiablwIiq9aadaWgaaWcbaWdbiabe6HiLcWdaeqaaOWdbiabgsMiJkaadYeapaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaeSyjIaLabmyDayaajaGaeyOeI0IaamyDaiablwIiq9aadaWgaaWcbaWdbiabe6HiLcWdaeqaaOWdbiaacYcaaaa@5CFB@

for Lf ∈ (0,1) and for all u ^ ,u B F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaceWG1bGbaKaapaGaaiilaiaadwhacqGHiiIZcaWGcbWaaSbaaSqaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaWdbiab=vi8gbWdaeqaaaaa@4961@ . Then, has exactly one fixed point u B F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCaaaleqabaGaey4fIOcaaOGaeyicI4SaamOqamaaBaaaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaabaaaaaaaaapeGae8xHWBeapaqabaaaaa@48AE@ .

Assume f (t,u) and µ(t) satisfy conditions ensuring the BVP is well-posed.

(H1) There is a constant Gf > 0 so that |f (t,u)| ≤ Gf |u| for all t ∈ [ρ12], u R.

(H2) There is a constant Lf > 0 so that

|f (t,u1) − f (t,u2)| ≤ Lf |u1u2| for all t ∈ [ρ12].

(H3) Let α C([ρ12]), Then ∥α∥∞ < .

Lemma 2.1 A function u C([ρ12]) is a solution of the BVP (1) if and only if u satisfies the relation

u(t)=β 1 Γ(ζ) 0 ξ (ξθ) ζ1 u(θ)dθ+ 0 t (tθ) μ(θ)1 Γ(μ(θ)) (f(θ,u(θ))α(θ)u(θ))dθ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaaaaaaWdbiaadwhacaGGOaGaamiDaiaacMcacqGH9aqpcqaHYoGycqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaeu4KdCKaaiikaiabeA7a6jaacMcaaaWdamaavacabeWcbeqaaiaaygW7a0qaa8qacqGHRiI8aaGcpaWaa0baaSqaa8qacaaIWaaapaqaa8qacqaH+oaEaaGccaaMk8Uaaiikaiabe67a4jabgkHiTiabeI7aXjaacMcapaWaaWbaaSqabeaapeGaeqOTdONaeyOeI0IaaGymaaaakiaadwhacaGGOaGaeqiUdeNaaiykaiaadsgacqaH4oqCcqGHRaWkaeaapaWaaubiaeqaleqabaGaaGzaVdqdbaWdbiabgUIiYdaak8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaadshaaaGccaaMk8+aaSaaa8aabaWdbiaacIcacaWG0bGaeyOeI0IaeqiUdeNaaiyka8aadaahaaWcbeqaa8qacqaH8oqBcaGGOaGaeqiUdeNaaiykaiabgkHiTiaaigdaaaaak8aabaWdbiabfo5ahjaacIcacqaH8oqBcaGGOaGaeqiUdeNaaiykaiaacMcaaaGaaiikaiaadAgacaGGOaGaeqiUdeNaaiilaiaadwhacaGGOaGaeqiUdeNaaiykaiaacMcacqGHsislcqaHXoqycaGGOaGaeqiUdeNaaiykaiaadwhacaGGOaGaeqiUdeNaaiykaiaacMcacaWGKbGaeqiUdehaaaa@8F5A@

for every t ∈ [ρ12], where u 0 =β 1 Γ(ζ) 0 ξ (ξθ) ζ1 u(θ)dθ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG1bWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iabek7aIjabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacqqHtoWrcaGGOaGaeqOTdONaaiykaaaapaWaaubiaeqaleqabaGaaGzaVdqdbaWdbiabgUIiYdaak8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiabe67a4baakiaayQW7caGGOaGaeqOVdGNaeyOeI0IaeqiUdeNaaiyka8aadaahaaWcbeqaa8qacqaH2oGEcqGHsislcaaIXaaaaOGaamyDaiaacIcacqaH4oqCcaGGPaGaamizaiabeI7aXbaa@5BE3@ .

3. Uniqueness

In this section, we establish a condition that guarantees exactly one solution for the VO-FDE given in (1). The following theorem provides the main analytical tool for ensuring that the BVP has a single solution.

Let the interval J = [ρ12] be divided into m consecutive subintervals: ρ1 = t0 < t1 < t2 < ··· < tm = ρ2. Each subinterval is denoted by Ji = (ti-1,ti], i = 1,2,...,m.

On each subinterval, define a piecewise constant variable fractional-order function µ(t) by μ(t)= i=1 m μ i 1 J i (t) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBcaGGOaGaamiDaiaacMcacqGH9aqppaWaaubiaeqaleqabaGaaGzaVdqdbaWdbiabggHiLdaak8aadaqhaaWcbaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWGTbaaaOGaaGPcVlabeY7aT9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaaIXaWdamaaBaaaleaapeGaamOsa8aadaWgaaadbaWdbiaadMgaa8aabeaaaSqabaGcpeGaaiikaiaadshacaGGPaaaaa@4F36@ , where µi ∈ (0,1] is the local fractional order on Ji , and 1Ji(t) is the indicator function: 1 J i (t)={ 1, t J i , 0, t J i . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIXaWdamaaBaaaleaapeGaamOsa8aadaWgaaadbaWdbiaadMgaa8aabeaaaSqabaGcpeGaaiikaiaadshacaGGPaGaeyypa0Zaaiqaa8aabaqbaeaabiGaaaqaa8qacaaIXaGaaiilaaWdaeaapeGaamiDaiabgIGiolaadQeapaWaaSbaaSqaa8qacaWGPbaapaqabaGccaGGSaaabaWdbiaaicdacaGGSaaapaqaa8qacaWG0bGaeyycI8SaamOsa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGUaaaaaGaay5Eaaaaaa@4DDB@  Assume that u C1(Ji,R) is continuously differentiable.

Then, the Caputo VO-FDE on each subinterval can be written as

C D μ i u(t)= i=1 m 1 Γ( 1 μ i ) J i [0,T] (tθ) μ i u ' (θ)dθ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaSqabeaaqaaaaaaaaaWdbiaadoeaaaGccaWGebWdamaaCaaaleqabaWdbiabeY7aT9aadaWgaaadbaWdbiaadMgaa8aabeaaaaGcpeGaamyDaiaacIcacaWG0bGaaiykaiabg2da9maawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaamyBaaqdpaqaa8qacqGHris5aaGccaaMk8+aaSaaa8aabaWdbiaaigdaa8aabaWdbiabfo5ahnaabmaapaqaa8qacaaIXaGaeyOeI0IaeqiVd02damaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaaaadaWdraqaaiaayQW7caGGOaGaamiDaiabgkHiTiabeI7aXjaacMcapaWaaWbaaSqabeaapeGaeyOeI0IaeqiVd02damaaBaaameaapeGaamyAaaWdaeqaaaaaaSWdbeaacaWGkbWdamaaBaaameaapeGaamyAaaWdaeqaaSWaaubiaeqameqabaGaaGzaVdGdbaWdbiabgMIihdaaliaacUfacaaIWaGaaiilaiaadsfacaGGDbaabeqdcqGHRiI8aOGaamyDa8aadaahaaWcbeqaa8qacaGGNaaaaOGaaiikaiabeI7aXjaacMcacaWGKbGaeqiUdehaaa@70B0@

Theorem 3.1. Consider the assumptions (H1)-(H3) satisfied. Then, the BVP associated with the Caputo VO-FDE (1) possesses a unique solution whenever ki < 1.

k i =[ ξ ζ Γ(ζ+1) + ( ρ 2 ρ 1 ) μ i Γ( μ i +1 ) ( L f +α ) ] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGRbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9maadmaapaqaa8qadaWcaaWdaeaapeGaeqOVdG3damaaCaaaleqabaWdbiabeA7a6baaaOWdaeaapeGaeu4KdCKaaiikaiabeA7a6jabgUcaRiaaigdacaGGPaaaaiabgUcaRmaalaaapaqaa8qadaqadaWdaeaapeGaeqyWdi3damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiabeg8aY9aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqiVd02damaaBaaameaapeGaamyAaaWdaeqaaaaaaOqaa8qacqqHtoWrdaqadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgUcaRiaaigdaaiaawIcacaGLPaaaaaWaaeWab8aabaWdbiaadYeapaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaey4kaSIaeSyjIaLaeqySdeMaeSyjIa1damaaBaaaleaapeGaeqOhIukapaqabaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@6709@

Proof. Define the operator 𝔽: C1([ρ12]) → C1([ρ11]) by

 (Fu)(t)=β 1 Γ(ζ) 0 ξ (ξθ) ζ1 u(θ)dθ+ 0 t (tθ) μ i 1 Γ( μ i ) (f(θ,u(θ))α(θ)u(θ))dθ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaaaaaaWdbiaacckacaGGOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFfcVrcaWG1bGaaiykaiaacIcacaWG0bGaaiykaiabg2da9iabek7aIjabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacqqHtoWrcaGGOaGaeqOTdONaaiykaaaadaWdXaqaaiaayQW7caGGOaGaeqOVdGNaeyOeI0IaeqiUdeNaaiyka8aadaahaaWcbeqaa8qacqaH2oGEcqGHsislcaaIXaaaaaqaaiaaicdaaeaacqaH+oaEa0Gaey4kIipakiaadwhacaGGOaGaeqiUdeNaaiykaiaadsgacqaH4oqCcqGHRaWkaeaadaWdXaqaaiaayQW7daWcaaWdaeaapeGaaiikaiaadshacqGHsislcqaH4oqCcaGGPaWdamaaCaaaleqabaWdbiabeY7aT9aadaWgaaadbaWdbiaadMgaa8aabeaal8qacqGHsislcaaIXaaaaaGcpaqaa8qacqqHtoWrdaqadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaaaaaSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaGGOaGaamOzaiaacIcacqaH4oqCcaGGSaGaamyDaiaacIcacqaH4oqCcaGGPaGaaiykaiabgkHiTiabeg7aHjaacIcacqaH4oqCcaGGPaGaamyDaiaacIcacqaH4oqCcaGGPaGaaiykaiaadsgacqaH4oqCaaaa@9670@

Step 1: Boundedness

Let B𝔽 = {u C1([ρ12]) : ∥u∥∞ ≤ R𝔽} for some R𝔽 > 0. For u B𝔽,

|(Fu)(t)|  |β|+ 1 Γ(ζ) 0 ξ (ξθ) ζ1 |u(θ)|dθ+ 0 ρ 2 (tθ) μ i 1 Γ( μ i )  (|f(θ,u(θ))|+|α(θ)||u(θ)|)dθ [ |β|+ ξ ζ Γ(ζ+1) + ( ρ 2 ρ 1 ) μ i Γ( μ i +1 ) ( G f +α ) ]u [ |β|+ ξ ζ Γ(ζ+1) + ( ρ 2 ρ 1 ) μ i Γ( μ i +1 ) ( G f +α ) ] R F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabqGaaaaabaaeaaaaaaaaa8qacaGG8bGaaiikamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xHWBKaamyDaiaacMcacaGGOaGaamiDaiaacMcacaGG8bGaeyizImkapaqaa8qacaGGGcGaaiiFaiabek7aIjaacYhacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaeu4KdCKaaiikaiabeA7a6jaacMcaaaWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiabe67a4bqdpaqaa8qacqGHRiI8aaGccaaMk8UaaGPcVlaacIcacqaH+oaEcqGHsislcqaH4oqCcaGGPaWdamaaCaaaleqabaWdbiabeA7a6jabgkHiTiaaigdaaaGccaGG8bGaamyDaiaacIcacqaH4oqCcaGGPaGaaiiFaiaadsgacqaH4oqCcqGHRaWkdaWdXaqaaiaayQW7daWcaaWdaeaapeGaaiikaiaadshacqGHsislcqaH4oqCcaGGPaWdamaaCaaaleqabaWdbiabeY7aT9aadaWgaaadbaWdbiaadMgaa8aabeaal8qacqGHsislcaaIXaaaaaGcpaqaa8qacqqHtoWrdaqadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaamyAaaWdaeqaaaGcpeGaayjkaiaawMcaaaaaaSqaaiaaicdaaeaacqaHbpGCpaWaaSbaaWqaa8qacaaIYaaapaqabaaan8qacqGHRiI8aaGcpaqaaaqaa8qacaGGGcGaaiikaiaacYhacaWGMbGaaiikaiabeI7aXjaacYcacaWG1bGaaiikaiabeI7aXjaacMcacaGGPaGaaiiFaiabgUcaRiaacYhacqaHXoqycaGGOaGaeqiUdeNaaiykaiaacYhacaGG8bGaamyDaiaacIcacqaH4oqCcaGGPaGaaiiFaiaacMcacaWGKbGaeqiUdehapaqaa8qacqGHKjYOa8aabaWdbmaadmaapaqaa8qacaGG8bGaeqOSdiMaaiiFaiabgUcaRmaalaaapaqaa8qacqaH+oaEpaWaaWbaaSqabeaapeGaeqOTdOhaaaGcpaqaa8qacqqHtoWrcaGGOaGaeqOTdONaey4kaSIaaGymaiaacMcaaaGaey4kaSYaaSaaa8aabaWdbmaabmaapaqaa8qacqaHbpGCpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaeqyWdi3damaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacqaH8oqBpaWaaSbaaWqaa8qacaWGPbaapaqabaaaaaGcbaWdbiabfo5ahnaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaey4kaSIaaGymaaGaayjkaiaawMcaaaaadaqadaWdaeaapeGaam4ra8aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacqGHRaWkcqWILicucqaHXoqycqWILicupaWaaSbaaSqaa8qacqaHEisPa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaacqWILicucaWG1bGaeSyjIa1damaaBaaaleaapeGaeqOhIukapaqabaaakeaapeGaeyizImkapaqaa8qadaWadaWdaeaapeGaaiiFaiabek7aIjaacYhacqGHRaWkdaWcaaWdaeaapeGaeqOVdG3damaaCaaaleqabaWdbiabeA7a6baaaOWdaeaapeGaeu4KdCKaaiikaiabeA7a6jabgUcaRiaaigdacaGGPaaaaiabgUcaRmaalaaapaqaa8qadaqadaWdaeaapeGaeqyWdi3damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiabeg8aY9aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqiVd02damaaBaaameaapeGaamyAaaWdaeqaaaaaaOqaa8qacqqHtoWrdaqadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgUcaRiaaigdaaiaawIcacaGLPaaaaaWaaeWaa8aabaWdbiaadEeapaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaey4kaSIaeSyjIaLaeqySdeMaeSyjIa1damaaBaaaleaapeGaeqOhIukapaqabaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamOua8aadaWgaaWcbaWdbiab=vi8gbWdaeqaaaaaaaa@152D@

Choose an R𝔽 large enough such that.

|β|+ R F ξ ζ Γ(ζ+1) + R F ( ρ 2 ρ 1 ) μ i Γ( μ i +1 ) ( G f +α ) R F |(Fu)(t)|[ |β|+ ξ ζ Γ(ζ+1) + ( ρ 2 ρ 1 ) μ i Γ( μ i +1 ) ( G f +α ) ] R F R F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaaqaaabaaaaaaaaapeGaaiiFaiabek7aIjaacYhacqGHRaWkdaWcaaWdaeaapeGaamOua8aadaWgaaWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaapeGae8xHWBeapaqabaGcpeGaeqOVdG3damaaCaaaleqabaWdbiabeA7a6baaaOWdaeaapeGaeu4KdCKaaiikaiabeA7a6jabgUcaRiaaigdacaGGPaaaaiabgUcaRiaadkfapaWaaSbaaSqaa8qacqWFfcVra8aabeaak8qadaWcaaWdaeaapeWaaeWaa8aabaWdbiabeg8aY9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHsislcqaHbpGCpaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiabeY7aT9aadaWgaaadbaWdbiaadMgaa8aabeaaaaaakeaapeGaeu4KdC0aaeWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHRaWkcaaIXaaacaGLOaGaayzkaaaaamaabmaapaqaa8qacaWGhbWdamaaBaaaleaapeGaamOzaaWdaeqaaOWdbiabgUcaRiablwIiqjabeg7aHjablwIiq9aadaWgaaWcbaWdbiabe6HiLcWdaeqaaaGcpeGaayjkaiaawMcaaiabgsMiJkaadkfapaWaaSbaaSqaa8qacqWFfcVra8aabeaaaOqaa8qacaGG8bGaaiikaiab=vi8gjaadwhacaGGPaGaaiikaiaadshacaGGPaGaaiiFaiabgsMiJoaadmaapaqaa8qacaGG8bGaeqOSdiMaaiiFaiabgUcaRmaalaaapaqaa8qacqaH+oaEpaWaaWbaaSqabeaapeGaeqOTdOhaaaGcpaqaa8qacqqHtoWrcaGGOaGaeqOTdONaey4kaSIaaGymaiaacMcaaaGaey4kaSYaaSaaa8aabaWdbmaabmaapaqaa8qacqaHbpGCpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaeqyWdi3damaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacqaH8oqBpaWaaSbaaWqaa8qacaWGPbaapaqabaaaaaGcbaWdbiabfo5ahnaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaey4kaSIaaGymaaGaayjkaiaawMcaaaaadaqadaWdaeaapeGaam4ra8aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacqGHRaWkcqWILicucqaHXoqycqWILicupaWaaSbaaSqaa8qacqaHEisPa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaacaWGsbWdamaaBaaaleaapeGae8xHWBeapaqabaGcpeGaeyizImQaamOua8aadaWgaaWcbaWdbiab=vi8gbWdaeqaaaaaaaa@BF77@

Hence, (BF) ⊆ B𝔽, showing boundedness.

Step 2: Contraction

Let u1,u2B𝔽 . Then

| ( F u 1 )(t)( F u 2 )(t) | 1 Γ(ζ) 0 ξ (ξθ) ζ1 | u 1 (θ) u 2 (θ) |dθ+ 0 ρ 2 (tθ) μ i 1 Γ( μ i ) ( | f( θ, u 1 (θ) )f( θ, u 2 (θ) ) |+|α(θ)|| u 1 (θ) u 2 (θ) | )dθ   1 Γ(ζ) 0 ξ (ξθ) ζ1 | u 1 (θ) u 2 (θ) |dθ  +( L f +α ) 0 ρ 2 (tθ) μ i 1 Γ( μ i ) | u 1 (θ) u 2 (θ) |dθ  [ ξ ζ Γ(ζ+1) + ( ρ 2 ρ 1 ) μ i Γ( μ i +1 ) ( L f +α ) ] u 1 u 2 | ( F u 1 )(t)( F u 2 )(t) | k i u 1 u 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabyGaaaaabaaabaaeaaaaaaaaa8qadaabdaWdaeaapeWaaeWaa8aabaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaapeGae8xHWBKaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaGGOaGaamiDaiaacMcacqGHsisldaqadaWdaeaapeGae8xHWBKaamyDa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaGGOaGaamiDaiaacMcaaiaawEa7caGLiWoacqGHKjYOdaWcaaWdaeaapeGaaGymaaWdaeaapeGaeu4KdCKaaiikaiabeA7a6jaacMcaaaWaa8qmaeaacaGGOaGaeqOVdGNaeyOeI0IaeqiUdeNaaiyka8aadaahaaWcbeqaa8qacqaH2oGEcqGHsislcaaIXaaaaaqaaiaaicdaaeaacqaH+oaEa0Gaey4kIipakmaaemaapaqaa8qacaWG1bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacIcacqaH4oqCcaGGPaGaeyOeI0IaamyDa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGOaGaeqiUdeNaaiykaaGaay5bSlaawIa7aiaadsgacqaH4oqCcqGHRaWkdaWdXaqaamaalaaapaqaa8qacaGGOaGaamiDaiabgkHiTiabeI7aXjaacMcapaWaaWbaaSqabeaapeGaeqiVd02damaaBaaameaapeGaamyAaaWdaeqaaSWdbiabgkHiTiaaigdaaaaak8aabaWdbiabfo5ahnaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaayzkaaaaaaWcbaGaaGimaaqaaiabeg8aY9aadaWgaaadbaWdbiaaikdaa8aabeaaa0WdbiabgUIiYdaak8aabaaabaWdbmaabmaapaqaa8qadaabdaWdaeaapeGaamOzamaabmaapaqaa8qacqaH4oqCcaGGSaGaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGOaGaeqiUdeNaaiykaaGaayjkaiaawMcaaiabgkHiTiaadAgadaqadaWdaeaapeGaeqiUdeNaaiilaiaadwhapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiikaiabeI7aXjaacMcaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHRaWkcaGG8bGaeqySdeMaaiikaiabeI7aXjaacMcacaGG8bWaaqWaa8aabaWdbiaadwhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiikaiabeI7aXjaacMcacqGHsislcaWG1bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacIcacqaH4oqCcaGGPaaacaGLhWUaayjcSdaacaGLOaGaayzkaaGaamizaiabeI7aXbWdaeaaaeaapeGaaiiOaiabgsMiJoaalaaapaqaa8qacaaIXaaapaqaa8qacqqHtoWrcaGGOaGaeqOTdONaaiykaaaadaWdXaqaaiaayQW7caaMk8Uaaiikaiabe67a4jabgkHiTiabeI7aXjaacMcapaWaaWbaaSqabeaapeGaeqOTdONaeyOeI0IaaGymaaaaaeaacaaIWaaabaGaeqOVdGhaniabgUIiYdGcdaabdaWdaeaapeGaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGOaGaeqiUdeNaaiykaiabgkHiTiaadwhapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiikaiabeI7aXjaacMcaaiaawEa7caGLiWoacaWGKbGaeqiUdehapaqaaaqaa8qacaGGGcGaey4kaSYaaeWaa8aabaWdbiaadYeapaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaey4kaSIaeSyjIaLaeqySdeMaeSyjIa1damaaBaaaleaapeGaeqOhIukapaqabaaak8qacaGLOaGaayzkaaWaa8qmaeaacaaMk8UaaGPcVpaalaaapaqaa8qacaGGOaGaamiDaiabgkHiTiabeI7aXjaacMcapaWaaWbaaSqabeaapeGaeqiVd02damaaBaaameaapeGaamyAaaWdaeqaaSWdbiabgkHiTiaaigdaaaaak8aabaWdbiabfo5ahnaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaayzkaaaaaaWcbaGaaGimaaqaaiabeg8aY9aadaWgaaadbaWdbiaaikdaa8aabeaaa0WdbiabgUIiYdGcdaabdaWdaeaapeGaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGOaGaeqiUdeNaaiykaiabgkHiTiaadwhapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiikaiabeI7aXjaacMcaaiaawEa7caGLiWoacaWGKbGaeqiUdehapaqaaaqaa8qacaGGGcGaeyizIm6aamWaa8aabaWdbmaalaaapaqaa8qacqaH+oaEpaWaaWbaaSqabeaapeGaeqOTdOhaaaGcpaqaa8qacaqGtoGaaiikaiabeA7a6jabgUcaRiaaigdacaGGPaaaaiabgUcaRmaalaaapaqaa8qadaqadaWdaeaapeGaeqyWdi3damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiabeg8aY9aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqiVd02damaaBaaameaapeGaamyAaaWdaeqaaaaaaOqaa8qacqqHtoWrdaqadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgUcaRiaaigdaaiaawIcacaGLPaaaaaWaaeWaa8aabaWdbiaadYeapaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaey4kaSIaeSyjIaLaeqySdeMaeSyjIa1damaaBaaaleaapeGaeqOhIukapaqabaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWG1bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWaaSbaaSqaa8qacqaHEisPa8aabeaaaOqaaaqaa8qadaabdaWdaeaapeWaaeWaa8aabaWdbiab=vi8gjaadwhapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaaiikaiaadshacaGGPaGaeyOeI0YaaeWaa8aabaWdbiab=vi8gjaadwhapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaaiikaiaadshacaGGPaaacaGLhWUaayjcSdGaeyizImQaam4Aa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaWG1bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgkHiTiaadwhapaWaaSbaaSqaa8qacaaIYaaapaqabaGcdaWgaaWcbaWdbiabe6HiLcWdaeqaaaaaaaa@7F4A@

|(𝔽u1)(t) − (𝔽u1)(t)|≤kiu1u2∥∞.

If we choose parameters such that k i =[ ξ ζ Γ(ζ+1) + ( ρ 2 ρ 1 ) μ i Γ( μ i +1 ) ( L f +α ) ]<1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGRbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9maadmaapaqaa8qadaWcaaWdaeaapeGaeqOVdG3damaaCaaaleqabaWdbiabeA7a6baaaOWdaeaapeGaeu4KdCKaaiikaiabeA7a6jabgUcaRiaaigdacaGGPaaaaiabgUcaRmaalaaapaqaa8qadaqadaWdaeaapeGaeqyWdi3damaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiabeg8aY9aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqiVd02damaaBaaameaapeGaamyAaaWdaeqaaaaaaOqaa8qacqqHtoWrdaqadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgUcaRiaaigdaaiaawIcacaGLPaaaaaWaaeWaa8aabaWdbiaadYeapaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaey4kaSIaeSyjIaLaeqySdeMaeSyjIa1damaaBaaaleaapeGaeqOhIukapaqabaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyipaWJaaGymaaaa@68C7@ , then

𝔽 is a contraction. By Theorem 2.1, 𝔽 has exactly one fixed point u B𝔽.

4. Examples

We present illustrative examples to validate the Piecewise Constant Variable Order Fractional BVP discussed in the preceding section.

Consider the BVP on J = [0,0.5]:

  C D μ(t) u(t)+α(t)u(t)=f(t,u(t)), t[0,0.5] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcWdamaaCaaaleqabaWdbiaadoeaaaGccaWGebWdamaaCaaaleqabaWdbiabeY7aTjaacIcacaWG0bGaaiykaaaakiaadwhacaGGOaGaamiDaiaacMcacqGHRaWkcqaHXoqycaGGOaGaamiDaiaacMcacaWG1bGaaiikaiaadshacaGGPaGaeyypa0JaamOzaiaacIcacaWG0bGaaiilaiaadwhacaGGOaGaamiDaiaacMcacaGGPaGaaiilaiaabckacaWG0bGaeyicI4Saai4waiaaicdacaGGSaGaaGimaiaac6cacaaI1aGaaiyxaaaa@5CDD@

with the condition u(0) + (0I ζu)(0.4) = β, where β = 1, ζ = 0.4, and the coefficient α(t) = 0.2t.

Solution: Divide J into two subintervals:

J1 = (0,0.25], J2 = (0.25,0.5].

Define the piecewise constant variable fractional order:

μ(t)={ 0.4, t J 1 , 0.6, t J 2 . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBcaGGOaGaamiDaiaacMcacqGH9aqpdaGabaWdaeaafaqaaeGacaaabaWdbiaaicdacaGGUaGaaGinaiaacYcaa8aabaWdbiaadshacqGHiiIZcaWGkbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcaa8aabaWdbiaaicdacaGGUaGaaGOnaiaacYcaa8aabaWdbiaadshacqGHiiIZcaWGkbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaac6caaaaacaGL7baaaaa@4EE7@

Hence, the problem becomes:

{   C D 0.6 u(t)+(0.2t)u(t)=0.1t+0.06arctan(u(t))+0.04 u(t) 1+u (t) 2 , t(0,0.25]   C D 0.8 u(t)+(0.2t)u(t)=0.1t+0.06arctan(u(t))+0.04 u(t) 1+u (t) 2 , t(0.25,0.5] u(0)+(   0 I 0.4 u )(0.4)=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaGabaWdaeaafaqaaeWabaaabaWdbiaacckapaWaaWbaaSqabeaapeGaam4qaaaakiaadseapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI2aaaaOGaamyDaiaacIcacaWG0bGaaiykaiabgUcaRiaacIcacaaIWaGaaiOlaiaaikdacaWG0bGaaiykaiaadwhacaGGOaGaamiDaiaacMcacqGH9aqpcaaIWaGaaiOlaiaaigdacaWG0bGaey4kaSIaaGimaiaac6cacaaIWaGaaGOnaiaabggacaqGYbGaae4yaiaabshacaqGHbGaaeOBaiaacIcacaWG1bGaaiikaiaadshacaGGPaGaaiykaiabgUcaRiaaicdacaGGUaGaaGimaiaaisdadaWcaaWdaeaapeGaamyDaiaacIcacaWG0bGaaiykaaWdaeaapeGaaGymaiabgUcaRiaadwhacaGGOaGaamiDaiaacMcapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccaGGSaGaaeiOaiaadshacqGHiiIZcaGGOaGaaGimaiaacYcacaaIWaGaaiOlaiaaikdacaaI1aGaaiyxaaWdaeaapeGaaiiOa8aadaahaaWcbeqaa8qacaWGdbaaaOGaamira8aadaahaaWcbeqaa8qacaaIWaGaaiOlaiaaiIdaaaGccaWG1bGaaiikaiaadshacaGGPaGaey4kaSIaaiikaiaaicdacaGGUaGaaGOmaiaadshacaGGPaGaamyDaiaacIcacaWG0bGaaiykaiabg2da9iaaicdacaGGUaGaaGymaiaadshacqGHRaWkcaaIWaGaaiOlaiaaicdacaaI2aGaaeyyaiaabkhacaqGJbGaaeiDaiaabggacaqGUbGaaiikaiaadwhacaGGOaGaamiDaiaacMcacaGGPaGaey4kaSIaaGimaiaac6cacaaIWaGaaGinamaalaaapaqaa8qacaWG1bGaaiikaiaadshacaGGPaaapaqaa8qacaaIXaGaey4kaSIaamyDaiaacIcacaWG0bGaaiyka8aadaahaaWcbeqaa8qacaaIYaaaaaaakiaacYcacaqGGcGaamiDaiabgIGiolaacIcacaaIWaGaaiOlaiaaikdacaaI1aGaaiilaiaaicdacaGGUaGaaGynaiaac2faa8aabaWdbiaadwhacaGGOaGaaGimaiaacMcacqGHRaWkdaqadaWdaeaapeGaaiiOa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGjbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGinaaaakiaadwhaaiaawIcacaGLPaaacaGGOaGaaGimaiaac6cacaaI0aGaaiykaiabg2da9iaaigdaaaaacaGL7baaaaa@C2E2@

Compute the Lipschitz constant with respect to u:

| f( t, u 1 )f( t, u 2 ) |  0.06| arctan( u 1 )arctan( u 2 ) |+0.04| u 1 1+ u 1 2 u 2 1+ u 2 2 |  (0.06+0.04)| u 1 u 2 |   L f | u 1 u 2 | MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabmGaaaqaaabaaaaaaaaapeWaaqWaa8aabaWdbiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWG1bWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgkHiTiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWG1bWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaay5bSlaawIa7aaWdaeaapeGaaiiOaiabgsMiJkaaicdacaGGUaGaaGimaiaaiAdadaabdaWdaeaapeGaaeyyaiaabkhacaqGJbGaaeiDaiaabggacaqGUbWaaeWaa8aabaWdbiaadwhapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaeyOeI0IaaeyyaiaabkhacaqGJbGaaeiDaiaabggacaqGUbWaaeWaa8aabaWdbiaadwhapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaaacaGLhWUaayjcSdGaey4kaSIaaGimaiaac6cacaaIWaGaaGinamaaemaapaqaa8qadaWcaaWdaeaapeGaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacaaIXaGaey4kaSIaamyDa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaaaaOGaeyOeI0YaaSaaa8aabaWdbiaadwhapaWaaSbaaSqaa8qacaaIYaaapaqabaaakeaapeGaaGymaiabgUcaRiaadwhapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIYaaaaaaaaOGaay5bSlaawIa7aaWdaeaaaeaapeGaaiiOaiabgsMiJkaacIcacaaIWaGaaiOlaiaaicdacaaI2aGaey4kaSIaaGimaiaac6cacaaIWaGaaGinaiaacMcadaabdaWdaeaapeGaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWG1bWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaay5bSlaawIa7aaWdaeaaaeaapeGaaiiOaiabgsMiJkaadYeapaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeWaaqWaa8aabaWdbiaadwhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyOeI0IaamyDa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawEa7caGLiWoaaaaaaa@9CCA@

Hence, the Lipschitz constant is Lf  = 0.1.

Uniqueness:

k i = ξ ζ Γ(ζ+1) + ( ρ 2 ρ 1 ) μ i Γ( μ i +1 ) ( L f +α ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGRbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9maalaaapaqaa8qacqaH+oaEpaWaaWbaaSqabeaapeGaeqOTdOhaaaGcpaqaa8qacqqHtoWrcaGGOaGaeqOTdONaey4kaSIaaGymaiaacMcaaaGaey4kaSYaaSaaa8aabaWdbmaabmaapaqaa8qacqaHbpGCpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyOeI0IaeqyWdi3damaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacqaH8oqBpaWaaSbaaWqaa8qacaWGPbaapaqabaaaaaGcbaWdbiabfo5ahnaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaey4kaSIaaGymaaGaayjkaiaawMcaaaaadaqadaWdaeaapeGaamita8aadaWgaaWcbaWdbiaadAgaa8aabeaak8qacqGHRaWkcqWILicucqaHXoqycqWILicupaWaaSbaaSqaa8qacqaHEisPa8aabeaaaOWdbiaawIcacaGLPaaaaaa@64F7@

Take ξ = 0.4, ρ2ρ2 = 0.5, ∥α∥∞ = 0.1, Lf = 0.1:

k 1 = 0.4 0.4 Γ(1.4) + 0.5 0.4 Γ(1.4) (0.1+0.1)0.780+0.1710.951<1 k 2 = 0.4 0.4 Γ(1.4) + 0.5 0.6 Γ(1.6) (0.1+0.1)0.780+0.1480.928<1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeGabiGaaaqaaaqaaabaaaaaaaaapeGaam4Aa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaaGimaiaac6cacaaI0aWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGinaaaaaOWdaeaapeGaeu4KdCKaaiikaiaaigdacaGGUaGaaGinaiaacMcaaaGaey4kaSYaaSaaa8aabaWdbiaaicdacaGGUaGaaGyna8aadaahaaWcbeqaa8qacaaIWaGaaiOlaiaaisdaaaaak8aabaWdbiabfo5ahjaacIcacaaIXaGaaiOlaiaaisdacaGGPaaaaiaacIcacaaIWaGaaiOlaiaaigdacqGHRaWkcaaIWaGaaiOlaiaaigdacaGGPaGaeyisISRaaGimaiaac6cacaaI3aGaaGioaiaaicdacqGHRaWkcaaIWaGaaiOlaiaaigdacaaI3aGaaGymaiabgIKi7kaaicdacaGGUaGaaGyoaiaaiwdacaaIXaGaeyipaWJaaGymaaWdaeaaaeaapeGaam4Aa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaaGimaiaac6cacaaI0aWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGinaaaaaOWdaeaapeGaeu4KdCKaaiikaiaaigdacaGGUaGaaGinaiaacMcaaaGaey4kaSYaaSaaa8aabaWdbiaaicdacaGGUaGaaGyna8aadaahaaWcbeqaa8qacaaIWaGaaiOlaiaaiAdaaaaak8aabaWdbiabfo5ahjaacIcacaaIXaGaaiOlaiaaiAdacaGGPaaaaiaacIcacaaIWaGaaiOlaiaaigdacqGHRaWkcaaIWaGaaiOlaiaaigdacaGGPaGaeyisISRaaGimaiaac6cacaaI3aGaaGioaiaaicdacqGHRaWkcaaIWaGaaiOlaiaaigdacaaI0aGaaGioaiabgIKi7kaaicdacaGGUaGaaGyoaiaaikdacaaI4aGaeyipaWJaaGymaaaaaaa@9704@

Hence, the condition k1,k2 < 1 is satisfied, guaranteeing the example has exactly one solution (Figures 1-3).

The three 3D plots display how u(t) evolves with time and the variable order µ(t). The solution remains smooth and single valued throughout [0, T], providing numerical confirmation of its uniqueness.

5. Conclusion

This study has established a condition that guarantees the uniqueness of the solution for the BVP involving Caputo VO-FDE. By employing the Banach contraction principle, it is shown that under appropriate assumptions on the nonlinear function and the coefficients, the BVP admits exactly one solution. The theoretical findings are further supported by illustrative examples, confirming the practical validity of the uniqueness result.

References

  1. Podlubny I. Fractional Differential Equations. Academic Press; 1999. Available from: https://www.scirp.org/reference/referencespapers?referenceid=1689024
  2. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Elsevier; 2006;1–523. Available from: https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/204
  3. Sun HG, Chen W, Chen YQ. Variable-order fractional differential operators in anomalous diffusion modeling. Physica A. 2009;388:4586–4592. Available from: https://doi.org/10.1016/j.physa.2009.07.024
  4. Diethelm K. The Analysis of Fractional Differential Equations. Springer; 2010. Available from: https://link.springer.com/book/10.1007/978-3-642-14574-2
  5. Samko SG, Ross B. Integration and differentiation to a variable fractional order. Integral Transforms and Special Functions. 1993;1:277–300.
  6. Razminia A, Dizaji AF, Majd VJ. Solution existence for nonautonomous VO-FDEs. Mathematical and Computer Modelling. 2012;55:1106–1117.
  7. Telli B, Souid MS, Alzabut J, Khan H. Existence and uniqueness theorems for a variable-order fractional differential equation with delay. Axioms. 2023;12(4):339. Available from: https://doi.org/10.3390/axioms12040339
  8. Awad Y, Fakih H, Alkhezi Y. Existence and uniqueness of variable-order φ-Caputo fractional two-point nonlinear boundary value problem in Banach algebra. Axioms. 2023;12(10):935. Available from: https://doi.org/10.3390/axioms12100935
  9. Zoubida B, Souid MS, Günerhan HG, Rezazadeh H. Fractional differential equations of Riemann–Liouville of variable order with anti-periodic boundary conditions. Engineering Computations. Published online 2025 Feb 4. Available from: https://doi.org/10.1108/EC-01-2024-0029?urlappend=%3Futm_source%3Dresearchgate.net%26utm_medium%3Darticle
  10. Xu Y, He Z. Existence and uniqueness results for Cauchy problem of VO-FDEs. Journal of Applied Mathematics and Computing. 2013;43(1–2):295–306. Available from: https://doi.org/10.1007/s12190-013-0664-2
  11. Bai ZB. On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Analysis: Theory, Methods & Applications. 2010;72:916–924. Available from: https://doi.org/10.1016/j.na.2009.07.033
  12. Boukedroun M, Ayadi S, Chita F, Erden Ege M, Ege O, Ramaswamy R. Solutions of nonlinear fractional-order differential equation systems using a numerical technique. Axioms. 2025;14(4):233. Available from: https://doi.org/10.3390/axioms14040233
  13. Naik PA, Naveen S, Parthiban V, Qureshi S, Alquran M, Senol M. Advancing Lotka–Volterra system simulation with variable fractional order Caputo derivative for enhanced dynamic analysis. Journal of Applied Analysis & Computation. 2025;15:1002–1019. Available from: https://doi.org/10.11948/20240243
  14. Benchohra M, Hamani S, Ntouyas SK. BVPs for differential equations with fractional order. Surveys in Mathematics and its Applications. 2008;3:1–12. Available from: https://www.utgjiu.ro/math/sma/v03/p01.pdf
  15. Stempin P, Sumelka W. Approximation of fractional Caputo derivative of variable order and variable terminals with application to initial/BVPs. Fractal and Fractional. 2025;9(5):269. Available from: https://doi.org/10.3390/fractalfract9050269
 

Help ?