A Uniqueness Result for a Coupled System of Elliptic PDEs
ISSN: 2689-7636
Annals of Mathematics and Physics
Short Communication       Open Access      Peer-Reviewed

A Uniqueness Result for a Coupled System of Elliptic PDEs

Alexander G Ramm*

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA

*Corresponding authors: Alexander G Ramm, Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA, E-mail: [email protected]
Received: 04 April, 2025 | Accepted: 15 April, 2025 | Published: 16 April, 2025
Keywords: Elliptic systems of PDE

Cite this as

Ramm AG. A Uniqueness Result for a Coupled System of Elliptic PDEs. Ann Math Phys. 2025;8(2):071-072. Available from: 10.17352/amp.000148

Copyright Licence

© 2025 Ramm AG. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Let D 3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaadseacqGHckcZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risLqbaoaaCaaaleqabaqcLbsacaaIZaaaaaaa@41CE@ be a bounded domain with a smooth boundary S,

Lu+av=0, bu+Mv=0inD, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaadYeacaWG1bGaey4kaSIaamyyaiaadAhacaaI9aGaaGimaiaaiYcacaqGGaGaeyOeI0IaamOyaiaadwhacqGHRaWkcaWGnbGaamODaiaai2dacaaIWaGaaGjcVlaayIW7caqGPbGaaeOBaiaayIW7caaMi8UaamiraiaaiYcaaaa@4A51@

u=v=0 on S. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaadwhacaaI9aGaamODaiaai2dacaaIWaGaaGjcVlaabccacaaMi8Uaae4Baiaab6gacaqGGaGaaGjcVlaayIW7caWGtbGaaGOlaaaa@4185@

Assume that L and M are positive elliptic Dirichlet operators of second order, a > 0 and b > 0 are constants. We prove that under these assumptions, the unique solution is u = v = 0 in D.

1. Introduction

Lu+av=0inD,      (1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaadYeacaWG1bGaey4kaSIaamyyaiaadAhacaaI9aGaaGimaiaayIW7caaMi8UaaeyAaiaab6gacaaMi8UaaGjcVlaadseacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGPaaaaa@47D7@

bu+Mv=0inD,      (2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiabgkHiTiaadkgacaWG1bGaey4kaSIaamytaiaadAhacaaI9aGaaGimaiaayIW7caaMi8UaaeyAaiaab6gacaaMi8UaaGjcVlaadseacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabkdacaqGPaaaaa@48C7@

u=v=0onS,       (3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaadwhacaaI9aGaamODaiaai2dacaaIWaGaaGjcVlaayIW7caqGVbGaaeOBaiaayIW7caaMi8Uaam4uaiaaiYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabodacaqGPaaaaa@46BF@

Assume that L and M are second order Dirichlet elliptic operators with real-valued coefficients, the bilinear form (Lu, u) is positive-definite for u ≠ 0.

(Lu,u)>0foru 0,     (4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaiIcacaWGmbGaamyDaiaaiYcacaWG1bGaaGykaiaai6dacaaIWaGaaGjcVlaayIW7caqGMbGaae4BaiaabkhacaaMi8UaaGjcVlaadwhacuGHHjIUgaGfaiaaicdacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeinaiaabMcaaaa@4B4E@

(Mv,v)>0forv 0,      (5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaiIcacaWGnbGaamODaiaaiYcacaWG2bGaaGykaiaai6dacaaIWaGaaGjcVlaayIW7caqGMbGaae4BaiaabkhacaaMi8UaaGjcVlaadAhacuGHHjIUgaGfaiaaicdacaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabwdacaqGPaaaaa@4BF6@

a and b are constants,

a>0,b>0.     (6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaadggacaaI+aGaaGimaiaaiYcacaaMi8UaaGjcVlaayIW7caWGIbGaaGOpaiaaicdacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOnaiaabMcaaaa@427C@

Theorem 1. If assumptions (1)–(6) hold, then u = v = 0 in D.

This problem concerns the uniqueness of solutions to coupled elliptic PDE systems with variable coefficients, a fundamental topic in mathematical analysis [1]. The full problem allows a(x), b(x) to vary spatially, increasing its generality and complexity. In the general formulation, the coupling coefficients a(x) and b(x) are positive continuous functions. a = a(x) > 0 and b = b(x) > 0.

2. Proofs

Lets define the inner product (u, v) over the domain D as (u,v):= D uvdx MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGaaGOoaiaai2dajuaGdaWdraGcbeWcbaqcLbsacaWGebaaleqajugibiabgUIiYdGaamyDaiaadAhacaWGKbGaamiEaaaa@4049@ . From our assumptions one derives, multiplying (1) by u and integrating by parts, the relation:

(Lu,u)+a(v,u)=0,     (7) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaiIcacaWGmbGaamyDaiaaiYcacaWG1bGaaGykaiabgUcaRiaadggacaaIOaGaamODaiaaiYcacaWG1bGaaGykaiaai2dacaaIWaGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabEdacaqGPaaaaa@447A@

and multiplying (2) by v and integrating by parts, the relation:

b(u,v)+(Mv,v)=0.     (8) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiabgkHiTiaadkgacaaIOaGaamyDaiaaiYcacaWG2bGaaGykaiabgUcaRiaaiIcacaWGnbGaamODaiaaiYcacaWG2bGaaGykaiaai2dacaaIWaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabIdacaqGPaaaaa@456E@

Combining the previous inequalities and assumptions yields from the assumptions (4)–(6) and from the inequalities (7) and (8) one gets, which can lead to the inequality:

(v,u)0,(u,v)0.      (9) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaiIcacaWG2bGaaGilaiaadwhacaaIPaGaeyizImQaaGimaiaaiYcacaaMi8UaaGjcVlaayIW7caaIOaGaamyDaiaaiYcacaWG2bGaaGykaiabgwMiZkaaicdacaaIUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabMdacaqGPaaaaa@4B60@

As u and v are real-valued functions, it follows that, one has

(v,u)=(u,v).      (10) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaiIcacaWG2bGaaGilaiaadwhacaaIPaGaaGypaiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeimaiaabMcaaaa@427A@

Therefore

(v,u)=(u,v)=0      (11) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaiIcacaWG2bGaaGilaiaadwhacaaIPaGaaGypaiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGaaGypaiaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabgdacaqGPaaaaa@4344@

Consequently,

(Lu,u)=(Mv,v)=0.      (12) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaiIcacaWGmbGaamyDaiaaiYcacaWG1bGaaGykaiaai2dacaaIOaGaamytaiaadAhacaaISaGaamODaiaaiMcacaaI9aGaaGimaiaai6cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeymaiaabkdacaqGPaaaaa@45A0@

From (12) and our assumptions (4)–(5) it follows that u = v = 0 in D. Theorem 1 is proved. |ab| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaiYhacaWGHbGaeyOeI0IaamOyaiaaiYhaaaa@3711@

Remark. Note that in Theorem 1 there are no restrictions on the size of the constants a and b or .

It is possible to show that the solution to problem (1)–(5) with a = a(x) and b = b(x), where a(x) and b(x) are continuous functions in the closure of D and

sup xD |a(x)b(x)|<ν,      (13) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajuaGdaGfqbGcbeWcbaqcLbsacaWG4bGaeyicI4SaamiraaWcbeGcbaqcLbsaciGGZbGaaiyDaiaacchaaaGaaGiFaiaadggacaaIOaGaamiEaiaaiMcacqGHsislcaWGIbGaaGikaiaadIhacaaIPaGaaGiFaiaaiYdacqaH9oGBcaaISaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqGZaGaaeykaaaa@4D82@

where V is a sufficiently small constant, is equal to zero in D.

Let us prove this conclusion. From (1)–(2) it follows that

(Lu,u)+ S (a(x)b(x))u(x)v(x)dx+(Mv,v)=0.     (14) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaiIcacaWGmbGaamyDaiaaiYcacaWG1bGaaGykaiabgUcaRKqbaoaapebakeqaleaajugibiaadofaaSqabKqzGeGaey4kIipacaaIOaGaamyyaiaaiIcacaWG4bGaaGykaiabgkHiTiaadkgacaaIOaGaamiEaiaaiMcacaaIPaGaamyDaiaaiIcacaWG4bGaaGykaiaadAhacaaIOaGaamiEaiaaiMcacaWGKbGaamiEaiabgUcaRiaaiIcacaWGnbGaamODaiaaiYcacaWG2bGaaGykaiaai2dacaaIWaGaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqG0aGaaeykaaaa@5C15@

From (4)–(5) it follows that

(Lu,u)> c L u 2 ,(Mv,v) c M v 2 ,      (15) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaiIcacaWGmbGaamyDaiaaiYcacaWG1bGaaGykaiaai6dacaWGJbqcfa4aaSbaaSqaaKqzGeGaamitaaWcbeaarqqr1ngBPrgifHhDYfgaiqaajugibiab=vIiqjaadwhacqWFLicujuaGdaahaaWcbeqaaKqzGeGaaGOmaaaacaaISaGaaGjcVlaayIW7caaMi8UaaGikaiaad2eacaWG2bGaaGilaiaadAhacaaIPaGaam4yaKqbaoaaBaaaleaajugibiaad2eaaSqabaqcLbsacqWFLicucaWG2bGae8xjIavcfa4aaWbaaSqabeaajugibiaaikdaaaGaaGilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeynaiaabMcaaaa@5FCF@

where u 2 =(u,u). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaajugibiab=vIiqjaadwhacqWFLicujuaGdaahaaWcbeqaaKqzGeGaaGOmaaaacaaI9aGaaGikaiaadwhacaaISaGaamyDaiaaiMcacaGGUaaaaa@41A6@

From our assumption (13) it follows that

| S (a(x)b(x))u(x)v(x)dx|νuv.      (16) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaiYhajuaGdaWdraGcbeWcbaqcLbsacaWGtbaaleqajugibiabgUIiYdGaaGikaiaadggacaaIOaGaamiEaiaaiMcacqGHsislcaWGIbGaaGikaiaadIhacaaIPaGaaGykaiaadwhacaaIOaGaamiEaiaaiMcacaWG2bGaaGikaiaadIhacaaIPaGaamizaiaadIhacaaI8bGaeyizImQaeqyVd4weeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaamyDaiab=vIiqjaayIW7cqWFLicucaWG2bGae8xjIaLaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeOnaiaabMcaaaa@61BC@

From (14)–(16) one derives:

0> c L u 2 + c M v 2 νuv.     (17) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaaicdacaaI+aGaam4yaKqbaoaaBaaaleaajugibiaadYeaaSqabaqeeuuDJXwAKbsr4rNCHbaceaqcLbsacqWFLicucaWG1bGae8xjIavcfa4aaWbaaSqabeaajugibiaaikdaaaGaey4kaSIaam4yaKqbaoaaBaaaleaajugibiaad2eaaSqabaqcLbsacqWFLicucaWG2bGae8xjIavcfa4aaWbaaSqabeaajugibiaaikdaaaGaeyOeI0IaeqyVd4Mae8xjIaLaamyDaiab=vIiqjaayIW7cqWFLicucaWG2bGae8xjIaLaaGOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabgdacaqG3aGaaeykaaaa@5C3B@

Choosing ν< c L + c M MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiabe27aUjaaiYdacaWGJbqcfa4aaSbaaSqaaKqzGeGaamitaaWcbeaajugibiabgUcaRiaadogajuaGdaWgaaWcbaqcLbsacaWGnbaaleqaaaaa@3C55@ , ensures that inequality (17) leads to u=v=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaajugibiab=vIiqjaadwhacqWFLicucaaI9aGae8xjIaLaamODaiab=vIiqjaai2dacaaIWaaaaa@3F93@ , so u=v=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadAhacaaI9aGaaGimaaaa@35F9@ in D MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaacaWGebaaaa@3285@ .

Open problem: We pose the following open question: Does the conclusion of Theorem 1 remain valid if the assumption that a,b are constants is replaced by the assumption a=a(x)0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaadggacaaI9aGaamyyaiaaiIcacaWG4bGaaGykaiabgwMiZkaaicdaaaa@39C0@ that  and b=b(x)0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGabiWadaaakeaajugibiaadkgacaaI9aGaamOyaiaaiIcacaWG4bGaaGykaiabgwMiZkaaicdaaaa@39C2@  are continuous functions?

3. Conclusion

This result confirms that no non-trivial solution exists under constant coupling terms, contributing to PDE theory. Representing a coupled elliptic system with Dirichlet boundary conditions (1)–(3). The basic assumptions are: a > 0 and b > 0 are constants, L and M are positive elliptic operators such that (Lu, u) = 0 implies u =0, and (Mv, v) = 0 implies v = 0.

This result contributes to the broader understanding of stability and uniqueness in PDE modeling across physics and engineering.

  1. Ramm AG. Three open problems in analysis [Internet]. 2006 [cited 2025 Apr 15]. Available from: https://arxiv.org/pdf/math/0603631
  2. Ramm AG. Analysis of the Navier-Stokes problem. Solution of a millennium problem. 2nd ed. Cham: Springer; 2023 [cited 2025 Apr 15]. Available from: https://dokumen.pub/analysis-of-the-navier-stokes-problem-solution-of-a-millennium-problem-2nbsped-3031307224-9783031307225.html
  3. Ramm AG. Solution of the millennium problem related to the Navier-Stokes equations. Lobachevskii J Math [Internet]. 2024;45(8):3726–35 [cited 2025 Apr 15]. Available from: https://link.springer.com/article/10.1134/S1995080224604375
 

Order for reprints


Article Alerts

Subscribe to our articles alerts and stay tuned.

Subscribe Now!
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.



Help ?