Common Fixed Point Theorems via Measure of Noncompactness
ISSN: 2689-7636
Annals of Mathematics and Physics
Research Article       Open Access      Peer-Reviewed

Common Fixed Point Theorems via Measure of Noncompactness

Alireza Valipour Baboli*

Department of Mathematics Education, Faculty of Mathematics, Teachers University, Mazandaran Province, Iran

*Corresponding authors: Alireza Valipour Baboli, Department of Mathematics Education, Faculty of Mathematics, Teachers University, Mazandaran Province, Iran, E-mail: [email protected]
Received: 07 November, 2024 | Accepted: 30 December, 2024 | Published: 31 December, 2024
Keywords: Common fixed point theorem; The Kuratowski measure of noncompactness; Commuting map; Darbo's contraction conditions

Cite this as

Baboli AV. Common Fixed Point Theorems via Measure of Noncompactness. Ann Math Phys. 2024;7(3):314-321. Available from: 10.17352/amp.000138

Copyright Licence

© 2024 Baboli AV. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

In this paper, by applying the measure of noncompactness a common fixed point for the maps T and S is obtained, where T and S are self-maps continuous, commuting continuously on a closed convex subset C of a Banach space E and also S is a linear map. Then as an application, the existence of a solution of an integral equation is shown.

1. Introduction

The compactness plays an essential role in the Schauder's fixed point theorem and however, there are some important problems where the operators are not compact. G. Darbo in 1955 [1], extended the Schauder theorem to noncompact operators . The main aim of their study is to define a new class of operators that map any bounded set to a compact set. The first measure of noncompactness was defined and studied by Kuratowski [2] in 1930.

Suppose (X, d) be a metric space the Kuratowski measure of noncompactness of a subset

A ⊂ X defined as

μ( A )=inf{ δ>0;A= i=1 n A i for some  A i  with diam( A i )δ for 1in< }       (1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabeY7aTPWaaeWaa8aabaqcLbsapeGaamyqaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWGPbGaamOBaiaadAgakmaacmaapaqaaKqzGeWdbiabes7aKjabg6da+iaaicdacaGG7aGaamyqaiabg2da9OWaambmaeaajugibiaadgeak8aadaWgaaWcbaqcLbsapeGaamyAaaWcpaqabaaapeqaaKqzGeGaamyAaiabg2da9iaaigdaaSqaaKqzGeGaamOBaaGaeSOkIufacaWGMbGaam4BaiaadkhacaGGGcGaam4Caiaad+gacaWGTbGaamyzaiaacckacaWGbbGcpaWaaSbaaSqaaKqzGeWdbiaadMgaaSWdaeqaaKqzGeWdbiaacckacaWG3bGaamyAaiaadshacaWGObGaaiiOaiaadsgacaWGPbGaamyyaiaad2gakmaabmaapaqaaKqzGeWdbiaadgeak8aadaWgaaWcbaqcLbsapeGaamyAaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHKjYOcqaH0oazcaGGGcGaamOzaiaad+gacaWGYbGaaiiOaiaaigdacqGHKjYOcaWGPbGaeyizImQaamOBaiabgYda8iabg6HiLcGccaGL7bGaayzFaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqGXaGaaeykaaaa@876F@

where diam (A) denotes the diameter of a set A ⊂ X namely

diam( A )=sup{ d( x,y );x,y A }. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGKbGaamyAaiaadggacaWGTbWaaeWaa8aabaWdbiaadgeaaiaawIcacaGLPaaacqGH9aqpciGGZbGaaiyDaiaacchadaGadaWdaeaapeGaamizamaabmaapaqaa8qacaWG4bGaaiilaiaadMhaaiaawIcacaGLPaaacaGG7aGaamiEaiaacYcacaWG5bGaaiiOaiabgIGiolaadgeaaiaawUhacaGL9baacaGGUaaaaa@5144@

Also, in recent years measures of noncompactness have been used to define new geometrical properties of Banach spaces which are interesting for fixed point theory [3]. In this paper first, some essential concepts and results concerning the measure of noncompactness are called [4-7]. In the second section, a common fixed point for the maps T and S where T and S are self-map continuous, commuting continuous on a closed convex subset C of a Banach space E and also S is a linear map is shown. In the third section, we apply our result to obtain a coupled fixed point [8-11] . Finally by applying our results a solution of an integral equation is obtained [12-15].

Now, we recall some basic facts concerning measures of noncompactness. Suppose R denotes the set of real numbers and put R + =[0,) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGsbWdamaaBaaaleaapeGaey4kaScapaqabaGcpeGaeyypa0Jaai4waiaaicdacaGGSaGaeyOhIuQaaiykaaaa@3FBF@ and let (E, . ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGOaGaamyraiaacYcadaqbdaqaaiaac6caaiaawMa7caGLkWoacaGGPaaaaa@3ED1@ be a Banach space. The symbol X ¯ , Conv X MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaaraaeaaaaaaaaa8qacaGGSaGaaiiOaiaadoeacaWGVbGaamOBaiaadAhacaGGGcGaamiwaaaa@4099@ will denote the closure and closed convex hull of a subset X of E , respectively. Moreover, let indicate the family of all nonempty and bounded subsets of E and indicate the family of all nonempty and relatively compact subsets.

We begin by recalling some needed definitions and results.

Definition 1.1 A mapping μ: M E R +   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBcaGG6aWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Xa8n9aadaWgaaWcbaWdbiaadweaa8aabeaak8qacqGHsgIRcaWGsbWdamaaBaaaleaapeGaey4kaSIaaiiOaiaacckaa8aabeaaaaa@4EAE@ is said to be a measure of noncompactness in E if it satisfies the following conditions:

The family kerμ={ X M E :μ( X )=0 } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaciGGRbGaaiyzaiaackhacqaH8oqBcqGH9aqpdaGadaWdaeaapeGaamiwaiabgIGioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFmaFtpaWaaSbaaSqaa8qacaWGfbaapaqabaGcpeGaaiOoaiabeY7aTnaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaGaeyypa0JaaGimaaGaay5Eaiaaw2haaaaa@56E8@ is‎ nonempty and kerμ   N E   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaciGGRbGaaiyzaiaackhacqaH8oqBcaGGGcGaeyOHI0SaaiiOamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFnaVtpaWaaSbaaSqaa8qacaWGfbaapaqabaGcpeGaaiiOaaaa@4FE7@ .‎

2. XYμ(X)μ(Y) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybGaeyOGIWSaamywaiabgkDiElabeY7aTjaacIcacaWGybGaaiykaiabgsMiJkabeY7aTjaacIcacaWGzbGaaiykaaaa@47C7@ .

3. μ( X ¯ )=μ(X) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaaceWGybGbaebaa8qacaGLOaGaayzkaaGaeyypa0JaeqiVd0MaaiikaiaadIfacaGGPaaaaa@416A@ . 4. μ( Conv X )=μ(X) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaam4qaiaad+gacaWGUbGaamODaiaacckacaWGybaacaGLOaGaayzkaaGaeyypa0JaeqiVd0MaaiikaiaadIfacaGGPaaaaa@4620@ . 5. μ( λX+( 1λ )Y ) λ μ( X )+(1λ)μ(Y) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaeq4UdWMaamiwaiabgUcaRmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeq4UdWgacaGLOaGaayzkaaGaamywaaGaayjkaiaawMcaaiabgsMiJkaacckacqaH7oaBcaGGGcGaeqiVd02aaeWaa8aabaWdbiaadIfaaiaawIcacaGLPaaacqGHRaWkcaGGOaGaaGymaiabgkHiTiabeU7aSjaacMcacqaH8oqBcaGGOaGaamywaiaacMcaaaa@5848@ for λ [0,1] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH7oaBcaGGGcGaeyicI4Saai4waiaaicdacaGGSaGaaGymaiaac2faaaa@4066@ . 6. If { X n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaGadaWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOWdbiaawUhacaGL9baaaaa@3CB9@ is a sequence of closed sets from M E MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHXgaruqtLjNCPDxzHrhALjharmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlf9irVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaiaabiWacmaadaGabiaaeaGaauaaaOqaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiyaajugibabaaaaaaaaapeGae8hdW3ucfa4damaaBaaaleaajug4a8qacaWGfbaal8aabeaaaaa@47CA@ such that X n+1   X n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybWdamaaBaaaleaapeGaamOBaiabgUcaRiaaigdaa8aabeaak8qacqGHckcZcaGGGcGaamiwa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaaa@4150@ for n=1,2, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGUbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiabgAci8caa@3E83@ , and if lim n μ( X n )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaqaaaaaaaaaWdbiGacYgacaGGPbGaaiyBaaWcpaqaa8qacaWGUbGaeyOKH4QaeyOhIukapaqabaGcpeGaeqiVd02aaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaWGUbaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@4729@ , then

X = n=1 X n 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybWdamaaBaaaleaapeGaeyOhIukapaqabaGcpeGaeyypa0ZaaqbCaeaacaWGybWaaSbaaSqaaiaad6gaaeqaaaqaaiaad6gacqGH9aqpcaaIXaaabaGaeyOhIukaniablMIijbGccqGHGjsUcaaIWaaaaa@4655@

Theorem 1.1 (Schauder [9]) Let C be a closed and convex subset of a Banach space E. Then every compact and continuous map has at least one fixed point.

In 1955, G. Darbo [1] used the measure of noncompactness to generalize Schauder's theorem to a wide class of operators, called k-set contractive operators, which satisfy the following condition

μ( T( A ) )kμ(A) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamivamaabmaapaqaa8qacaWGbbaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyizImQaam4AaiabeY7aTjaacIcacaWGbbGaaiykaaaa@4544@

for some k[0,1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGRbGaeyicI4Saai4waiaaicdacaGGSaGaaGymaiaacMcaaaa@3E4A@ . In 1967 Sadovskii generalized Darbo's theorem to set-condensing operators [16,17].

Definition 1.2 Let E1 and E2 be two Banach spaces and µ1 and µ2 be arbitrary measures of noncompactness on E1 and E2 respectively [5] . An operator T from E1 to E2 is called a (µ1, µ2) condensing operator if it is continuous and for every bounded noncompact set Ω E 1   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqqHPoWvcqGHckcZcaWGfbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacckaaaa@3ECC@ the following inequality holds

μ 2 ( T( Ω ) )< μ 1 ( Ω ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeWaaeWaa8aabaWdbiaadsfadaqadaWdaeaapeGaeuyQdCfacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyipaWJaeqiVd02damaaBaaaleaapeGaaGymaaWdaeqaaOWdbmaabmaapaqaa8qacqqHPoWvaiaawIcacaGLPaaacaGGUaaaaa@4893@

The following lemmas and theorems from [16-18] are necessary for the main results.

Theorem 1.2 (Darbo's fixed point theorem) Let Ω be a nonempty, bounded, closed, and convex subset of a Banach space E and let  T:ΩΩ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaamivaiaacQdacqqHPoWvcqGHsgIRcqqHPoWvaaa@3FE9@ be a continuous mapping such that there exists a constant k[ 0,1 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGRbGaeyicI48aaKGea8aabaWdbiaaicdacaGGSaGaaGymaaGaay5waiaawMcaaaaa@3EB0@ with the property [18].

  μ( TX )kμ( X ); MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaaiiOaiabeY7aTnaabmaapaqaa8qacaWGubGaamiwaaGaayjkaiaawMcaaiabgsMiJkaadUgacqaH8oqBdaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiaacUdaaaa@4720@

For any nonempty subset X of Ω Then T has a fixed point in the set Ω.

Lemma 1.3 For every nondecreasing and upper semicontinuous function φ:  R +   R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAcaGG6aGaaiiOaiaadkfapaWaaSbaaSqaa8qacqGHRaWka8aabeaak8qacaGGGcGaeyOKH4QaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaaaa@4315@ The following two conditions are equivalent:

i.   lim n φ n ( t )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcWdamaaxababaWdbiGacYgacaGGPbGaaiyBaaWcpaqaa8qacaWGUbGaeyOKH4QaeyOhIukapaqabaGcpeGaeqOXdO2damaaCaaaleqabaWdbiaad6gaaaGcdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@4871@ for any t>0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bGaeyOpa4JaaGimaaaa@3AE0@ .

ii. φ( t )<t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgYda8iaadshaaaa@3E80@ for any t>0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bGaeyOpa4JaaGimaaaa@3AE0@ .

The following theorem is an extension of Darbo's fixed point theorem.

Theorem 1.4 [7] Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and T:C C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaaiOoaiaadoeacaGGGcGaeyOKH4Qaam4qaaaa@3E5D@ be a continuous operator satisfying

μ( T( X ) )φ(μ( X ))       (2) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamivamaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyizImQaeqOXdOMaaiikaiabeY7aTnaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaGaaiykaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaaeOmaiaabMcaaaa@4E68@

for any subset X of C, where µ is an arbitrary measure of noncompactness and φ: R +   R +   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAcaGG6aGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiaacckacqGHsgIRcaWGsbWdamaaBaaaleaapeGaey4kaScapaqabaGcpeGaaiiOaaaa@432F@ is a nondecreasing and upper semicontinuous function such that φ( t )<t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgYda8iaadshaaaa@3E80@ for all t>0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bGaeyOpa4JaaGimaaaa@3AE0@ . Then T has at least one fixed point.

2. Common fixed point

Theorem 2.1 Let C be a nonempty, bounded, closed, and convex subset of a Banach space E.

and let T,s:CC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaaiilaiaadohacaGG6aGaam4qaiabgkziUkaadoeaaaa@3EE1@ be continuous operators and S be a linear operator such  S( T( X ) )T(X) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaam4uamaabmaapaqaa8qacaWGubWaaeWaa8aabaWdbiaadIfaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHgksZcaWGubGaaiikaiaadIfacaGGPaaaaa@4437@ that and also

μ( T( X ) )φ(max{ μ( X ),μ(S( X )) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamivamaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyizImQaeqOXdOMaaiikaiGac2gacaGGHbGaaiiEamaacmaapaqaa8qacqaH8oqBdaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiaacYcacqaH8oqBcaGGOaGaam4uamaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaGaaiykaaGaay5Eaiaaw2haaiaacMcaaaa@5427@

for each XC  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybGaeyOHI0Saam4qaiaacckaaaa@3CEF@ , where µ is an arbitrary measure of noncompactness and φ:  R +   R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAcaGG6aGaaiiOaiaadkfapaWaaSbaaSqaa8qacqGHRaWka8aabeaak8qacaGGGcGaeyOKH4QaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaaaa@4315@ is a nondecreasing function such that φ( t )<t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgYda8iaadshaaaa@3E80@ for each t>0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bGaeyOpa4JaaGimaaaa@3AE0@ and φ( 0 )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3E04@ . Then T, S have a common fixed point in C.

Proof. Set

C 0 =C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9iaadoeaaaa@3BE9@

And

  C 1 =Conv T C 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWGdbGaam4Baiaad6gacaWG2bGaaiiOaiaadsfacaWGdbWdamaaBaaaleaapeGaaGimaaWdaeqaaaaa@43C9@

in general‎, ‎set

C n =Conv T C n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiabg2da9iaadoeacaWGVbGaamOBaiaadAhacaGGGcGaamivaiaadoeapaWaaSbaaSqaa8qacaWGUbGaeyOeI0IaaGymaaWdaeqaaaaa@44BE@

For n = 1,2, …

Then we have

C n C n1  and S( C n ) C n  (*) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiabgkOimlaadoeapaWaaSbaaSqaa8qacaWGUbGaeyOeI0IaaGymaaWdaeqaaOWdbiaacckacaWGHbGaamOBaiaadsgacaGGGcGaam4uamaabmaapaqaa8qacaWGdbWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgkOimlaadoeapaWaaSbaaSqaa8qacaWGUbaapaqabaacbmGcpeGaa8hOaiaacIcacaWFQaGaaiykaaaa@513C@

‎for ever n = 1,2,3, …

Indeed it is clear that C 1    C 0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacckacqGHckcZcaGGGcGaam4qa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@403C@ and ‎ S( C 1 )    Conv ( ST( C 0 ) )   Conv ( T( C 0 ) )= C 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGtbWaaeWaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaaiiOaiaacckacaGGGcGaeyOGIWSaaiiOaiaadoeacaWGVbGaamOBaiaadAhacaGGGcWaaeWaa8aabaWdbiaadofacaWGubWaaeWaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiiOaiaacckacqGHckcZcaGGGcGaam4qaiaad+gacaWGUbGaamODaiaacckadaqadaWdaeaapeGaamivamaabmaapaqaa8qacaWGdbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaayjkaiaawMcaaiabg2da9iaadoeapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaa@6225@ .

‎So () holds for n = 1.

Assuming now that () is true for n 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGUbGaaiiOaiabgwMiZkaaigdaaaa@3CBD@ .

Then

C n+1 =Conv( T( C n ) )Conv( T( T n1 ) )= C n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbWdamaaBaaaleaapeGaamOBaiabgUcaRiaaigdaa8aabeaak8qacqGH9aqpcaWGdbGaam4Baiaad6gacaWG2bWaaeWaa8aabaWdbiaadsfadaqadaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHckcZcaWGdbGaam4Baiaad6gacaWG2bWaaeWaa8aabaWdbiaadsfadaqadaWdaeaapeGaamiva8aadaWgaaWcbaWdbiaad6gacqGHsislcaaIXaaapaqabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyypa0Jaam4qa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaaa@57CB@

And

S( C n+1 )=S(Conv( T( C n ) ))Conv(S( T( C n ) ))ConvT( C n )= C n+1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGtbGaaiikaiaadoeapaWaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaOWdbiaacMcacqGH9aqpcaWGtbGaaiikaiaadoeacaWGVbGaamOBaiaadAhadaqadaWdaeaapeGaamivamaabmaapaqaa8qacaWGdbWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaayjkaiaawMcaaiaacMcacqGHckcZcaWGdbGaam4Baiaad6gacaWG2bGaaiikaiaadofadaqadaWdaeaapeGaamivamaabmaapaqaa8qacaWGdbWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaayjkaiaawMcaaiaacMcacqGHckcZcaWGdbGaam4Baiaad6gacaWG2bGaamivamaabmaapaqaa8qacaWGdbWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9iaadoeapaWaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaaa@6898@

‎We obtain

C 0   C 1    C 2  . MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgEOiklaacckacaWGdbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacckacqGHhkIYcaGGGcGaam4qa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHhkIYcaGGGcGaeyOjGWRaaiOlaaaa@4AD7@

Now if there exists an integer N0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGobGaeyyzImRaaGimaaaa@3B78@ such that μ( C N )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaad6eaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@3F52@ , then CN is relatively compact and since T C N  Conv T C N+1   C N MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaam4qa8aadaWgaaWcbaWdbiaad6eaa8aabeaak8qacaGGGcGaeyOHI0Saam4qaiaad+gacaWGUbGaamODaiaacckacaWGubGaam4qa8aadaWgaaWcbaWdbiaad6eacqGHRaWkcaaIXaaapaqabaGcpeGaaiiOaiabgAOinlaadoeapaWaaSbaaSqaa8qacaWGobaapaqabaaaaa@4C9F@ , thus Schauder's fixed point theorem implies that T has a fixed point. So we assume that μ( C n )0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOWdbiaawIcacaGLPaaacqGHLjYScaaIWaaaaa@4032@ for n0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGUbGaeyyzImRaaGimaaaa@3B98@ . By assumptions we have

μ( C n+1 )=μ(Conv T C n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaad6gacqGHRaWkcaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0JaeqiVd0MaaiikaiaadoeacaWGVbGaamOBaiaadAhacaGGGcGaamivaiaadoeapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaaiykaaaa@4B3A@

=μ(T C n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpcqaH8oqBcaGGOaGaamivaiaadoeapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaaiykaaaa@3F42@

 φ(max{ μ( T C n ),μ(ST C n ) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcaGGGcGaeqOXdOMaaiikaiGac2gacaGGHbGaaiiEamaacmaapaqaa8qacqaH8oqBdaqadaWdaeaapeGaamivaiaadoeapaWaaSbaaSqaa8qacaWGUbaapaqabaaak8qacaGLOaGaayzkaaGaaiilaiabeY7aTjaacIcacaWGtbGaamivaiaadoeapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaaiykaaGaay5Eaiaaw2haaiaacMcaaaa@513D@

φ(μ(T C n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcqaHgpGAcaGGOaGaeqiVd0MaaiikaiaadsfacaWGdbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacMcaaaa@425A@

μ(T C n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcqaH8oqBcaGGOaGaamivaiaadoeapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaaiykaaaa@3FF1@

μ( C n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcqaH8oqBcaGGOaGaam4qa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGGPaaaaa@3F18@

which implies that μ( C n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBcaGGOaGaam4qa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGGPaaaaa@3D63@ is a positive decreasing sequence of real numbers thus, there is an r0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGYbGaeyyzImRaaGimaaaa@3B9C@ so that μ( C n )r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBcaGGOaGaam4qa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGGPaGaeyOKH4QaamOCaaaa@4047@ as n .  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGUbGaeyOKH4QaeyOhIuQaaiiOaiaac6cacaGGGcaaaa@3F70@ We show that r = 0 . Suppose, in the contrary, that r0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGYbGaeyyzImRaaGimaaaa@3B9C@ . Then we have

μ( C n+1 )=μ(Conv T C n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaad6gacqGHRaWkcaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0JaeqiVd0MaaiikaiaadoeacaWGVbGaamOBaiaadAhacaGGGcGaamivaiaadoeapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaaiykaaaa@4B3A@

=μ(T C n ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpcqaH8oqBcaGGOaGaamivaiaadoeapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaaiykaaaa@3F42@

 φ(μ( T C n )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcaGGGcGaeqOXdOMaaiikaiabeY7aTnaabmaapaqaa8qacaWGubGaam4qa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOWdbiaawIcacaGLPaaacaGGPaaaaa@447A@

φ(μ( C n )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcqaHgpGAcaGGOaGaeqiVd02aaeWaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaWGUbaapaqabaaak8qacaGLOaGaayzkaaGaaiykaaaa@427D@

=φ(μ( Conv T C n1 )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpcqaHgpGAcaGGOaGaeqiVd02aaeWaa8aabaWdbiaadoeacaWGVbGaamOBaiaadAhacaGGGcGaamivaiaadoeapaWaaSbaaSqaa8qacaWGUbGaeyOeI0IaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacMcaaaa@491D@

φ(μ( T C n1 )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcqaHgpGAcaGGOaGaeqiVd02aaeWaa8aabaWdbiaadsfacaWGdbWdamaaBaaaleaapeGaamOBaiabgkHiTiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaGGPaaaaa@44FE@

φ 2 (μ( C n1 )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcqaHgpGApaWaaWbaaSqabeaapeGaaGOmaaaakiaacIcacqaH8oqBdaqadaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaad6gacqGHsislcaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaaiykaaaa@4537@

.

.

.

φ n ( μ( C 0 ) ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcqaHgpGApaWaaWbaaSqabeaapeGaamOBaaaakmaabmaapaqaa8qacqaH8oqBdaqadaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGUaaaaa@448E@

By Lemma 1.3 and assumption with choose μ( C 0 )=t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcaWG0baaaa@3F78@ , we have

r= lim n μ( C n+1 )  lim n φ n ( μ( C 0 ) )= lim n φ n ( t )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGYbGaeyypa0ZdamaaxababaWdbiGacYgacaGGPbGaaiyBaaWcpaqaa8qacaWGUbGaeyOKH4QaeyOhIukapaqabaGcpeGaeqiVd02aaeWaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgsMiJkaacckapaWaaCbeaeaapeGaciiBaiaacMgacaGGTbaal8aabaWdbiaad6gacqGHsgIRcqGHEisPa8aabeaak8qacqaHgpGApaWaaWbaaSqabeaapeGaamOBaaaakmaabmaapaqaa8qacqaH8oqBdaqadaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqppaWaaCbeaeaapeGaciiBaiaacMgacaGGTbaal8aabaWdbiaad6gacqGHsgIRcqGHEisPa8aabeaak8qacqaHgpGApaWaaWbaaSqabeaapeGaamOBaaaakmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@6DD7@

for any t > 0.‎

So r = 0 and hence μ( C n )0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBcaGGOaGaam4qa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGGPaGaeyOKH4QaaGimaaaa@400A@ as  n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaamOBaiabgkziUkabg6HiLcaa@3D9A@ . Since C n+1   C n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbWdamaaBaaaleaapeGaamOBaiabgUcaRiaaigdaa8aabeaak8qacaGGGcGaeyOHI0Saam4qa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaaa@412B@ and  T C n   C n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaamivaiaadoeapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaaiiOaiabgAOinlaadoeapaWaaSbaaSqaa8qacaWGUbaapaqabaaaaa@418B@ for all n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGUbGaeyyzImRaaGymaaaa@3B99@ , then from (6),   C = n=1 C n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaam4qa8aadaWgaaWcbaWdbiabg6HiLcWdaeqaaOWdbiabg2da9maauadabaGaam4qa8aadaWgaaWcbaWdbiaad6gaa8aabeaaa8qabaGaamOBaiabg2da9iaaigdaaeaacqGHEisPa0GaeSykIKeaaaa@44C2@ is a nonempty convex closed set, and C C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbWdamaaBaaaleaapeGaeyOhIukapaqabaGcpeGaeyOGIWSaam4qaaaa@3D96@ . Moreover, the set C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbWdamaaBaaaleaapeGaeyOhIukapaqabaaaaa@3AB8@ is invariant under the operator T and belongs to ker µ. Thus, applying Schauder's fixed point theorem, T has a fixed point. Now, suppose that F T ={ xC:Tx=x } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbWdamaaBaaaleaapeGaamivaaWdaeqaaOWdbiabg2da9maacmaapaqaa8qacaWG4bGaeyicI4Saam4qaiaacQdacaWGubGaamiEaiabg2da9iaadIhaaiaawUhacaGL9baaaaa@4573@ . The set FT is closed by the continuity of T, by the assumption we have S F T    F T MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGtbGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacqGHckcZcaGGGcGaaiiOaiaadAeapaWaaSbaaSqaa8qacaWGubaapaqabaaaaa@4157@ then Sx is a fixed point of T for any x F T MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyicI4SaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaaaaa@3CA4@ and

μ( F T )=μ( T F T )φ(max{ μ( F T ),μ(S F T ) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcqaH8oqBdaqadaWdaeaapeGaamivaiaadAeapaWaaSbaaSqaa8qacaWGubaapaqabaaak8qacaGLOaGaayzkaaGaeyizImQaeqOXdOMaaiikaiGac2gacaGGHbGaaiiEamaacmaapaqaa8qacqaH8oqBcaGGOaGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacaGGPaGaaiilaiabeY7aTjaacIcacaWGtbGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacaGGPaaacaGL7bGaayzFaaGaaiykaaaa@5AB5@

=φ(μ( F T )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpcqaHgpGAcaGGOaGaeqiVd02aaeWaa8aabaWdbiaadAeapaWaaSbaaSqaa8qacaWGubaapaqabaaak8qacaGLOaGaayzkaaGaaiykaaaa@41B7@

<μ( F T ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH8aapcqaH8oqBcaGGOaGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacaGGPaaaaa@3E50@

then μ( F T )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@3F5B@ and have FT is compact.

Then by Schauder's fixed point theorem, we deduce that S has a fixed point and set F( S )={ xC, Sx=x } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbWaaeWaa8aabaWdbiaadofaaiaawIcacaGLPaaacqGH9aqpdaGadaWdaeaapeGaamiEaiabgIGiolaadoeacaGGSaGaaiiOaiaadofacaWG4bGaeyypa0JaamiEaaGaay5Eaiaaw2haaaaa@47BB@ is closed by the continuity of S. Also, since S F T    F T MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGtbGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacaGGGcGaaiiOaiabgkOimlaadAeapaWaaSbaaSqaa8qacaWGubaapaqabaaaaa@4157@ by Schauder's fixed point theorem, we have Tx is a fixed point of S for each x F S MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyicI4SaamOra8aadaWgaaWcbaWdbiaadofaa8aabeaaaaa@3CA3@ . Since F T F S   F T C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbWdamaaBaaaleaapeGaamivaaWdaeqaaOWaaqbaaeaapeGaamOra8aadaWgaaWcbaWdbiaadofaa8aabeaaaeqabeqdcqWIPissaOWdbiaacckacqGHgksZcaWGgbWdamaaBaaaleaapeGaamivaaWdaeqaaOWdbiabgkOimlaadoeaaaa@45A3@ is a compact subset, then T,s: F T   F S      F T   F S   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaaiilaiaadohacaGG6aGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacaGGGcWaaqbaaeaacaWGgbWdamaaBaaaleaapeGaam4uaaWdaeqaaaWdbeqabeqdcqWIPissaOGaaiiOaiaacckacaGGGcGaeyOKH4QaaiiOaiaadAeapaWaaSbaaSqaa8qacaWGubaapaqabaGcpeGaaiiOamaauaaabaGaamOra8aadaWgaaWcbaWdbiaadofaa8aabeaaa8qabeqab0GaeSykIKeakiaacckaaaa@5047@ are continuous self maps, now by Schauder's fixed point theorem we have a common fixed point in C.

Corollary 2.2 Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and let T,S :CC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaaiilaiaadofacaGGGcGaaiOoaiaadoeacqGHsgIRcaWGdbaaaa@3FE5@ be continuous operators and be a linear operator such that

S( T( X ) )T(X) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGtbWaaeWaa8aabaWdbiaadsfadaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgAOinlaadsfacaGGOaGaamiwaiaacMcaaaa@4313@

‎and‎

μ( TX )k max{ μ( X ),μ( SX ) }, MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamivaiaadIfaaiaawIcacaGLPaaacqGHKjYOcaWGRbGaaiiOaiaad2gacaWGHbGaamiEamaacmaapaqaa8qacqaH8oqBdaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiaacYcacqaH8oqBdaqadaWdaeaapeGaam4uaiaadIfaaiaawIcacaGLPaaaaiaawUhacaGL9baacaGGSaaaaa@50D5@

for each XC  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybGaeyOHI0Saam4qaiaacckaaaa@3CEF@ , where µ is an arbitrary measure of noncompactness and k[0,1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGRbGaeyicI4Saai4waiaaicdacaGGSaGaaGymaiaacMcaaaa@3E4A@ . Then T, S have a common fixed point in C.

Proof. Let  φ( t )=kt MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaacckacqaHgpGAkmaabmaapaqaaKqzGeWdbiaadshaaOGaayjkaiaawMcaaKqzGeGaeyypa0Jaam4Aaiaadshaaaa@4257@ in the Theorem 2.1 .

Corollary 2.3 Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and let T,S:CC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaaiilaiaadofacaGG6aGaam4qaiabgkziUkaadoeaaaa@3EC1@ be continuous operators and S be a linear and condensing operator such that.

S(T( X ))T(X) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGtbGaaiikaiaadsfadaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiaacMcacqGHgksZcaWGubGaaiikaiaadIfacaGGPaaaaa@42C4@

and‎

μ(TX)φ(μ( X )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBcaGGOaGaamivaiaadIfacaGGPaGaeyizImQaeqOXdOMaaiikaiabeY7aTnaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaGaaiykaaaa@45F0@

For each X   C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybGaaiiOaiaacckacqGHgksZcaGGGcGaam4qaaaa@3F37@ , where µ is an arbitrary measure of noncompactness and φ  R +    R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAcaGGGcGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiaacckacqGHsgIRcaGGGcGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaaaa@437B@ is a nondecreasing function such that φ( t )<t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgYda8iaadshaaaa@3E80@ for each t0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bGaeyyzImRaaGimaaaa@3B9E@ and φ( 0 )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3E04@ . Then T, S have a common fixed point in C.

Proof. The result is followed by Definition 1.2 and Theorem 2.1.

Corollary 2.4 Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and let T,S:CC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaaiilaiaadofacaGG6aGaam4qaiabgkziUkaadoeaaaa@3EC1@ be continuous operators and S be a linear operator such that T and S be two commuting map and

μ( T( X ) )φ( max{ μ( X ),μ( S( X ) ) } ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamivamaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyizImQaeqOXdO2aaeWaa8aabaWdbiaad2gacaWGHbGaamiEamaacmaapaqaa8qacqaH8oqBdaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiaacYcacqaH8oqBdaqadaWdaeaapeGaam4uamaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGL7bGaayzFaaaacaGLOaGaayzkaaGaaiilaaaa@5576@

For each XC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybGaeyOHI0Saam4qaaaa@3BCB@ , where µ is an arbitrary measure of noncompactness and φ: R +    R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAcaGG6aGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiaacckacqGHsgIRcaGGGcGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaaaa@4315@ is a nondecreasing function such that φ( t )<t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgYda8iaadshaaaa@3E80@ for each  t0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaamiDaiabgwMiZkaaicdaaaa@3CC2@ and φ( 0 )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3E04@ . Then T, S have a common fixed point in C [19-23].

Proof. The proof is similar to the proof of Theorem 2.1.

Definition2.1 Let X be a Banach space. An operator (not necessarily linear) F:XX MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbGaaiOoaiaadIfacqGHsgIRcaWGybaaaa@3D55@ is compact if the closure of F(Y) is compact whenever YX MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGzbGaeyOGIWSaamiwaaaa@3BDC@ is bounded.

Corollary 2.5 Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and let F:CE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbGaaiOoaiaadoeacqGHsgIRcaWGfbaaaa@3D2D@ be a linear and continuous operator such that T and S be two commuting map and

FxFy φ( xy ),      (3) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqbdaqaaiaadAeacaWG4bGaeyOeI0IaamOraiaadMhaaiaawMa7caGLkWoacqGHKjYOcqaHgpGAdaqadaWdaeaapeWaauWaaeaacaWG4bGaeyOeI0IaamyEaaGaayzcSlaawQa7aaGaayjkaiaawMcaaiaacYcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGOaGaae4maiaabMcaaaa@5182@

where φ: R +   R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAcaGG6aGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiaacckacqGHsgIRcaWGsbWdamaaBaaaleaapeGaey4kaScapaqabaaaaa@41F1@ is a nondecreasing function such that   φ( t )<t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaaiiOaiabeA8aQnaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyipaWJaamiDaaaa@40C8@ for each  t0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaamiDaiabgwMiZkaaicdaaaa@3CC2@ and φ( 0 )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3E04@ . Assume that G:CE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGhbGaaiOoaiaadoeacqGHsgIRcaWGfbaaaa@3D2E@ is a compact, continuous operator. Define T( x ):=F( x )+G(x) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacaGG6aGaeyypa0JaamOramaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaey4kaSIaam4raiaacIcacaWG4bGaaiykaaaa@44DB@ and assume that T(x)C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaaiikaiaadIhacaGGPaGaeyicI4Saam4qaaaa@3DA0@ for all xC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyicI4Saam4qaaaa@3B6E@ . Then T, S have a common fixed point in C.

Proof. Let μ: M E    R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBcaGG6aWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Xa8n9aadaWgaaWcbaWdbiaadweaa8aabeaak8qacaGGGcGaeyOKH4QaaiiOaiaadkfapaWaaSbaaSqaa8qacqGHRaWka8aabeaaaaa@4EAE@ be the Kuratowski measure of noncompactness defined by (1). Moreover, assume that X is a nonempty subset of C. As ϕ is non-decreasing, from (3), we have

FxFy su p x,yX φ( xy )φ( su p x,yX  xy   ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqbdaqaaKqzGeGaamOraiaadIhacqGHsislcaWGgbGaamyEaaGccaGLjWUaayPcSdqcLbsacqGHKjYOcaWGZbGaamyDaiaadchak8aadaWgaaWcbaqcLbsapeGaamiEaiaacYcacaWG5bGaeyicI4SaamiwaaWcpaqabaqcLbsapeGaeqOXdOMcdaqadaWdaeaapeWaauWaaeaajugibiaadIhacqGHsislcaWG5baakiaawMa7caGLkWoaaiaawIcacaGLPaaajugibiabgsMiJkabeA8aQPWaaeWaa8aabaqcLbsapeGaam4CaiaadwhacaWGWbGcpaWaaSbaaSqaaKqzGeWdbiaadIhacaGGSaGaamyEaiabgIGiolaadIfaaSWdaeqaaOWaauWaaeaajugib8qacaGGGcGaamiEaiabgkHiTiaadMhaaOWdaiaawMa7caGLkWoajugib8qacaGGGcaakiaawIcacaGLPaaajugibiaacYcaaaa@7082@

‎so‎

diam( F( X ) )φ( diam( X ) ).       (4) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGKbGaamyAaiaadggacaWGTbWaaeWaa8aabaWdbiaadAeadaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgsMiJkabeA8aQnaabmaapaqaa8qacaWGKbGaamyAaiaadggacaWGTbWaaeWaa8aabaWdbiaadIfaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGUaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG0aGaaeykaaaa@534F@

By the definition of Kuratowski measure of noncompactness, for every δ>0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH0oazcqGH+aGpcaaIWaaaaa@3B8C@ , there exist A 1 ,, A n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGbbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacqGHMacVcaGGSaGaamyqa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaaa@3F1B@ such that X     i=1 n A i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIfacaGGGcGaaeiiaiabgAOinlaabccacaGGGcGcdaWeWaqaaKqzGeGaamyqaOWdamaaBaaaleaajugib8qacaWGPbaal8aabeaaa8qabaqcLbsacaWGPbGaeyypa0JaaGymaaWcbaqcLbsacaWGUbaacqWIQisvaaaa@48C1@ and diam( A i )<μ( X )+δ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadsgacaWGPbGaamyyaiaad2gakmaabmaapaqaaKqzGeWdbiaadgeak8aadaWgaaWcbaqcLbsapeGaamyAaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGH8aapcqaH8oqBkmaabmaapaqaaKqzGeWdbiaadIfaaOGaayjkaiaawMcaaKqzGeGaey4kaSIaeqiTdqgaaa@4AF7@ . As F( X )   i=1 n F( A i ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbWaaeWaa8aabaWdbiaadIfaaiaawIcacaGLPaaacaqGGaGaeyOHI0SaaeiiamaatadabaGaamOraiaacIcacaWGbbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacMcaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqWIQisvaaaa@483D@ and by assumption, ϕ is a non-decreasing function, from (4) we have

μ( F( X ) )diam(F( A i ))(φ(diam( A i ))φ(μ( X )+δ)   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaaaaaaWdbiabeY7aTnaabmaapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadIfaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHKjYOcaWGKbGaamyAaiaadggacaWGTbGaaiikaiaadAeadaqadaWdaeaapeGaamyqa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaOWdbiaawIcacaGLPaaacaGGPaGaeyizImQaaiikaiabeA8aQjaacIcacaWGKbGaamyAaiaadggacaWGTbWaaeWaa8aabaWdbiaadgeapaWaaSbaaSqaa8qacaWGPbaapaqabaaak8qacaGLOaGaayzkaaGaaiykaiabgsMiJkabeA8aQjaacIcacqaH8oqBdaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiabgUcaRiabes7aKjaacMcaa8aabaWdbiaacckaaaaa@63F8@

and‎

μ( F( X ) )φ( μ( X ) ).      (5) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamOramaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyizImQaeqOXdO2aaeWaa8aabaWdbiabeY7aTnaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiOlaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaqG1aGaaeykaaaa@4EBB@

‎On the other hand‎, ‎as G is compact‎, ‎from (5) we obtain

μ( T( X ) )=μ((F+G)(X)) μ(F( X )+G(X)) μ(F(X))+μ(G(X))φ(μ(X)). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamivamaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyypa0JaeqiVd0MaaiikaiaacIcacaWGgbGaey4kaSIaam4raiaacMcacaGGOaGaamiwaiaacMcacaGGPaGaeyizImQaaiiOaiabeY7aTjaacIcacaWGgbWaaeWaa8aabaWdbiaadIfaaiaawIcacaGLPaaacqGHRaWkcaWGhbGaaiikaiaadIfacaGGPaGaaiykaiabgsMiJkaacckacqaH8oqBcaGGOaGaamOraiaacIcacaWGybGaaiykaiaacMcacqGHRaWkcqaH8oqBcaGGOaGaam4raiaacIcacaWGybGaaiykaiaacMcacqGHKjYOcqaHgpGAcaGGOaGaeqiVd0MaaiikaiaadIfacaGGPaGaaiykaiaac6caaaa@6F5F@

Now, by Theorem 1.4, T has a fixed point in C, Now, suppose that F T ={ xC:Tx=x } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbWdamaaBaaaleaapeGaamivaaWdaeqaaOWdbiabg2da9maacmaapaqaa8qacaWG4bGaeyicI4Saam4qaiaacQdacaWGubGaamiEaiabg2da9iaadIhaaiaawUhacaGL9baaaaa@4573@ is closed by the continuity of T.

On the other hand, since S commuting with T, we see that Sx is a fixed point of T for any x F T MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyicI4SaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaaaaa@3CA4@ .

Thus S F T F T MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGtbGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacqGHckcZcaWGgbWdamaaBaaaleaapeGaamivaaWdaeqaaaaa@3F0F@ and since

μ( F T )=μ(T F T )φ(max{ μ( F T ),μ(S F T ) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcqaH8oqBcaGGOaGaamivaiaadAeapaWaaSbaaSqaa8qacaWGubaapaqabaGcpeGaaiykaiabgsMiJkabeA8aQjaacIcaciGGTbGaaiyyaiaacIhadaGadaWdaeaapeGaeqiVd02aaeWaa8aabaWdbiaadAeapaWaaSbaaSqaa8qacaWGubaapaqabaaak8qacaGLOaGaayzkaaGaaiilaiabeY7aTjaacIcacaWGtbGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacaGGPaaacaGL7bGaayzFaaGaaiykaaaa@5AB5@

=φ(μ( F T )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpcqaHgpGAcaGGOaGaeqiVd02aaeWaa8aabaWdbiaadAeapaWaaSbaaSqaa8qacaWGubaapaqabaaak8qacaGLOaGaayzkaaGaaiykaaaa@41B7@

<μ( F T ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH8aapcqaH8oqBcaGGOaGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qacaGGPaaaaa@3E50@

then μ( F T )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamOra8aadaWgaaWcbaWdbiaadsfaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@3F5B@ and have FT is compact.

Then by Schauder's fixed point theorem, we deduce that S has a fixed point and set F S ={ xC,Sx=x } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbWdamaaBaaaleaapeGaam4uaaWdaeqaaOWdbiabg2da9maacmaapaqaa8qacaWG4bGaeyicI4Saam4qaiaacYcacaWGtbGaamiEaiabg2da9iaadIhaaiaawUhacaGL9baaaaa@4563@ is closed by the continuity of S . Also, since S commutes with T, we have Tx is a fixed point of S for each x  F S MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaaiiOaiabgIGiolaadAeapaWaaSbaaSqaa8qacaWGtbaapaqabaaaaa@3DC7@ , therefore Fs is invariant by T or . Since Fs is convex closed and bounded and for any D F S MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGebGaeyOGIWSaamOra8aadaWgaaWcbaWdbiaadofaa8aabeaaaaa@3CE7@ we have

μ(T( D ))φ(max{ μ( D ),μ( S( D ) ) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBcaGGOaGaamivamaabmaapaqaa8qacaWGebaacaGLOaGaayzkaaGaaiykaiabgsMiJkabeA8aQjaacIcacaWGTbGaamyyaiaadIhadaGadaWdaeaapeGaeqiVd02aaeWaa8aabaWdbiaadseaaiaawIcacaGLPaaacaGGSaGaeqiVd02aaeWaa8aabaWdbiaadofadaqadaWdaeaapeGaamiraaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiaacMcaaaa@53EC@

φ( μ( D ) ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcqaHgpGAdaqadaWdaeaapeGaeqiVd02aaeWaa8aabaWdbiaadseaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGUaaaaa@4218@

Then by Corollary 2.4, T and S have a common fixed point in D.

Corollary 2.6 Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and let S,G:CC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGtbGaaiilaiaadEeacaGG6aGaam4qaiabgkziUkaadoeaaaa@3EB4@ be continuous operators and S be a linear operator and G be a compact operator, define T( x ):=S( x )+G(x) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacaGG6aGaeyypa0Jaam4uamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaey4kaSIaam4raiaacIcacaWG4bGaaiykaaaa@44E8@ and assume that T(x)C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaaiikaiaadIhacaGGPaGaeyicI4Saam4qaaaa@3DA0@ for all xC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyicI4Saam4qaaaa@3B6E@ , such that T and S be two commuting map. Then T, S have a common fixed point in C [2,24-27].

Proof. Since G is a compact operator, we have μ( G( C ) )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaam4ramaabmaapaqaa8qacaWGdbaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@407F@ and so μ( T( C ) )=μ(S( C )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamivamaabmaapaqaa8qacaWGdbaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyypa0JaeqiVd0MaaiikaiaadofadaqadaWdaeaapeGaam4qaaGaayjkaiaawMcaaiaacMcaaaa@4629@ so T, S have a common fixed point in C.

Example 2.1 ([7]) Let C[a,b] denote the Banach space consisting of all real-valued functions, defined and continuous on [a,b]. The space C[a,b] is furnished with the standard norm

x =max{ | x(t) |:t[a,b] } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqbdaqaaiaadIhaaiaawMa7caGLkWoacqGH9aqpcaWGTbGaamyyaiaadIhadaGadaWdaeaapeWaaqWaa8aabaWdbiaadIhacaGGOaGaamiDaiaacMcaaiaawEa7caGLiWoacaGG6aGaamiDaiabgIGiolaacUfacaWGHbGaaiilaiaadkgacaGGDbaacaGL7bGaayzFaaaaaa@507C@

‎for every xC[a,b] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyicI4Saam4qaiaacUfacaWGHbGaaiilaiaadkgacaGGDbaaaa@3FAB@ .

A measure of noncompactness can be defined as follows. To this end let us fix a nonempty bounded subset X of C[a,b]. For xX MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyicI4Saamiwaaaa@3B83@ and ε>0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH1oqzcqGH+aGpcaaIWaaaaa@3B8E@ let us denote by ω(x,ε) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHjpWDcaGGOaGaamiEaiaacYcacqaH1oqzcaGGPaaaaa@3E9F@ the modulus of continuity of the function x on the interval [a,b], i.e

ω( x,ε )=sup{ | x( t )x(s) |:t,s[ a,b ],| ts |<ε } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHjpWDdaqadaWdaeaapeGaamiEaiaacYcacqaH1oqzaiaawIcacaGLPaaacqGH9aqpcaWGZbGaamyDaiaadchadaGadaWdaeaapeWaaqWaa8aabaWdbiaadIhadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgkHiTiaadIhacaGGOaGaam4CaiaacMcaaiaawEa7caGLiWoacaGG6aGaamiDaiaacYcacaWGZbGaeyicI48aamWaa8aabaWdbiaadggacaGGSaGaamOyaaGaay5waiaaw2faaiaacYcadaabdaWdaeaapeGaamiDaiabgkHiTiaadohaaiaawEa7caGLiWoacqGH8aapcqaH1oqzaiaawUhacaGL9baaaaa@6330@

ω( X,ε )=sup{ ω( x,ε ):xX } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHjpWDdaqadaWdaeaapeGaamiwaiaacYcacqaH1oqzaiaawIcacaGLPaaacqGH9aqpcaWGZbGaamyDaiaadchadaGadaWdaeaapeGaeqyYdC3aaeWaa8aabaWdbiaadIhacaGGSaGaeqyTdugacaGLOaGaayzkaaGaaiOoaiaadIhacqGHiiIZcaWGybaacaGL7bGaayzFaaaaaa@4FF0@

ω 0 ( X )= lim ε0 ω(X,ε) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHjpWDpaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWdbiaadIfaaiaawIcacaGLPaaacqGH9aqppaWaaCbeaeaapeGaciiBaiaacMgacaGGTbaal8aabaWdbiabew7aLjabgkziUkaaicdaa8aabeaak8qacqaHjpWDcaGGOaGaamiwaiaacYcacqaH1oqzcaGGPaaaaa@4CC3@

and

X( t )={ x( t ):xX }. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpdaGadaWdaeaapeGaamiEamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiOoaiaadIhacqGHiiIZcaWGybaacaGL7bGaayzFaaGaaiOlaaaa@4765@

It is easy to prove that ω0 is a measure of noncompactness and

μ( X )= 1 2 ω 0 ( X ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaiabeM8a39aadaWgaaWcbaWdbiaaicdaa8aabeaak8qadaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiaac6caaaa@455D@

‎In the following‎, ‎we will show some examples of the results‎.

Example2.2 Let C=[ 0,1 ]  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbGaeyypa0ZaamWaa8aabaWdbiaaicdacaGGSaGaaGymaaGaay5waiaaw2faaiaacckaaaa@3F4D@ a nonempty, bounded, closed, and convex subset of a Banach space R, T,S:CC   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGsbGaaiilaiaacckacaWGubGaaiilaiaadofacaGG6aGaam4qaiabgkziUkaadoeacaGGGcGaaiiOaaaa@43B4@ be continuous operators and S be a linear operator where

S( TX )T(X) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGtbWaaeWaa8aabaWdbiaadsfacaWGybaacaGLOaGaayzkaaGaeyOHI0SaamivaiaacIcacaWGybGaaiykaaaa@416B@

‎and also‎

μ( T( X ) )φ( max{ μ( X ),μ( S( X ) ) } ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamivamaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyizImQaeqOXdO2aaeWaa8aabaWdbiaad2gacaWGHbGaamiEamaacmaapaqaa8qacqaH8oqBdaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiaacYcacqaH8oqBdaqadaWdaeaapeGaam4uamaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGL7bGaayzFaaaacaGLOaGaayzkaaGaaiilaaaa@5576@

For each XC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybGaeyOHI0Saam4qaaaa@3BCB@ is holed.

Then consider Sx= x 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGtbGaamiEaiabg2da9maalaaapaqaa8qacaWG4baapaqaa8qacaaIYaaaaaaa@3D07@ , Tx= x x+3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaamiEaiabg2da9maalaaapaqaa8qacaWG4baapaqaa8qacaWG4bGaey4kaSIaaG4maaaaaaa@3EE8@ and φ: R + R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAcaGG6aGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiabgkziUkaadkfapaWaaSbaaSqaa8qacqGHRaWka8aabeaaaaa@40CD@ by φ( t )= t 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaWG0baapaqaa8qacaaIYaaaaaaa@3F8C@ is a nondecreasing function such that φ( t )<t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgYda8iaadshaaaa@3E80@ for t0  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bGaeyyzImRaaGimaiaacckaaaa@3CC2@ each and φ( 0 )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3E04@ .

Let µ be the same measure of noncompactness in Example 2.1. Then by Theorem 2.1, T, S have a common fixed point x=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyypa0JaaGimaaaa@3AE2@ in C.

Example 2.3 Let R be a Banach space and we define:

T,S:CC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaaiilaiaadofacaGG6aGaam4qaiabgkziUkaadoeaaaa@3EC1@

T( x )={ 0            x0 x x 2 2     0<x1 1 2            x>1  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqGH9aqppaWaaiqaaKqzGeabaeqakeaajugibiaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG4bGaeyizImQaaeimaaGcbaqcLbsapeGaamiEaiabgkHiTOWaaSaaa8aabaqcLbsapeGaamiEaOWdamaaCaaaleqabaqcLbsapeGaaGOmaaaaaOWdaeaajugib8qacaaIYaaaaiaacckacaqGGaGaaeiiaiaabccacaaIWaGaeyipaWJaamiEaiabgsMiJkaaigdaaOqaamaalaaapaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacaaIYaaaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaamiEaiabg6da+iaaigdacaGGGcaaaOWdaiaawUhaaaaa@685D@

S( x )={ 0            x0 x    0<x1 1           x>1  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGtbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqGH9aqppaWaaiqaaKqzGeabaeqakeaajugibiaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG4bGaeyizImQaaeimaaGcbaqcLbsapeGaamiEaiaacckacaqGGaGaaeiiaiaabccacaaIWaGaeyipaWJaamiEaiabgsMiJkaaigdaaOqaaKqzGeGaaGymaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaamiEaiabg6da+iaaigdacaGGGcaaaOWdaiaawUhaaaaa@60F2@

And

φ: R + R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAcaGG6aGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiabgkziUkaadkfapaWaaSbaaSqaa8qacqGHRaWka8aabeaaaaa@40CD@

by‎

φ( t )={ t t 2 2   0<t1 t  2          t>1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaajugib8qacaWG0baakiaawIcacaGLPaaajugibiabg2da9OWaaiqaaKqzGeabaeqakeaajugibiaadshacqGHsislkmaalaaapaqaaKqzGeWdbiaadshak8aadaahaaWcbeqaaKqzGeWdbiaaikdaaaaak8aabaqcLbsapeGaaGOmaaaacaqGGaGaaeiiaiaaicdacqGH8aapcaWG0bGaeyizImQaaGymaaGcbaWaaSaaa8aabaqcLbsapeGaamiDaaGcpaqaaKqzGeWdbiaacckacaaIYaaaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaadshacqGH+aGpcaaIXaaaaOGaay5Eaaaaaa@5B07@

is a non-decreasing function such that φ( t )<t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgYda8iaadshaaaa@3E80@ for each t0  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bGaeyyzImRaaGimaiaacckaaaa@3CC2@ and φ( 0 )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3E04@ . Clearly T, S are commuting maps and with corresponding Corollary 2.4, for any subset DR MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGebGaeyOGIWSaamOuaaaa@3BC1@ , obviously we have

μ( TD )φ( max{ μ( D ),μ( S( D ) ) } ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamivaiaadseaaiaawIcacaGLPaaacqGHKjYOcqaHgpGAdaqadaWdaeaapeGaamyBaiaadggacaWG4bWaaiWaa8aabaWdbiabeY7aTnaabmaapaqaa8qacaWGebaacaGLOaGaayzkaaGaaiilaiabeY7aTnaabmaapaqaa8qacaWGtbWaaeWaa8aabaWdbiaadseaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhacaGL9baaaiaawIcacaGLPaaacaGGUaaaaa@5394@

Then T, S have a common fixed point x = 0‎.

3. Common coupled fixed point

[8] An element (X,Y)X×X MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGOaGaamiwaiaacYcacaWGzbGaaiykaiabgIGiolaadIfacqGHxdaTcaWGybaaaa@413E@ is called a coupled fixed point of the operator F:X×XX  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbGaaiOoaiaadIfacqGHxdaTcaWGybGaeyOKH4Qaamiwaiaacckaaaa@416D@ if F( x,y )=x MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaiabg2da9iaadIhaaaa@3F46@ and  F( x,y )=y. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaamOramaabmaapaqaa8qacaWG4bGaaiilaiaadMhaaiaawIcacaGLPaaacqGH9aqpcaWG5bGaaiOlaaaa@411D@

Definition 3.2 The operators T,S:C×CC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaaiilaiaadofacaGG6aGaam4qaiabgEna0kaadoeacqGHsgIRcaWGdbaaaa@41A0@ is called commuting operator if

T( S( x,y ),S( y,x ) )=S( T( x,y ),T( y,x ) ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubWaaeWaa8aabaWdbiaadofadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaGaaiilaiaadofadaqadaWdaeaapeGaamyEaiaacYcacaWG4baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyypa0Jaam4uamaabmaapaqaa8qacaWGubWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaiaacYcacaWGubWaaeWaa8aabaWdbiaadMhacaGGSaGaamiEaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@543A@

for all x,yC. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaaiilaiaadMhacqGHiiIZcaWGdbGaaiOlaaaa@3DCE@

Theorem 3.1 [7] Supposebe   μ 1 , μ 2 ,, μ n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaeqiVd02damaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiilaiabgAci8kaacYcacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqabaaaaa@45B5@ measures of noncompactness on, Banach spaces E 1 , E 2 ,, E n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGfbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWGfbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacYcacqGHMacVcaGGSaGaamyra8aadaWgaaWcbaWdbiaad6gaa8aabeaaaaa@41CD@ respectively. Moreover assume that the function F: R + n R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbGaaiOoaiaadkfapaWaa0baaSqaa8qacqGHRaWka8aabaWdbiaad6gaaaGccqGHsgIRcaWGsbWdamaaBaaaleaapeGaey4kaScapaqabaaaaa@40CF@ is convex and F( x 1 ,, x n )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbWaaeWaa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiabgAci8kaacYcacaWG4bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9iaaicdaaaa@43D6@ if and only if x i =0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9iaaicdaaaa@3C44@ for i=1,2,,n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGPbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiabgAci8kaacYcacaWGUbaaaa@4021@ . Then

μ( X )=F( μ 1 ( X 1 ), μ 2 ( X 2 ),, μ n ( X n )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiabg2da9iaadAeacaGGOaGaeqiVd02damaaBaaaleaapeGaaGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWGybWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacYcacqaH8oqBpaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeWaaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaaiilaiabgAci8kaacYcacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeWaaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaWGUbaapaqabaaak8qacaGLOaGaayzkaaGaaiykaaaa@5765@

defines a measure of noncompactness on E 1 × E 2 ×× E n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGfbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgEna0kaadweapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey41aqRaeyOjGWRaey41aqRaamyra8aadaWgaaWcbaWdbiaad6gaa8aabeaaaaa@4602@ where Xi denotes the natural projections of X into Ei for

Remark 3.1 [4] Let µ be a measure of noncompactness on a Banach space E considering

F 1 ( x,y )=max{ x,y } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadMhaaiaawIcacaGLPaaacqGH9aqpcaWGTbGaamyyaiaadIhadaGadaWdaeaapeGaamiEaiaacYcacaWG5baacaGL7bGaayzFaaaaaa@4748@ and    F 2 ( x,y )=x+y MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaaiiOaiaadAeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeWaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaiabg2da9iaadIhacqGHRaWkcaWG5baaaa@449E@

for ( x,y ) R + 2   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaGaeyicI4SaamOua8aadaqhaaWcbaWdbiabgUcaRaWdaeaapeGaaGOmaaaakiaacckaaaa@420A@ then conditions of Theorem 3.1 are satisfied. Therefore,

μ ˜ 1 ( X ):=max{ μ( X 1 ),μ( X 2 ) } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaGaadaWgaaWcbaGaaGymaaqabaGcqaaaaaaaaaWdbmaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaGaaiOoaiabg2da9iaad2gacaWGHbGaamiEamaacmaapaqaa8qacqaH8oqBcaGGOaGaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGPaGaaiilaiabeY7aTjaacIcacaWGybWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacMcaaiaawUhacaGL9baaaaa@4F30@

And

μ ˜ 2 ( X ):=μ( μ 1 )+μ( μ 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaGaadaWgaaWcbaGaaGOmaaqabaGcqaaaaaaaaaWdbmaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaGaaiOoaiabg2da9iabeY7aTnaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaeqiVd0MaaiikaiabeY7aT9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGPaaaaa@4C3F@

Define measures of noncompactness in the space E×E MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGfbGaey41aqRaamyraaaa@3BD0@ where X i ,  i=1,2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacYcacaGGGcGaaiiOaiaadMgacqGH9aqpcaaIXaGaaiilaiaaikdaaaa@4177@ denote the natural

projections of X into E.

Theorem 3.2 Let C be a nonempty, bounded, closed, and convex subset of a Banach space E

and let T,S:C×CC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaaiilaiaadofacaGG6aGaam4qaiabgEna0kaadoeacqGHsgIRcaWGdbaaaa@41A0@ be continuous operators and S be a linear operator such that

S(T( X )×T( Y ))T(X)×T(Y) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGtbGaaiikaiaadsfadaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiabgEna0kaadsfadaqadaWdaeaapeGaamywaaGaayjkaiaawMcaaiaacMcacqGHgksZcaWGubGaaiikaiaadIfacaGGPaGaey41aqRaamivaiaacIcacaWGzbGaaiykaaaa@4D61@

‎and‎

μ(T( X×Y ))φ(max{ μ( X ),μ( Y ),μ( S( X×Y ) ) })     (6) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBcaGGOaGaamivamaabmaapaqaa8qacaWGybGaey41aqRaamywaaGaayjkaiaawMcaaiaacMcacqGHKjYOcqaHgpGAcaGGOaGaamyBaiaadggacaWG4bWaaiWaa8aabaWdbiabeY7aTnaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaGaaiilaiabeY7aTnaabmaapaqaa8qacaWGzbaacaGLOaGaayzkaaGaaiilaiabeY7aTnaabmaapaqaa8qacaWGtbWaaeWaa8aabaWdbiaadIfacqGHxdaTcaWGzbaacaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGL7bGaayzFaaGaaiykaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeikaiaabAdacaqGPaaaaa@643D@

for each  X,YC MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaamiwaiaacYcacaWGzbGaeyOHI0Saam4qaaaa@3E7D@ , where µ is an arbitrary measure of noncompactness and  φ: R + R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaeqOXdOMaaiOoaiaadkfapaWaaSbaaSqaa8qacqGHRaWka8aabeaak8qacqGHsgIRcaWGsbWdamaaBaaaleaapeGaey4kaScapaqabaaaaa@41F1@ is a non-decreasing function such that φ( t )<t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgYda8iaadshaaaa@3E80@ for each t0  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bGaeyyzImRaaGimaiaacckaaaa@3CC2@ and  φ( 0 )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaeqOXdO2aaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@3F28@ . Then T, S have a common coupled fixed point in C.

Proof. First note that, Remark 3.1 implies that

μ ˜ ( X )=μ( X 1 )+μ( X 2 ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacuaH8oqBgaacamaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaGaeyypa0JaeqiVd02aaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaeqiVd0MaaiikaiaadIfapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiykaaaa@48DD@

is a measure of noncompactness in the space E×E MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGfbGaey41aqRaamyraaaa@3BD0@ where X i ,i=1,2  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacYcacaWGPbGaeyypa0JaaGymaiaacYcacaaIYaGaaiiOaaaa@4053@ denote the natural projection of X. Now consider the map. G ˜ :Ω×Ω Ω×Ω MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaceWGhbGbaGaacaGG6aGaeuyQdCLaey41aqRaeuyQdCLaeyOKH4QaaiiOaiabfM6axjabgEna0kabfM6axbaa@4735@ defined by the formula

G ˜ ( x,y )=(G( x,y ),G( y,x )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4rayaaiaaeaaaaaaaaa8qadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaGaeyypa0JaaiikaiaadEeadaqadaWdaeaapeGaamiEaiaacYcacaWG5baacaGLOaGaayzkaaGaaiilaiaadEeadaqadaWdaeaapeGaamyEaiaacYcacaWG4baacaGLOaGaayzkaaGaaiykaaaa@4AA0@

Which is continuous on Ω×Ω MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqqHPoWvcqGHxdaTcqqHPoWvaaa@3D58@ . We claim that G ˜ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGhbGbaGaaaaa@396F@ satisfies all the conditions of Theorem 2.1. To prove this, let XΩ×Ω MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybGaeyOGIWSaeuyQdCLaey41aqRaeuyQdCfaaa@4031@ be a nonempty subset. Then, by 2S0 and (6) we have

μ ˜ ( G ˜ ( X )) μ ˜ (G( X 1 × X 2 )×G( X 2 × X 1 )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0MbaGaaqaaaaaaaaaWdbiaacIcaceWGhbGbaGaadaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiaacMcacqGHKjYOpaGafqiVd0MbaGaapeGaaiikaiaadEeadaqadaWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHxdaTcaWGybWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgEna0kaadEeadaqadaWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHxdaTcaWGybWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacMcaaaa@56F4@

=μ( G( X 1 × X 2 ) )+μ(G( X 2 × X 1 )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpcqaH8oqBdaqadaWdaeaapeGaam4ramaabmaapaqaa8qacaWGybWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgEna0kaadIfapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaSIaeqiVd0MaaiikaiaadEeadaqadaWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHxdaTcaWGybWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacMcaaaa@51C2@

φ(max{ μ( X 1 ),μ( X 2 ),μ( S( X 1 × X 2 ) ) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcqaHgpGAcaGGOaGaamyBaiaadggacaWG4bWaaiWaa8aabaWdbiabeY7aTnaabmaapaqaa8qacaWGybWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacYcacqaH8oqBdaqadaWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaGGSaGaeqiVd02aaeWaa8aabaWdbiaadofadaqadaWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHxdaTcaWGybWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiaacMcaaaa@5A58@

+φ(max{ μ( X 1 ),μ( X 2 ),μ( S(   X 2 × X 1 ) ) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHRaWkcqaHgpGAcaGGOaGaamyBaiaadggacaWG4bWaaiWaa8aabaWdbiabeY7aTnaabmaapaqaa8qacaWGybWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacYcacqaH8oqBdaqadaWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaacaGGSaGaeqiVd02aaeWaa8aabaWdbiaadofadaqadaWdaeaapeGaaiiOaiaadIfapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaey41aqRaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhacaGL9baacaGGPaaaaa@5AA9@

=2φ(max{ μ( X 1 ),μ( X 2 ),μ( S( X 1 × X 2 ) ) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpcaaIYaGaeqOXdOMaaiikaiaad2gacaWGHbGaamiEamaacmaapaqaa8qacqaH8oqBdaqadaWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaGGSaGaeqiVd02aaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaaiilaiabeY7aTnaabmaapaqaa8qacaWGtbWaaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey41aqRaamiwa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhacaGL9baacaGGPaaaaa@5A65@

‎Then‎

1  2 μ ˜ ( G ˜ ( X ))φ(max{ μ( X 1 ),μ( X 2 ),μ( S( X 1 × X 2 ) ) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaiiOaiaaikdaaaGafqiVd0MbaGaacaGGOaGabm4rayaaiaWaaeWaa8aabaWdbiaadIfaaiaawIcacaGLPaaacaGGPaGaeyizImQaeqOXdOMaaiikaiaad2gacaWGHbGaamiEamaacmaapaqaa8qacqaH8oqBdaqadaWdaeaapeGaamiwa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacaGGSaGaeqiVd02aaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaaiilaiabeY7aTnaabmaapaqaa8qacaWGtbWaaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey41aqRaamiwa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhacaGL9baacaGGPaaaaa@63BF@

φ(max{ μ( X 1 )+μ( X 2 ),μ( S( X 1 × X 2 ) ) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcqaHgpGAcaGGOaGaamyBaiaadggacaWG4bWaaiWaa8aabaWdbiabeY7aTnaabmaapaqaa8qacaWGybWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgUcaRiabeY7aTnaabmaapaqaa8qacaWGybWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacYcacqaH8oqBdaqadaWdaeaapeGaam4uamaabmaapaqaa8qacaWGybWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgEna0kaadIfapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGL7bGaayzFaaGaaiykaaaa@5A8A@

φ(max{ 2( μ( X 1 )+μ( X 2 ) ),μ( S( X 1 × X 2 ) ) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcqaHgpGAcaGGOaGaamyBaiaadggacaWG4bWaaiWaa8aabaWdbiaaikdadaqadaWdaeaapeGaeqiVd02aaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaeqiVd02aaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiilaiabeY7aTnaabmaapaqaa8qacaWGtbWaaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey41aqRaamiwa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhacaGL9baacaGGPaaaaa@5CEE@

=φ(max{ 2 μ ˜ ( X ),μ( S( X 1 × X 2 ) ) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpcqaHgpGAcaGGOaGaamyBaiaadggacaWG4bWaaiWaa8aabaWdbiaaikdacuaH8oqBgaacamaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaGaaiilaiabeY7aTnaabmaapaqaa8qacaWGtbWaaeWaa8aabaWdbiaadIfapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey41aqRaamiwa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhacaGL9baacaGGPaaaaa@532A@

and taking μ ˜ = 1 2 μ ˜  , μ ˜ ( S( X ) )=μ(S( X 1 × X 2 )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacuaH8oqBgaacgaqbaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaiqbeY7aTzaaiaGaaiiOaiaacYcacuaH8oqBgaacgaqbamaabmaapaqaa8qacaWGtbWaaeWaa8aabaWdbiaadIfaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqpcqaH8oqBcaGGOaGaam4uamaabmaapaqaa8qacaWGybWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgEna0kaadIfapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaaiykaaaa@53F3@ we get

μ ˜ (G( X ))φ(max{ μ ˜ ( X ), μ ˜ ( S( X ) ) }) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacuaH8oqBgaacgaqbaiaacIcacaWGhbWaaeWaa8aabaWdbiaadIfaaiaawIcacaGLPaaacaGGPaGaeyizImQaeqOXdOMaaiikaiaad2gacaWGHbGaamiEamaacmaapaqaa8qacuaH8oqBgaacgaqbamaabmaapaqaa8qacaWGybaacaGLOaGaayzkaaGaaiilaiqbeY7aTzaaiyaafaWaaeWaa8aabaWdbiaadofadaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiaacMcaaaa@5469@

Since, μ ˜ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacuaH8oqBgaacgaqbaaaa@39F5@ is also a measure of noncompactness, therefore, all the conditions of Theorem 2.1 are satisfied and G has a coupled fixed point.

4. Application

Let   L 1 ( R + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaamita8aadaahaaWcbeqaa8qacaaIXaaaaOGaaiikaiaadkfapaWaaSbaaSqaa8qacqGHRaWka8aabeaak8qacaGGPaaaaa@3EB1@ be the space of Lebesgue integrable functions on the measurable subset R+ of R with the standard norm

x = 0 | x(t) |dt. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqbdaqaaiaadIhaaiaawMa7caGLkWoacqGH9aqpdaWdXaqaamaaemaapaqaa8qacaWG4bGaaiikaiaadshacaGGPaaacaGLhWUaayjcSdGaamizaiaadshacaGGUaaaleaacaaIWaaabaGaeyOhIukaniabgUIiYdaaaa@4AC7@

Now, we define a measure of noncompactness in the space. L 1 ( R + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGmbWdamaaCaaaleqabaWdbiaaigdaaaGccaGGOaGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiaacMcaaaa@3D8D@ .

For ε>0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH1oqzcqGH+aGpcaaIWaaaaa@3B8E@ , let X be a nonempty, bounded, compact, and measurable subset of L 1 ( R + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGmbWdamaaCaaaleqabaWdbiaaigdaaaGccaGGOaGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiaacMcaaaa@3D8D@ , set

C(X)= lim ε0 sup xX sup{ D | x(t) |dt:D R + ;meas(D)ε }; MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4qaiaacIcacaWGybGaaiykaiabg2da9KqbaoaaxabakeaajugibiGacYgacaGGPbGaaiyBaaWcbaqcLbsacqaH1oqzcqGHsgIRcaaIWaaaleqaaKqbaoaaxabakeaajugibiGacohacaGG1bGaaiiCaaWcbaqcLbsacaWG4bGaeyicI4SaamiwaaWcbeaajugibiGacohacaGG1bGaaiiCaKqbaoaacmaakeaajuaGdaWdrbGcbaqcfa4aaqWaaOqaaKqzGeGaamiEaiaacIcacaWG0bGaaiykaaGccaGLhWUaayjcSdqcLbsacaWGKbGaamiDaiaacQdacaWGebGaeyOGIWSaamOuaKqbaoaaBaaaleaajugibiabgUcaRaWcbeaajugibiaacUdacaWGTbGaamyzaiaadggacaWGZbGaaiikaiaadseacaGGPaGaeyizImQaeqyTdugaleaajugWaiaadseaaSqabKqzGeGaey4kIipaaOGaay5Eaiaaw2haaKqzGeGaai4oaaaa@73F5@

Where means(D) denotes the Lebesgue measure of the subset D and

d( x )= lim T sup{ T | x(t) |dt:xX }. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGKbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacqGH9aqppaWaaCbeaeaapeGaciiBaiaacMgacaGGTbaal8aabaWdbiaadsfacqGHsgIRcqGHEisPa8aabeaak8qacaWGZbGaamyDaiaadchadaGadaWdaeaapeWaa8qmaeaadaabdaWdaeaapeGaamiEaiaacIcacaWG0bGaaiykaaGaay5bSlaawIa7aiaadsgacaWG0bGaaiOoaiaadIhacqGHiiIZcaWGybaaleaacaWGubaabaGaeyOhIukaniabgUIiYdaakiaawUhacaGL9baacaGGUaaaaa@5B54@

Then we define

μ( X )=C( X )+d( X ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiabg2da9iaadoeadaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiabgUcaRiaadsgadaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiaacYcaaaa@45B3@

Where μ is a measure of noncompactness in L 1 ( R + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGmbWdamaaCaaaleqabaWdbiaaigdaaaGccaGGOaGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiaacMcaaaa@3D8D@ .

Our purpose is the study of the equation below:

x( t )=(1λ) 0 k ( ts )x( s )ds+λf(t, 0 k ( ts )x( φ( s ) )ds);t0,λ(0,1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiaadIhakmaabmaapaqaaKqzGeWdbiaadshaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaiikaiaaigdacqGHsislcqaH7oaBcaGGPaGcdaWdXaqaaKqzGeGaam4AaaWcbaqcLbsacaaIWaaaleaajugibiabg6HiLcGaey4kIipakmaabmaapaqaaKqzGeWdbiaadshacqGHsislcaWGZbaakiaawIcacaGLPaaajugibiaadIhakmaabmaapaqaaKqzGeWdbiaadohaaOGaayjkaiaawMcaaKqzGeGaamizaiaadohacqGHRaWkcqaH7oaBcaWGMbGaaiikaiaadshacaGGSaGcdaWdXaqaaKqzGeGaam4AaaWcbaqcLbsacaaIWaaaleaajugibiabg6HiLcGaey4kIipakmaabmaapaqaaKqzGeWdbiaadshacqGHsislcaWGZbaakiaawIcacaGLPaaajugibiaadIhakmaabmaapaqaaKqzGeWdbiabeA8aQPWaaeWaa8aabaqcLbsapeGaam4CaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaqcLbsacaWGKbGaam4CaiaacMcacaGG7aGaamiDaiabgwMiZkaaicdacaGGSaGaeq4UdWMaeyicI4SaaiikaiaaicdacaGGSaGaaGymaiaacMcaaaa@8020@

under the following hypotheses.

i.  f: R + ×RR MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaamOzaiaacQdacaWGsbWdamaaBaaaleaapeGaey4kaScapaqabaGcpeGaey41aqRaamOuaiabgkziUkaadkfaaaa@42D1@ and there is a constant 0<b<1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaaIWaGaeyipaWJaamOyaiabgYda8iaaigdaaaa@3C89@ such that

f( t,x )=bx+exp( t ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadkgacaWG4bGaey4kaSIaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgkHiTiaadshaaiaawIcacaGLPaaacaGGUaaaaa@4845@

ii. The function k:R R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGRbGaaiOoaiaadkfacqGHsgIRcaWGsbWdamaaBaaaleaapeGaey4kaScapaqabaaaaa@3EAA@ belongs to the space L 1 ( R + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGmbWdamaaCaaaleqabaWdbiaaigdaaaGccaGGOaGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiaacMcaaaa@3D8D@ , defined by k( t )=exp(t) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGRbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpcaqGLbGaaeiEaiaabchacaGGOaGaeyOeI0IaamiDaiaacMcaaaa@42D1@ for t[0,1] MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bGaeyicI4Saai4waiaaicdacaGGSaGaaGymaiaac2faaaa@3E87@ and k( t )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGRbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@3D76@ for t<0  MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bGaeyipaWJaaGimaiaacckaaaa@3C00@ and t>1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bGaeyOpa4JaaGymaaaa@3AE1@ .

Therefore, we can see that for any A>0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGbbGaeyOpa4JaaGimaaaa@3AAD@ and for all t 1 , t 2 R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWG0bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgIGiolaadkfapaWaaSbaaSqaa8qacqGHRaWka8aabeaaaaa@40BD@ the following condition is satisfied:

t 1 < t 2   0 A k ( t 2 s )ds  0 A k ( t 1 s )ds. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgYda8iaadshapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyO0H4TaaiiOamaapedabaGaam4AaaWcbaGaaGimaaqaaiaadgeaa0Gaey4kIipakmaabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaadohaaiaawIcacaGLPaaacaWGKbGaam4CaiabgsMiJkaacckadaWdXaqaaiaadUgaaSqaaiaaicdaaeaacaWGbbaaniabgUIiYdGcdaqadaWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislcaWGZbaacaGLOaGaayzkaaGaamizaiaadohacaGGUaaaaa@5CF9@

iii.  φ: R + R + MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaeqOXdOMaaiOoaiaadkfapaWaaSbaaSqaa8qacqGHRaWka8aabeaak8qacqGHsgIRcaWGsbWdamaaBaaaleaapeGaey4kaScapaqabaaaaa@41F1@ is a non-decreasing function such that φ( t )<t MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgYda8iaadshaaaa@3E80@ for each t>0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG0bGaeyOpa4JaaGimaaaa@3AE0@ and φ( 0 )=0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaHgpGAdaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3E04@ .

iv. The linear continuous operator K is defined by

( Kx )( t )= 0 k ( ts )x( s )ds MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeGaam4saiaadIhaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da9maapedabaGaam4AaaWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOWaaeWaa8aabaWdbiaadshacqGHsislcaWGZbaacaGLOaGaayzkaaGaamiEamaabmaapaqaa8qacaWGZbaacaGLOaGaayzkaaGaamizaiaadohaaaa@4E93@

Maps Qr into Qr. (Let E be an arbitrary Banach space with norm   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaajugibiabgwSixlaabccaaOGaayzcSlaawQa7aaaa@3EB2@ and the zero element 0 and Br be a closed ball in E centered at 0 and of radius r, and also suppose Qr be the subset of Br consisting of all functions that are a.e. positive and nonincreasing on R+, which is a compact, bounded, closed, and convex subset of L 1 ( R + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGmbWdamaaCaaaleqabaWdbiaaigdaaaGccaGGOaGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiaacMcaaaa@3D8D@ .

Then we can prove the following result.

Theorem 4.1 Let the assumptions i), ii), iii), and iv) be satisfied. Then the equation (7) has at least one solution x L 1 ( R + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyicI4Saamita8aadaahaaWcbeqaa8qacaaIXaaaaOGaaiikaiaadkfapaWaaSbaaSqaa8qacqGHRaWka8aabeaak8qacaGGPaaaaa@400E@ such that

x( t )= 0 k( ts )x( s )ds. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaeyOhIukan8aabaWdbiabgUIiYdaakiaadUgadaqadaWdaeaapeGaamiDaiabgkHiTiaadohaaiaawIcacaGLPaaacaWG4bWaaeWaa8aabaWdbiaadohaaiaawIcacaGLPaaacaWGKbGaam4Caiaac6caaaa@4D72@

Proof.

Step 1‎:‎ ‎‎We consider the following operators

( Hx )( t )=(1λ) 0 k( ts )x( s )ds+λf(t, 0 k( ts )x( φ( s ) )ds), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeGaamisaiaadIhaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da9iaacIcacaaIXaGaeyOeI0Iaeq4UdWMaaiykamaawahabeWcpaqaa8qacaaIWaaapaqaa8qacqGHEisPa0WdaeaapeGaey4kIipaaOGaam4Aamaabmaapaqaa8qacaWG0bGaeyOeI0Iaam4CaaGaayjkaiaawMcaaiaadIhadaqadaWdaeaapeGaam4CaaGaayjkaiaawMcaaiaadsgacaWGZbGaey4kaSIaeq4UdWMaamOzaiaacIcacaWG0bGaaiilamaawahabeWcpaqaa8qacaaIWaaapaqaa8qacqGHEisPa0WdaeaapeGaey4kIipaaOGaam4Aamaabmaapaqaa8qacaWG0bGaeyOeI0Iaam4CaaGaayjkaiaawMcaaiaadIhadaqadaWdaeaapeGaeqOXdO2aaeWaa8aabaWdbiaadohaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaWGKbGaam4CaiaacMcacaGGSaaaaa@6E79@

( Kx )( t )= 0 k( ts )x( s )ds MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeGaam4saiaadIhaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da9maawahabeWcpaqaa8qacaaIWaaapaqaa8qacqGHEisPa0WdaeaapeGaey4kIipaaOGaam4Aamaabmaapaqaa8qacaWG0bGaeyOeI0Iaam4CaaGaayjkaiaawMcaaiaadIhadaqadaWdaeaapeGaam4CaaGaayjkaiaawMcaaiaadsgacaWGZbaaaa@4F38@

‎and‎

( Fx )( t )=f( t,x( t ) ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqadaWdaeaapeGaamOraiaadIhaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da9iaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWG4bWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGUaaaaa@47C8@

Thus the equation (‎7‎) becomes

x=Hx=( 1λ )Kx+λ FKx( φ ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyypa0JaamisaiaadIhacqGH9aqpdaqadaWdaeaapeGaaGymaiabgkHiTiabeU7aSbGaayjkaiaawMcaaiaadUeacaWG4bGaey4kaSIaeq4UdWMaaiiOaiaadAeacaWGlbGaamiEamaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaacaGGUaaaaa@4E32@

Next‎, ‎we consider

Gx= Hx( 1λ )Kx λ =FKx( φ ), MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGhbGaamiEaiabg2da9maalaaapaqaa8qacaWGibGaamiEaiabgkHiTmaabmaapaqaa8qacaaIXaGaeyOeI0Iaeq4UdWgacaGLOaGaayzkaaGaam4saiaadIhaa8aabaWdbiabeU7aSbaacqGH9aqpcaWGgbGaam4saiaadIhadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaGaaiilaaaa@4E31@

Step ‎2: ‎‎‎‎For any x L 1 ( R + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyicI4Saamita8aadaahaaWcbeqaa8qacaaIXaaaaOGaaiikaiaadkfapaWaaSbaaSqaa8qacqGHRaWka8aabeaak8qacaGGPaaaaa@400E@ ‎we have

Gx = FKx(φ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqbdaqaaiaadEeacaWG4baacaGLjWUaayPcSdGaeyypa0ZaauWaaeaacaWGgbGaam4saiaadIhacaGGOaGaeqOXdOMaaiykaaGaayzcSlaawQa7aaaa@46F0@

= 0 | FKx(φ( t )) |dt MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaeyOhIukan8aabaWdbiabgUIiYdaakmaaemaapaqaa8qacaWGgbGaam4saiaadIhacaGGOaGaeqOXdO2aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaGGPaaacaGLhWUaayjcSdGaamizaiaadshaaaa@4BA0@

0 [ exp( t )+b| 0 k( ts ) x( φ( s ) )ds | ] dt MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOdaWdXaqaamaadmaapaqaa8qaciGGLbGaaiiEaiaacchadaqadaWdaeaapeGaeyOeI0IaamiDaaGaayjkaiaawMcaaiabgUcaRiaadkgadaabdaWdaeaapeWaa8qmaeaacaWGRbWaaeWaa8aabaWdbiaadshacqGHsislcaWGZbaacaGLOaGaayzkaaaaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGccaWG4bWaaeWaa8aabaWdbiabeA8aQnaabmaapaqaa8qacaWGZbaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaamizaiaadohaaiaawEa7caGLiWoaaiaawUfacaGLDbaaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiaadsgacaWG0baaaa@6055@

= 0 exp ( t )dt+b Kx(φ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabg2da9OWaa8qmaeaajugibiGacwgacaGG4bGaaiiCaaWcbaqcLbsacaaIWaaaleaajugibiabg6HiLcGaey4kIipakmaabmaapaqaaKqzGeWdbiabgkHiTiaadshaaOGaayjkaiaawMcaaKqzGeGaamizaiaadshacqGHRaWkcaWGIbGcdaqbdaqaaKqzGeGaam4saiaadIhacaGGOaGaeqOXdOMaaiykaaGccaGLjWUaayPcSdaaaa@53B6@

1+b K x(φ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcaaIXaGaey4kaSIaamOyamaafmaabaGaam4saaGaayzcSlaawQa7amaafmaabaGaamiEaiaacIcacqaHgpGAcaGGPaaacaGLjWUaayPcSdaaaa@478F@

=1+b K 0 | x(φ( s )) | ds MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpcaaIXaGaey4kaSIaamOyamaafmaabaGaam4saaGaayzcSlaawQa7amaapedabaWaaqWaa8aabaWdbiaadIhacaGGOaGaeqOXdO2aaeWaa8aabaWdbiaadohaaiaawIcacaGLPaaacaGGPaaacaGLhWUaayjcSdaaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGccaWGKbGaam4Caaaa@4FD9@

1+b K 0 | x(s) | ds MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGHKjYOcaaIXaGaey4kaSIaamOyamaafmaabaGaam4saaGaayzcSlaawQa7amaapedabaWaaqWaa8aabaWdbiaadIhacaGGOaGaam4CaiaacMcaaiaawEa7caGLiWoaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiaadsgacaWGZbaaaa@4D23@

=1+b K x , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpcaaIXaGaey4kaSIaamOyamaafmaabaGaam4saaGaayzcSlaawQa7amaafmaabaGaamiEaaGaayzcSlaawQa7aiaacYcaaaa@447A@

hence‎, ‎for x B r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyicI4SaamOqa8aadaWgaaWcbaWdbiaadkhaa8aabeaaaaa@3CBE@ , ‎we have

Gx 1+b K r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaqbdaqaaiaadEeacaWG4baacaGLjWUaayPcSdGaeyizImQaaGymaiabgUcaRiaadkgadaqbdaqaaiaadUeaaiaawMa7caGLkWoacaWGYbaaaa@463C@

if we take r=1+b K r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGYbGaeyypa0JaaGymaiabgUcaRiaadkgadaqbdaqaaiaadUeaaiaawMa7caGLkWoacaWGYbaaaa@4194@ , then r= 1 1b K MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGYbGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHsislcaWGIbWaauWaaeaacaWGlbaacaGLjWUaayPcSdaaaaaa@41B1@ . This implies that G maps the ball Br into itself, where

r= 1 1b K MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGYbGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaigdacqGHsislcaWGIbWaauWaaeaacaWGlbaacaGLjWUaayPcSdaaaaaa@41B1@

Step 3: For any consider and be arbitrary, let be with , then we have

D | Gx(t) | dt= D | FKx(φ( t )) | dt MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdraqaamaaemaapaqaaKqzGeWdbiaadEeacaWG4bGaaiikaiaadshacaGGPaaakiaawEa7caGLiWoaaSqaaKqzGeGaamiraaWcbeqcLbsacqGHRiI8aiaadsgacaWG0bGaeyypa0JcdaWdraqaamaaemaapaqaaKqzGeWdbiaadAeacaWGlbGaamiEaiaacIcacqaHgpGAkmaabmaapaqaaKqzGeWdbiaadshaaOGaayjkaiaawMcaaKqzGeGaaiykaaGccaGLhWUaayjcSdaaleaajugibiaadseaaSqabKqzGeGaey4kIipacaWGKbGaamiDaaaa@5A27@

= D [ | bKx( φ( t ) )+exp(t) | ]dt MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabg2da9OWaa8qeaeaadaWadaWdaeaapeWaaqWaa8aabaqcLbsapeGaamOyaiaadUeacaWG4bGcdaqadaWdaeaajugib8qacqaHgpGAkmaabmaapaqaaKqzGeWdbiaadshaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaKqzGeGaey4kaSIaamyzaiaadIhacaWGWbGaaiikaiabgkHiTiaadshacaGGPaaakiaawEa7caGLiWoaaiaawUfacaGLDbaajugibiaadsgacaWG0baaleaajugibiaadseaaSqabKqzGeGaey4kIipaaaa@5791@

b D | Kx( φ( t ) ) | dt+ D exp( t )dt MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgsMiJkaadkgakmaapebabaWaaqWaa8aabaqcLbsapeGaam4saiaadIhakmaabmaapaqaaKqzGeWdbiabeA8aQPWaaeWaa8aabaqcLbsapeGaamiDaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaleaajugibiaadseaaSqabKqzGeGaey4kIipacaWGKbGaamiDaiabgUcaROWaa8qeaeaajugibiGacwgacaGG4bGaaiiCaOWaaeWaa8aabaqcLbsapeGaeyOeI0IaamiDaaGccaGLOaGaayzkaaqcLbsacaWGKbGaamiDaaWcbaqcLbsacaWGebaaleqajugibiabgUIiYdaaaa@5CF1@

b D | Kx( φ( t ) ) | dtexp( t )meas(D) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgsMiJkaadkgakmaapebabaWaaqWaa8aabaqcLbsapeGaam4saiaadIhakmaabmaapaqaaKqzGeWdbiabeA8aQPWaaeWaa8aabaqcLbsapeGaamiDaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaleaajugibiaadseaaSqabKqzGeGaey4kIipacaWGKbGaamiDaiabgkHiTiGacwgacaGG4bGaaiiCaOWaaeWaa8aabaqcLbsapeGaeyOeI0IaamiDaaGccaGLOaGaayzkaaqcLbsacaWGTbGaamyzaiaadggacaWGZbGaaiikaiaadseacaGGPaaaaa@5C6E@

b D | Kx(φ(t)) | dtexp(t)ε MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyizImQaamOyaKqbaoaapefakeaajuaGdaabdaGcbaqcLbsacaWGlbGaamiEaiaacIcacqaHgpGAcaGGOaGaamiDaiaacMcacaGGPaaakiaawEa7caGLiWoaaSqaaKqzGeGaamiraaWcbeqcLbsacqGHRiI8aiaadsgacaWG0bGaeyOeI0IaciyzaiaacIhacaGGWbGaaiikaiabgkHiTiaadshacaGGPaGaeqyTdugaaa@53F1@

When ε tends to zero and from definition C(X) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbGaaiikaiaadIfacaGGPaaaaa@3B23@ that is a defined measure in the L 1 ( R + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGmbWdamaaCaaaleqabaWdbiaaigdaaaGccaGGOaGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiaacMcaaaa@3D8D@ , we get C(GX)bC(KX) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGdbGaaiikaiaadEeacaWGybGaaiykaiabgsMiJkaadkgacaWGdbGaaiikaiaadUeacaWGybGaaiykaaaa@4259@ .

Step 4: For any X Q r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGybGaeyOGIWSaamyua8aadaWgaaWcbaWdbiaadkhaa8aabeaaaaa@3D25@ and T>0 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGubGaeyOpa4JaaGimaaaa@3AC0@ we have

T | Gx(t) |dt= T | FKx(φ( t )) |dt MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaGfWbqabSWdaeaajugib8qacaWGubaal8aabaqcLbsapeGaeyOhIukan8aabaqcLbsapeGaey4kIipaaOWaaqWaa8aabaqcLbsapeGaam4raiaadIhacaGGOaGaamiDaiaacMcaaOGaay5bSlaawIa7aKqzGeGaamizaiaadshacqGH9aqpkmaawahabeWcpaqaaKqzGeWdbiaadsfaaSWdaeaajugib8qacqGHEisPa0Wdaeaajugib8qacqGHRiI8aaGcdaabdaWdaeaajugib8qacaWGgbGaam4saiaadIhacaGGOaGaeqOXdOMcdaqadaWdaeaajugib8qacaWG0baakiaawIcacaGLPaaajugibiaacMcaaOGaay5bSlaawIa7aKqzGeGaamizaiaadshaaaa@611B@

= T [ | bKx( φ( t ) )+exp(t) | ] dt MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpdaWdXaqaamaadmaapaqaa8qadaabdaWdaeaapeGaamOyaiaadUeacaWG4bWaaeWaa8aabaWdbiabeA8aQnaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaSIaaeyzaiaabIhacaqGWbGaaiikaiabgkHiTiaadshacaGGPaaacaGLhWUaayjcSdaacaGLBbGaayzxaaaaleaacaWGubaabaGaeyOhIukaniabgUIiYdGccaWGKbGaamiDaaaa@548D@

b T | Kx( φ( t ) ) | dt+ T exp ( t )dt MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgsMiJkaadkgakmaapedabaWaaqWaa8aabaqcLbsapeGaam4saiaadIhakmaabmaapaqaaKqzGeWdbiabeA8aQPWaaeWaa8aabaqcLbsapeGaamiDaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGLhWUaayjcSdaaleaajugibiaadsfaaSqaaKqzGeGaeyOhIukacqGHRiI8aiaadsgacaWG0bGaey4kaSIcdaWdXaqaaKqzGeGaciyzaiaacIhacaGGWbaaleaajugibiaadsfaaSqaaKqzGeGaeyOhIukacqGHRiI8aOWaaeWaa8aabaqcLbsapeGaeyOeI0IaamiDaaGccaGLOaGaayzkaaqcLbsacaWGKbGaamiDaaaa@6031@

b T | Kx(φ( t )) | dt+exp(T) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaaaaaaWdbiabgsMiJkaadkgakmaapedabaWaaqWaa8aabaqcLbsapeGaam4saiaadIhacaGGOaGaeqOXdOMcdaqadaWdaeaajugib8qacaWG0baakiaawIcacaGLPaaajugibiaacMcaaOGaay5bSlaawIa7aaWcbaqcLbsacaWGubaaleaajugibiabg6HiLcGaey4kIipacaWGKbGaamiDaiabgUcaRiaabwgacaqG4bGaaeiCaiaacIcacqGHsislcaWGubGaaiykaaaa@5632@ .

Now with take lim T sup MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaqaaaaaaaaaWdbiGacYgacaGGPbGaaiyBaaWcpaqaa8qacaWGubGaeyOKH4QaeyOhIukapaqabaGcpeGaam4CaiaadwhacaWGWbaaaa@4294@ of the above inequality, we get

d( GX )bd( KX ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGKbWaaeWaa8aabaWdbiaadEeacaWGybaacaGLOaGaayzkaaGaeyizImQaamOyaiaadsgadaqadaWdaeaapeGaam4saiaadIfaaiaawIcacaGLPaaacaGGUaaaaa@43EB@

Where d is a defined measure in the L 1 ( R + ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGmbWdamaaCaaaleqabaWdbiaaigdaaaGccaGGOaGaamOua8aadaWgaaWcbaWdbiabgUcaRaWdaeqaaOWdbiaacMcaaaa@3D8D@ . Now by step 3 and step 4 we deduce that.

μ( GX )bμ( KX ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaam4raiaadIfaaiaawIcacaGLPaaacqGHKjYOcaWGIbGaeqiVd02aaeWaa8aabaWdbiaadUeacaWGybaacaGLOaGaayzkaaGaaiOlaaaa@4585@

Step 5: Take x Q r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyicI4Saamyua8aadaWgaaWcbaWdbiaadkhaa8aabeaaaaa@3CCD@ then x(φ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaaiikaiabeA8aQjaacMcaaaa@3C38@ is a.e. positive and nonincreasing on R+ and consequently Kx(φ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGlbGaamiEaiaacIcacqaHgpGAcaGGPaaaaa@3D08@ is also of the same type in virtue of the assumptions (i), (ii), (iii) and (iv) we deduce that Gx=FKx(φ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGhbGaamiEaiabg2da9iaadAeacaWGlbGaamiEaiaacIcacqaHgpGAcaGGPaaaaa@40A2@ is also a.e. positive and nonincreasing on R+. This fact, together with the assertion G: B r B r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGhbGaaiOoaiaadkeapaWaaSbaaSqaa8qacaWGYbaapaqabaGcpeGaeyOKH4QaamOqa8aadaWgaaWcbaWdbiaadkhaa8aabeaaaaa@3FE6@ gives that G is a self-mapping of the set Qr. For this reason that K is a linear and bounded operator, therefore K is continuous , and obviously F is a continuous operator then G is a continuous operator. Then K and G are continuous from Qr into Qr.

Step 6: We will show that K( f( t,x ) )=f(t,K( x )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGlbWaaeWaa8aabaWdbiaadAgadaqadaWdaeaapeGaamiDaiaacYcacaWG4baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyypa0JaamOzaiaacIcacaWG0bGaaiilaiaadUeadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiaacMcaaaa@483E@ . We have x( t )=Kx(t) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGlbGaamiEaiaacIcacaWG0bGaaiykaaaa@40E8@ if and only if exp( t )x( t )= t1 t exp ( s )x( s )ds MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaciGGLbGaaiiEaiaacchadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaadIhadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da9maapedabaGaciyzaiaacIhacaGGWbaaleaacaWG0bGaeyOeI0IaaGymaaqaaiaadshaa0Gaey4kIipakmaabmaapaqaa8qacaWGZbaacaGLOaGaayzkaaGaamiEamaabmaapaqaa8qacaWGZbaacaGLOaGaayzkaaGaamizaiaadohaaaa@530B@ therefore, if the function g satisfies g ( t )=exp( 1 )g(t1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaceWGNbGbauaadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da9iabgkHiTiGacwgacaGG4bGaaiiCamaabmaapaqaa8qacqGHsislcaaIXaaacaGLOaGaayzkaaGaam4zaiaacIcacaWG0bGaeyOeI0IaaGymaiaacMcaaaa@48C2@ ,

then g is a fixed point of K. Hence, g( t )=exp(t) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGNbWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpcaqGLbGaaeiEaiaabchacaGGOaGaeyOeI0IaamiDaiaacMcaaaa@42CD@ is a fixed point of K. Thus

K( exp( t )+bx( t ) )=K(exp( t )+bK(x( t )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGlbWaaeWaa8aabaWdbiGacwgacaGG4bGaaiiCamaabmaapaqaa8qacqGHsislcaWG0baacaGLOaGaayzkaaGaey4kaSIaamOyaiaadIhadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabg2da9iaadUeacaGGOaGaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgkHiTiaadshaaiaawIcacaGLPaaacqGHRaWkcaWGIbGaam4saiaacIcacaWG4bWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaGGPaaaaa@56E8@

=exp( t )+bK(x( t )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpciGGLbGaaiiEaiaacchadaqadaWdaeaapeGaeyOeI0IaamiDaaGaayjkaiaawMcaaiabgUcaRiaadkgacaWGlbGaaiikaiaadIhadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaacMcaaaa@4724@

=f( t,Kx( t ) ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqGH9aqpcaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaam4saiaadIhadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiaac6caaaa@4287@

Therefore, K( ( Fx )( t ) )=F(( Kx )( t )) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGlbWaaeWaa8aabaWdbmaabmaapaqaa8qacaWGgbGaamiEaaGaayjkaiaawMcaamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyypa0JaamOraiaacIcadaqadaWdaeaapeGaam4saiaadIhaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaacMcaaaa@49EE@ , i.e. K and F are commuting maps. For every x Q r MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bGaeyicI4Saamyua8aadaWgaaWcbaWdbiaadkhaa8aabeaaaaa@3CCD@ we have GK( x )=FKKx( φ )=KFKx( φ )=KG(x) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGhbGaam4samaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0JaamOraiaadUeacaWGlbGaamiEamaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaacqGH9aqpcaWGlbGaamOraiaadUeacaWG4bWaaeWaa8aabaWdbiabeA8aQbGaayjkaiaawMcaaiabg2da9iaadUeacaWGhbGaaiikaiaadIhacaGGPaaaaa@5104@ , so G and K are commuting maps Thus without the loss of generalities, in Corollary 2.4 enough that, we put  φ( t )=bt   MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaeqOXdO2aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGIbGaamiDaiaacckacaGGGcaaaa@42D5@ and μ( X )<μ( KX ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacqaH8oqBdaqadaWdaeaapeGaamiwaaGaayjkaiaawMcaaiabgYda8iabeY7aTnaabmaapaqaa8qacaWGlbGaamiwaaGaayjkaiaawMcaaaaa@426F@ . Then K and G have at least one common fixed point, which is a solution of the equation (7) and satisfies x( t )=Kx(t) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGlbGaamiEaiaacIcacaWG0bGaaiykaaaa@40E8@ . Moreover,

x( t )= exp(t) 1b MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWG4bWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaeyzaiaabIhacaqGWbGaaiikaiabgkHiTiaadshacaGGPaaapaqaa8qacaaIXaGaeyOeI0IaamOyaaaaaaa@45BB@

is a common solution of the equations f( t,x( t ) )=x( t ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGMbWaaeWaa8aabaWdbiaadshacaGGSaGaamiEamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyypa0JaamiEamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@44A3@ and  K( x( t ) )=x( t ). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaGGGcGaam4samaabmaapaqaa8qacaWG4bWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaGGUaaaaa@44B5@

Conclusion

This paper examines the existence of a fixed point in various cases based on the measures of incompressibility, which is a very important technique in existence proof.

  1. Darbo G. Punti uniti in trasformazioni a codominio non compatto. Rend Sem Mat Univ Padova. 1955;24:84-92. Available from: http://www.numdam.org/article/RSMUP_1955__24__84_0.pdf
  2. Kuratowski C. Sur les espaces. Fund Math. 1930;15:301-309. Available from: https://eudml.org/doc/212357
  3. Agarwal RP, O'Regan D. Fixed Point Theory and Applications. Cambridge University Press; 2004. Available from: https://books.google.co.in/books?id=iNccsDsdbIcC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
  4. Aghajani A, Sabzali N. Existence of coupled fixed points via measure of noncompactness and applications. J Nonlinear Convex Anal. 2013;15(5). Available from: https://www.researchgate.net/publication/236151805_Existence_of_coupled_fixed_points_via_measure_of_noncompactness_and_applications
  5. Akmerov RR, Kamenski MI, Potapov AS, Rodkina AE, Sadovskii BN. Measures of Noncompactness and Condensing Operators. Basel: Birkhauser-Verlag. 1992.
  6. Banach S. On operations in abstract sets and their applications to integral equations. Fund Math. 1922;3:133-181. Available from: https://www.semanticscholar.org/paper/Sur-les-op%C3%A9rations-dans-les-ensembles-abstraits-et-Banach/ef166eb78f8e04f1d563a2622a76fd1d9e138923
  7. Banas J, Goebel K. Measure of noncompactness in Banach Space. New York: Marcel Dekker; 1980. Available from: https://www.scirp.org/reference/referencespapers?referenceid=863695
  8. Chang SS, Cho YJ, Huang NJ. Coupled fixed point theorems with applications. J Korean Math Soc. 1996;33(3):575-585. Available from: https://www.researchgate.net/publication/263440631_Coupled_fixed_point_theorems_with_applications
  9. Das KM, Naik KV. Common fixed point theorem for commuting maps on a metric space. Proc Amer Math Soc. 1979;77:369-373. Available from: https://www.ams.org/journals/proc/1979-077-03/S0002-9939-1979-0545598-7/S0002-9939-1979-0545598-7.pdf
  10. Dugundij J, Granas A. Fixed point Theory I. Warsaw: Polish Scientific Publishers. 1982. Available from: https://www.math.utep.edu/faculty/khamsi/fixedpoint/books.html
  11. Fisher B, Sessa S. On a fixed point theorem of Gregus. Internat J Math Sci. 1986;9:23-28. Available from: http://dx.doi.org/10.1155/S0161171286000030
  12. Fisher B. Common fixed point on a Banach space. Chuni Juan J. 1982;XI:12-15.
  13. Gregus M Jr. A fixed point theorem in Banach space. Boll Un Mat Ital (5). 1980;17-A:193-198.
  14. Jungck G. On a fixed point theorem of Fisher and Sessa. Internat J Math Sci. 1990;13(3):497-500. Available from: http://dx.doi.org/10.1155/S0161171290000710
  15. Jungck G. Common fixed point for commuting and compatible maps on compacta. Proc Amer Math Soc. 1988;103:977-983. Available from: https://www.ams.org/journals/proc/1988-103-03/S0002-9939-1988-0947693-2/S0002-9939-1988-0947693-2.pdf
  16. Aghajani A, Allahyari R, Mursaleen M. A generalization of Darbo's theorem with application to the solvability of systems of integral equations. J Comput Appl Math. 2014;260:680-770. Available from: https://doi.org/10.1016/j.cam.2013.09.039
  17. Aghajani A, Mursaleen M, Shole Haghighi A. Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness. Acta Mathematica Scientia. 2015;35B(3):552-566. Available from: https://doi.org/10.1016/S0252-9602(15)30003-5
  18. Aghajani A, Banas J, Sabzali N. Some generalizations of Darbo's fixed point theorem and applications. Bull Belg Math Soc Simon Stevin. 2013;20(2):345-358. Available from: http://dx.doi.org/10.36045/bbms/1369316549
  19. Jungck G. Compatible mappings and common fixed points. Internet J Math Sci. 1986;9:771-779. Available from: https://doi.org/10.1155/S0161171286000935
  20. Jungck G. Compatible mappings and common fixed points (2). Internat J Math Sci. 1988;11(2):285-288. Available from: http://dx.doi.org/10.1155/S0161171288000341
  21. Jungck G. Commuting mappings and fixed points. Am Math Monthly. 1976;83:261-263. Available from: http://dx.doi.org/10.2307/2318216
  22. Khamsi MA, Kirk WA. An Introduction to Metric Spaces and Fixed Point Theory. Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Texts. 2001. Available from: https://www.amazon.in/Introduction-Metric-Spaces-Applied-Mathematics/dp/0471418250
  23. Kirk WA. A fixed point theorem for mappings which do not increase distances. Amer Math Monthly. 1965;72:1004-1006. Available from: http://dx.doi.org/10.2307/2313345
  24. Rudin W. Real and Complex Analysis. McGraw-Hill; 1966. Available from: https://59clc.wordpress.com/wp-content/uploads/2011/01/real-and-complex-analysis.pdf
  25. Sessa S. On a weak commutativity condition of mappings in fixed point considerations. Publ Inst Math. 1982;32(46):149-153. Available from: https://eudml.org/doc/254762
  26. Srivastava R, Jain N, Qureshi K. Compatible mapping and common fixed point theorem. IOSR J Math. 2013;7(1):46-48. Available from: https://www.iosrjournals.org/iosr-jm/papers/Vol7-issue1/G0714648.pdf
  27. Wong CS. On Kannan maps. Proc Amer Math Soc. 1975;47:105-111. Available from: https://typeset.io/pdf/on-kannan-maps-ywodhke8zo.pdf
 

Help ?