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1. Introduction  

Linear programming is the main mathematical 
methodology of operations research. In this note, we 
propose an alternative approach, relying on partially 
ordered linear spaces. Especially, we propose the treatment 
of such problems through positive bases, and sub- lattices 
of Euclidean spaces. The main result of this paper is based 
on a reformulation of the set of constraints of any linear 
programming problem. By this reformulation, we may 
determine whether the feasible set is compact, and as a 
consequence a solution of it does exist. A more detailed 
comparison between the Simplex Method and the proposed 
approach remains an open topic. 

(2020) Mathematics Subject Classi ication: 46A40; 
90C05 

2. Preliminaries

2.1. Partially ordered vector spaces

 Let us recall some essential notions about ordered 
linear spaces (We denote the partial ordering relation by 
the symbol “≥” throughout the paper): If E is a non-trivial 
vector space, then a partial -ordering is a binary relation ≥ 
between the elements of this vector space. The properties 
of such a binary relation are the following: 
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1. x ≥ x, for any x ∈ E (reϐlexive) 

2. If x ≥ y and y ≥ x for some x, y ∈ E, then x = y 
(antisymmetric) 

3. If x ≥ y and y ≥ z, then x ≥ z (transitive) 

4. If x ≥ y and λ ∈ ℝ+, then λ ⋅ x ≥ λ ⋅ y, where   denotes 
the scalar product, being deϐined on E and ℝ+ denotes 
the set of the real numbers.

5. If x ≥ y for some x, y ∈ E, then x + z ≥ y + z, for any z ∈ 
E. Also, if x ≥ y for some x, y ∈ E, then x − z ≥ y − z, for 
any z ∈ E. 

The last two properties denote that ≥ is compatible to 
the linear structure of E.

Then the vector space, being endowed with a partial 
ordering relation ≥, which satisϐies the above properties, is 
a partially ordered vector space. The set 

= { | 0},E x E x 

is called positive cone of this partially vector space. 0 
denotes the zero element of the vector space E. Suppose 
that E is a partially ordered vector space, being endowed 
with the partial ordering ≥. Let us suppose some x, y ∈ E, 
where E is a partially ordered vector space, endowed by ≥. 
The supremum of {x, y} where x, y ∈ E, with respect to ≥ is 
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some u ∈ E, such that u ≥ x, u ≥ y, while for any other r ∈ E, 
such that r ≥ x, r ≥ y, then r ≥ u. The inϔimum of {x, y} where 
x, y ∈ E, with respect to ≥ is some n   E, such that x ≥ n, y ≥ 
n, while for any other m ∈ E, such that x ≥ m, y ≥ m, then n 
≥ m. If the inϐimum and the supremum of {x, y}, where x, y 
belong in E, then E is called vector -lattice. In this case, the 
inϐimum of {x, y} is denoted by x ∧ y and the supremum of 
{x, y} is denoted by x ∨ y. If S is some non -trivial subspace of 
a vector -lattice, such that x ∨ y ∈ S and x ∧ y ∈ S for any x, y 
∈ S, then S is called sub-lattice of E. A sub-lattice is actually 
a sub-space of a vector -lattice, which is a vector- lattice as 
well. Both the supremum and inϐimum of any two elements 
of S belongs in S. ℝl is considered to admit the point -wise 
partial ordering in the present paper. The point-wise partial 
ordering is deϐined in the following way: x ≥ y, if and only if 
x(s) ≥ y(s) for any s = 1,2, …, l. A positive vector of ℝl is any 

x ∈ ℝl, such that x(s) ≥ 0, for any s = 1,2, …, l. The set of the 

positive vectors of ℝl is denoted by l
 For any x, y  ℝl, x ∨ y 

under the point-wise partial ordering is actually the vector 
of ℝl, whose components are max{x(s), y(s)} for any s = 1, …, 
l. x ∧ y under the point-wise partial ordering is actually the 
vector of ℝl, whose components are min{x(s), y(s)} for any 
any s = 1, …, l. ℝl is a vector- lattice, under the point -wise 
partial ordering. For any x  ℝl, x ∨ 0 is denoted by x+ and 
(−x) ∨ 0 is denoted by x−. 0 is actually the zero element of ℝl. 
Hence, x = x+ − x−, under the point -wise partial ordering of 
ℝl. We denote a non-trivial subspace of ℝl by L. A basis {b1, 
b2,…,br} of L is called positive basis of L, if 

= { | = },
=1

r
L x L x bi ii



where i   and b1 ∈ L+, for any i = 1,…,r . Every component 
of bi is positive. The existence of positive basis for an 

arbitrary, non -trivial subspace L of l  is not assured. The 

support of a positive vector x ∈ L+ is the set 

( ) = { = 1, 2, ..., | ( ) > 0},supp x s l x s

Meaning the set of non-zero coordinates of x. We do 
recall the following results obtained by [1]: 

1. For any sub-lattice Z of ℝl, a unique positive basis 
exists, up to a positive multiplication for any vector 
of the positive basis. If Z is a sub -lattice of ℝl, 

whose a positive basis is {b1, b2,…,bμ}, then for any 

= lx Z Z    we have = , 0,=1x bi i i ii
       . 

2. If some ordered subspace Z of ℝl is a sub -lattice of 

ℝl, then ( ) ( ) =supp b supp bi j  , for any i ≠ j and i, j 

∈ {1,…,μ}], where {b1,…,bμ} is the positive basis of Z. 

3. If Z is a sub -lattice of ℝl, whose a positive basis is{b1, 

b2…,bμ}, then for any s ∈ supp(b1) and = =1x t bi ii
 , 

( )
= .

( )

x s
ti b si

4. We assume that Z is a sub -lattice of ℝl and the positive 

basis of it is{b1, b2…,bμ}. If = , ==1 =1x b y bi i i ii i
    , 

then 

= ( ) , = ( ) .
=1 =1

x y b x y bi i i i i ii i

 
       

5. We assume that Z is a sub -lattice of ℝl, whose 
positive basis is {b1, b2…,bμ}. Then for each i = 1,2,…, 
μ the vector b1 has minimal support in Z, namely a 
positive vector x  Z, x ≠ 0, such that supp(x) is a pure 
subset of supp(b1), does not exist.

Figure 1 illustrates the concept of a sub-lattice 
intersecting with the positive cone in ℝ³, showing 
the feasible region for a linear programming problem 
formulated in sublattice terms.

2.2. Optimization literature and applications of vector 
-lattices

Applications of vector lattices and sublattices have been 
explored in optimization since the early 2000s, particularly 
in problems related to portfolio optimization and option 
pricing. These studies demonstrate that lattice structures 
can offer alternative formulations for linear programming 
problems, especially when applied to real-world ϐinancial 
data where only a ϐinite number of market states are 
considered.

Early contributions in this area include works such 
as Aliprantis, et al. [2], which discuss portfolio insurance 
using positive bases, and Polyrakis [1], which develops the 
theoretical foundations of positive lattice subspaces. More 

Figure 1: Geometric visualization of a positive cone in R³ intersected by a sublattice. 
The shaded region represents the feasible set derived from the lattice-based 
formulation of the linear programming problem.
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recent computational methods for identifying positive 
bases and sublattices have been proposed [3], along 
with numerical examples demonstrating their practical 
applicability.

Recent studies have continued exploring applications 
of lattice theory and convex optimization in linear 
programming and ϐinancial mathematics [4-6]. The main 
contributions in the ϐirst direction is [2,7], where authors 
provide a simpliϐied way to view portfolio insurance 
through vector -lattices and positive bases. A detailed 
approach of positive bases and their relation to subspaces 
of vector -lattices is [8]. The fact that linear programming 
problems in [7] involve Euclidean spaces makes its content 
closer to applications. This is true, since a ϐinite number 
of ‘states of the world’ is appropriate for securities’ payoff 
function determination, in case we use real -market data. As 
an example of such a computational approach for solution 
to the linear programming problem appearing in [7], we 
have to mention the recent works [3,9,10]. The formulation 
of ϐinite -dimensional linear programming problems in the 
way appearing in the present paper, also appears in [11], in 
an attempt to provide another way of the determination of 
the vectors of a positive basis for a sub-lattice. This thesis 
also contains useful diagrams about cones, vector -lattices 
and sub -lattices. The reader of the paper may see in [12] a 
lot of numerical examples on the determination of positive 
bases’ vectors for a sub-lattice of a Euclidean space.

3. Main results

3.3.  Applying Sub-lattices on Linear programming

The usual statement of a ϐinite-dimensional Linear 
Programming Problem is the following: Minimize c ⋅ x, , if 
x   C, where 

= { | , },k k kC x b A x x                        (1)

C ∈ ℝk is the vector of cost variables and b ∈ ℝl. A is 
some matrix whose rows are equal to l and its columns are 
equal to k. A standard step of the so -called Simplex Method 
for solving Linear Programming Problems is turning the 
inequalities into equalities in the constraints’ set C by adding 
the so -called complementary variables. This transformation 
appears if we suppose that the matrix of the constraints 
under this consideration is some l   j matrix V, where the ϐirst 
k columns of V are the same to the columns of A. We denote 
the columns of V by R1,…, Rj. To better understand the above 
typical form, we have to emphasize on the role of k and l. l 
is the number of the constraints in such a problem, while k 
is the number of the initial variables. The reader may Refer 
to Chapter 4 of [13] for a mathematical introduction to the 
so -called Simplex Method for solving Linear Programming 
Problems. As it is well-known, the Simplex Algorithm has 

a variety of methods. In the present paper we refer to the 
reformulation of the feasible set through the positive basis 
generated by the columns of A and b in the above typical 
statement (1). This statement provides a way to control 
whether a linear programming problem has solution or not. 
This is provided in the next Paragraph.

However, we keep the above notation and we determine 
a maximal set of linearly independent vectors among the 
set 

{ , , ..., , , , }.1 1R R R R b bj j
     

Suppose that such a set is{z1, z2, …, zr }, where any z1, …, 
zr is a positive vector of ℝl. Z = [z1, z2, …, zr] is the subspace 
of ℝl generated by {z1, z2, …, zr }.

The determination of a positive basis for the sub -lattice 
W of ℝl generated by the set {z1, z2, …, zr} is speciϐied via [8, 
Th. 3.6]: The function 

( ( ), ..., ( ))1( ) = ,
( )

z s z srs
z s



for each s = 1, 2, …, l, where 

1 2= ... ,rz z z z  

if z(s) > 0. β is called basic function of{z1, z2, …, zr }. We denote 
by cardR(β) the number of vectors, belong to the range of β. 
The range of β is denoted by R(β). 

1. The subspace Z is a sub -lattice of ℝl if and only if 
cardR(β) = r. If R(β) = {P1, P2, …, Pr}, then a positive 
basis {b1, b2, …, br} of Z is given by the following 
matrix equation: 

1( , , ..., ) = ( , , ..., ) ,1 2 1 2
T Tb b b B z z zr r

 

where B is the r × r- matrix, whose i-th column is the vector 
Pi, for each i = 1,2, …, r. (b1, b2, …, br)

T, (z1, z2, …, zr)
T are the 

matrices, whose rows are the vectors {z1, z2, …, zr
} and {b1, 

b2, …, br}, respectively. 

2. The dimension of the sub -lattice W of ℝl generated 
by the vectors zi, i = 1,2,…, r is equal to the number of 
the distinct values of β, denoted by cardR(β). If R(β) 
= {P1, P2, …, Pμ}, the sub -lattice W of ℝl generated by 
{z1, z2, …, zr} is speciϐied through the rest steps of the 
algorithm of [8, Th.3.7]: 

(a) We enumerate R(β), so that its ϐirst r vectors 
are linearly independent. We denote the new 
enumeration again by Pi,i = 1,2, …, r and denote 
by Ir+d the characteristic function of the set 

{ {1, 2, ..., } | ( ) = }s l s Pr d   for each d = 1,2, …, μ − r. 
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(b) We deϐine the vectors , = 1, 2, ...,z h rr h   , as 
follows:

( ) = ( )z s z s Ir d r d  , where ( ) = ( )rz s z si i . 

(c) = [ , , ... , , ..., ]1 2 1W z z z z zr r  . 

(d) We consider the basic function γ for the set of 

vectors 1 2 1{ , ,..., , ,..., }r rz z z z z . and suppose 
that { , , ..., }1 2P P P    is the range of γ (the range of γ 

is consisted by μ vectors of Rμ ). Then, the vectors 
of the positive basis of W are the set {b1, b2, …, bμ} of 
Rk. They do arise from the following matrix equation: 

1( , , ..., ) = ( , , ..., ) ,1 2 1 2
T Tb b b D z z z 

 

where D is a μ = μ matrix. The columns of D are the vectors 
of the set 

{ , , ..., }.1 2P P P  

we observe that the vectors z1, …, zμ belong to Rl, as well. 
Namely, 

( , , ..., ) ,( , , ..., )1 2 1 2
T Tb b b z z z 

are both μ × l matrices. 

3.4. Existence of solution for linear programming pro-
blems

We do recall that a standard transformation step 
in the so-called Simplex Method is the addition of the 
complementary variables. Under the above determinations, 
a Linear Programming Problem is stated in the following 
way: Minimize c h , such that 

= = ,
=1 =1
h b t b bi i i ii i

 
 

                 
(2)

h   , where {b1, …, bμ} is the positive basis of the sub- 

lattice generated by the columns of the matrix V mentioned 

above. ĉ    is the associated vector of the cost variables. 
The coefϐicients of ĉ  have to be positive and non-zero.

Proposition 3.1 The constraint set of the form (2) is 

closed and bounded in Rμ if = =1b t bi ii
  and ti > 0 for any i 

= 1 , .., μ and there exist some positive, non -zero real number 

a, such that the constraint vector = =1h h bi ii
  satisϔies the 

following condition: hi ≥ a > 0, for any i = 1 , .., μ. 

Proof. We notice that the variable vector is actually h, 
which is a positive vector of Rμ. We also notice that b is a 
vector of Rk whose expansion coefϐicients ti, i = 1 , .., μ with 

respect of the positive basis {b1, …, bμ} are positive. If the 
above assumption is true, then the coefϐicients hi, i = 1 , .., μ 
do take values in the intervals [a, ti] for any i = 1 , .., μ, which 
implies that the set of constraints in the form (2) is closed 
and bounded. The last property arises from the properties 
of a positive basis of a sub -lattice in Rl. 

The signiϐicance of consideration that the constraints’ 
set of a Linear Programming Problem is closed and bounded 
is important, since we obtain that a solution of it actually 
exists.

However, the formulation denoted above implies the 
following

Proposition 3.2 If some of the coefϔicients ti, i = 1 , .., μ is 
zero, then the constraints’ set in the form (2) is unbounded. 

Proof. Assume there exists a vector y in Rl such that 

= = ,
=1 =1

y h b t bi i i ii i

 
 

where h    and tj = 0 for some = 1, ...,j  . Then, the 
vector 

= = ,
=1 =1

w e b t bi i i ii i

 
 

where ei = ti for any i = 1, …, μ and ej = λ ⋅ t for any λ being a 
positive real number is also equal to zero. However, w lies 
in the constraints’ set (2), as well. This implies that the set 
of constraints is unbounded. 

Remark 3.3 If the constraints’ set is unbounded, then a 
solution of a Linear Programming Problem may fail to exist.

The solution of a Linear Programming Problem of the 
form (2) is provided by the following

Proposition 3.4 The element of the sub-lattice generated 
by the columns of the matrix V in the Proposition 3.1 is a 
singleton, under the assumption mentioned in the statement 
of 3.1. 

Proof. The proof arises from the fact that the supports 
of the elements of the positive basis are disjoint. Then, the 
solution is the vector b itself. 

Alike in the so -called Simplex Method, when the 
set of constraints is unbounded, a solution for a Linear 
Programming Problem either does not exist, or its 
speciϐication is hard. 

Remark 3.5 The transformations of the constraints’ set 
into the form (2) through sub -lattices and positive bases 
may be used to verify whether it is bounded or not. Hence, 
it is signiϔicant about understanding whether a solution of a 
Linear Programming Problem exists or not. 
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Remark 3.6 The reader may see in [9] for a MATLAB 
implementation that computes the positive basis of any sub- 
lattice generated by vectors of a Euclidean space. 

3.5. Comparison with the simplex method

The classical simplex method iteratively moves along the 
edges of the feasible polyhedron to ϐind the optimal solution, 
relying on vertex enumeration. In contrast, the present 
sublattice approach reformulates the feasible region using 
positive bases and partially ordered vector spaces, allowing 
boundedness and solution existence to be assessed directly 
from the lattice structure. While the simplex method is 
algorithmically efϐicient for many practical problems, the 
sublattice method provides a theoretical framework that 
may offer advantages in problems with speciϐic lattice or 
convex geometry, especially in portfolio optimization where 
state spaces are ϐinite. Further computational analysis is 
required to evaluate the efϐiciency of this approach relative 
to existing algorithms. 

4. Conclusion

In this paper, we proposed an alternative lattice-
theoretic formulation of ϐinite-dimensional linear 
programming problems using positive bases and 
sublattices of Euclidean spaces. The reformulation allows 
for a direct examination of boundedness and feasibility 
by analyzing the structure of positive bases. Although 
the comparison with the simplex method remains open 
for computational complexity, the presented approach 
contributes conceptually by offering new theoretical 
insights into linear programming structure. Future work 
may include algorithmic development, computational 
complexity analysis, and broader applications in convex 
optimization and ϐinancial mathematics.
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