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Background

Graphs have solved structural problems in the fi elds of 
chemistry and biology. They have practically provided the 
solution for real-time problems [1]. Due to their importance 
in pure sciences, a new fi eld has been introduced called 
molecular graph theory. To understand the characteristics of 
a graph topological indices are used. They can be calculated 
based on different parameters. If a calculation is based on 
distances in the graphs, then they are called “Distance-based 
topological indices” [2,3]. Other known types are “Degree-
based topological indices” [4,5].

Topological indexes where calculations are dependent on 
distances between graph vertices are called “distance-based 
topological indexes”[6-12]. This index was introduced by 
Harry Wiener in 1947 [3]. Since then, many other indices of this 
type have been introduced that have practical applications in 
different fi elds such as robotics, computer science, medicine, 
networks, and physics. Known examples of distance-based 
topological indices are the Weiner index, Schultz index, modifi ed 
Schultz index, Hosoya polynomial, and Schultz polynomial 
[3,13-15,], there are still many diffi culties, especially in areas 
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such as zero divisor graphs, that are needed that these indices 
are further examined and adjusted.

Group and ring theory are linked with practical applications 
of algebra and number theory. They have been studied and 
explored for their practical use [16,17]. Group and ring theory 
consists of many things out of which an important part is fi nite 
commutative rings. Finite commutative rings are important 
in, the analysis of computer algorithms, data modelling, 
data analysis, the discipline of engineering, graph coding, 
wireless communications, combinatorics, and coding theory. 
An important fi nite commutative ring is a Zero divisor graph 
[16,18].

Algorithmic solutions are used to solve complex and 
mathematically insolvable problems. Now, a number of 
algorithms are available in almost all branches of science to deal 
with complex practical problems [11]. They are like road maps 
for accomplishing a given, well-defi ned task in an accurate and 
effi cient way. Some famous algorithmic techniques are Brute 
Force, Greedy Algorithms, Divide-and-Conquer, Dynamic 
Programming, Genetic Algorithms, etc. In this paper, we 
will create an algorithm that will calculate distance-based 
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topological indices for zero divisor graphs having commutative 
rings with three primes a, b, and c.

Distance-based topological indices

If G is a connected graph having vertex set V (G) and edge 
set E(G), respectively. The d (u, v) is the distance between vertex 
u and vertex v, which is the shortest path between vertices u 
and v. The distance-based topological indices have played an 
important role in understanding the distance characteristics of 
the graphs. 

( , )
( )

W d u v
uv V G                  (1)

Hosoya Polynomial of G is given as [10];

( , )
( )


d u vH x

uv V G
               (2)

They have provided practical solutions for distance-based 
problems like vertex-to-vertex distance, shortest routes, etc. 
The d(v) is the degree of vertex v. Wiener index introduced by 
Harry Wiener in 1947 [3] is given as:

Understanding the characteristics of a graph helps us in 
solving complex problems. We can fi nd out their characteristics 
with the help of topological indices. A special type of topological 
index is the “Distanced-based topological index”, have practical 
applications in robotics, physics, computer science, and other 
areas of science. If A is a commutative ring, and if P(A) is a set 
of all zero divisors in A. If u.v=0 , where u, v  V (G(A)) = P(A) 
and (u, v)  E(P(A)), then G(A) is a zero divisor graph [17,18]. 
Different authors have studied commutative rings, and zero-
divisor graphs [16,19-24].

Algorithmic approach

Schultz index is given as [15];

{ ( ) ( )} ( , )
( )

 S d u d v d u v
uv V G             (3)

Modifi ed Schultz index is given as [25];

* { ( ) ( )} ( , )
( )

 S d u d v d u v
uv V G

             (4)

We need a proper way to solve the problems. Algorithms 
provide us with the steps and a proper approach for fi nding 
solutions. Nowadays, mathematical problems have algorithmic 
solutions [26]. Algorithms provide numerical complex 
calculations. Once, a developed algorithm can be used further 
in the future for similar types of problems. Sometimes an 
algorithm used previously developed algorithms for the next 
step enhances problems. Algorithms convert inputs into 
the required solution or outputs. They are helpful in data 
processing, route fi ndings, mathematical operations, and 
logical solutions in computer science [26].

This article focuses on developing a program to calculate 
distance-dependent topological indices by constructing zero 

divisor graphs with fi nite rings: Zp1p2 × Zq and Zp2 × Zq [22]. 
These algorithms require three prime numbers as input and 
compute the Wiener index, Hosoya polynomial, Schultz index, 
and modifi ed Schultz index for zero divisor graphs. Algorithms 
must be designed carefully, to get accurate results and effi cient 
solutions.

In a zero-divisor graph, there are two different cases of a 
commutative ring with three primes, denoted as a, b, c: Zp2 × Zq 
and Zp1p2 × Zq [27]. In the fi rst case, [27], a and b represent the 
same primes, and in the second case, a, b, and c are different 
prime numbers. The algorithm is designed to intelligently 
handle both cases and calculate indices accordingly [27].

Algorithm

Input: Numbers d, e, and f.

Output: Generate Parameters for distance-based 
topological indices.

-------------------------------------------------
Function calculateParamters(d,e,f)

-------------------------------------------------

1: for v ← 0 to d × e

2: for u ← 0 to f

3: if (v /= 0 OR u /= 0)

4: if (d /= e)

5: if (v mod d /= 0 AND v mod e /= 0 AND v /= 0 AND u = 0)

6: V 4[di] ← AddPoint(v,u)

7: else if (v = 0 AND u /= 0)

8: V 1[ai] ← AddPoint(v,u)

9: else if (v mod d = 0)

10: if (u = 0)

11: V 2[bi] ← AddPoint(v,u)

12: else

13: V 5[ei] ← AddPoint(v,u)

14: else if (v mod e = 0)

15: if (u /= 0)

16: V 6[fvi] ← AddPoint(v, u)

17: else

18: V 3[ci] ← AddPoint(v,u)

19: else

20: if (v mod d /= 0 AND v /= 0 AND u = 0)

21: V 4[di] ← AddPoint(v,u)
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22: else if (v = 0 AND u /= 0)

23: V 1[ai] ← AddPoint(v,u)

24: else if (v mod d = 0)

25: if (u = 0)

26: V 2[bi] ← AddPoint(v, u)

27: else

28: V 3[ci] ← AddPoint(v,ju)

29: if (d /= e)

30: SumDistance1 ← ai × bi + ai × ci + ai × di + bi × ci + bi × fi  + 
ci × ei 31: SumDistance2 ← ai × fi  + ai × ei + bi × di + bi 
× ei + ci × di + ci × fi  32: DistanceDegree2 ← ai × fi (a × 
b − 1 + b − 1) + ai × ei(a × b − 1 + a − 1)

33: +bi × di(a × c − 1 + c − 1) + bi × ei(a × c − 1 + a − 1)

34: +ci × di(b × c − 1 + c − 1) + ci × fi (b × c − 1 + c − 1)

35: DegreeProduct2 ← ai × fi ((a × b − 1) × (b − 1)) + ai × ei((a × 
b − 1) × (a − 1))

36: +bi × di((a × c − 1) × (c − 1)) + bi × ei((a × c − 1) × (a − 1))

37: +ci × di((b × c − 1) × (c − 1)) + ci × fi ((b × c − 1) × (c − 1))

38: SumDistance3 ← di × ei + di × fi  + ei × fi 

39: DistanceDegree3 ← di × ei(c − 1 + a − 1) + di × fi (c − 1 + b − 1) 
+ ei × fi (a − 1 + b − 1)

40: DegreeProduct3 ← di × ei((c − 1) × (a − 1)) + di × fi ((c − 1) × 
(b − 1))

41: +ei × fi ((a − 1) × (b − 1))

42: else

43: SumDistance1 ← ai × bi + ai × di + bi × ci

44: SumDistance2 ← ai × ci + bi × di

45: DistanceDegree2 ← ai × ci(a × a − 1 + a − 1) + bi × di(c − 1 + 
a × c − 2

46: DegreeProduct2 ← ai × ci((a × a − 1) × (a − 1)) + bi × di((c − 
1) × (a × c − 2)

47: SumDistance3 ← ci × di 

48: DistanceDegree3 ← ci × di(c − 1 + p − 1)

49: DistanceProduct3 ← ci × di((c − 1) × (p − 1))

50: return SumDistance1, SumDistance2, SumDistance3, 
DistanceDegree2,

51: DistanceDegree3, DegreeProduct2, DegreeProduct2

-------------------------------------------------

Input: Prime numbers x, y and z.

Output: Distance-based Topological indices.

-------------------------------------------------
Main Algorithm calculateIndices(z,y,z)

-------------------------------------------------

1: calculateParamters(x, y, z)

2: WinnerIndex ← SumDistance1 + SumDistance2 + SumDistance3

3: Hosoya ← xSumDistance1+SumDistance2+SumDistance3

4: Schultz ← SumDistance1 + 2 × DistanceDegree2 + 3 × 
DistanceDegree3

5: M odif iedSchultz ← SumDistance1 + 2 × DegreeProduct2 + 3 
× DegreeProduct3

6: return WinnerIndex, Hosoya, Schultz, Modifi edSchultz

-------------------------------------------------

Algorithm results

The computer-based experiments have been conducted in 
which a number of zero divisor graphs have been generated 
for different prime numbers p1, p2, and q (Table 1). Distance-
based topological indices Weiner Index, Hosoya Polynomial, 
Schultz Index, and Modifi ed Schultz Index are computed from 
the algorithm for the graphs and results have been verifi ed 
mathematically. Figure 1 shows one of the outcomes of the 
algorithm. After generating different graphs, we can fi nd 

Table 1: Computer results of distance-based topological indices for zero divisor 
graph with Zp1p2 × Zq.

x y z
Computer Results

W.I Sch.I M.Sch. I
2 3 5 164 1990 2422
2 3 7 302 4164 5288
2 5 7 654 12854 19450
2 7 11 2338 68540 115216
3 5 7 1076 28908 68348
3 7 13 4908 200988 575964
5 7 11 6604 353228 1494604
5 7 13 8688 491760 2136816
5 11 13 16368 1133936 5765488
7 11 13 23580 1982700 12625452

Figure 1: Computer experiment outcome.



021

https://www.mathematicsgroup.com

Citation: Elahi K. Algorithms for Distance-based Topological Indices for Zero Divisor Graphs of Commutative Rings with Primes. Comput Math Appl. 2024; 2(1):018-
022. Available from: https://dx.doi.org/10.17352/cma.000007

general vertex sets and characteristics of zero divisor graph, 
as shown in Figure 2. Our algorithm further computed the 
mentioned distance-based topological indices, which have 
been verifi ed mathematically.

Conclusion

The fi ndings of the research are helpful for the fi elds of 
Mathematics and Computer Science. It computes distance-
based topological indices for zero divisor graphs containing 
commutative rings Zp1p2×Zq and Zp2×Zq algorithmically. These 
results are quite signifi cant due to the dynamic size of graphs, 
by using an algorithmic approach. Results give a comparison 
between different indices on a zero divisor graph as shown in 
Figure 3, also the results can be compared with other graph 
families. Secondly, the algorithm can be further modifi ed to 
fi nd the shortest path between vertices. The given algorithm is 
valid for any size of the graph as long as resources of computer 
supports, and its output can be used in under- standing 
physical structures (cylindrical fullerenes, hexagonal chains, 
silicone, polymers), solving problems in computer networks, 
and physical designs of mechanics.
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