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Nomenclature

Re: Reynolds Number; e: Non-dimensional Stenotic 
Height; Pr: Prandtl Number; Ec: Eckert Number; Q: Heat 
Source Parameter; Sc: Schmidt Number; KR: Chemical 
Reaction Parameter; uz: Dimensional Radial Velocity; w: Non-
Dimensional Radial Velocity; t: Dimensional Time; : Non-
Dimensional Time; C: Concentration; D: Diffusion Parameter; 
R(z): Dimensional Geometry of Stenosis

1. Introduction

Cancer is a disease that kills millions of people all over 
the world. The disease involves the unusual growth of the 
cells in the human body. Scientists have managed to fi nd 
ways of combating the disease [1] pointed out, that despite 
the development of diagnostic techniques and multiple novel 
therapies, the death rate of cancer patients has not changed 
substantially for decades. Besides, there is no single mechanism 
to cure cancer; instead, a combination of various modalities is 
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to be involved for better results [2]. There are some prevalent 
treatments such as chemotherapy, radiotherapy and surgical 
ablation of cancerous tumors already but all of them have many 
side effects, and they do not have enough accuracy [3]. Recently, 
the estimation of transient temperatures in biological tissues 
has been under the focus of researchers [4,5] pointed out that 
the Hyperthermia is a promising approach to cancer therapy 
because it not only kills cancer cells directly, but it also activates 
anti-cancer immunity as an indirect effect. Hyperthermia in 
the clinical context of a radiosensitiser for superfi cial tumours 
is defi ned as temperatures that are above normal physiological 
conditions, ranging from 40 0C to 45 0C [6]. In the similar 
manner [2], describes the term hyperthermia the elevation of 
temperature of a part of the body at a temperature more than 
that of the normal body temperature and maintaining it for a 
specifi c time duration.

Carrying out mathematical modeling of fl uid (blood) fl ow 
during such heat therapy is important as it does not only 
add knowledge but also helps in predicting the abnormality 
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condition of the body. In recent years, studies that involve 
blood fl ow along a constricted artery have been widely carried 
out. Besides In term of cost, hemodynamic modelling is a 
cheap alternative for physicians for predicting the outcome of 
alternative treatment plans for patients, which can be utilized 
to predict the risk of disease [7]. Numerical simulation of blood 
fl ow in a stenosed carotid artery using different rheological 
models was also studied by [8]. The geometry of the constriction 
was considered to follow a bell-shaped Gaussian distribution.

[9] modelled and simulated the fl ow of blood with magnetic 
nanoparticles as a carrier for targeted drug delivery along a 
stenosed artery. The study aimed at understanding the fl ow 
pattern and nanoparticle aggregation in a diseased arterial 
segment having atherosclerosis [10] studied the biomagnetic 
blood fl ow in a stenosed bifurcated artery with elastic walls. 
The nonNewtonian character of blood was taken into account.

[11] investigated the effects of the severity of the stenosis 
on fl uid fl ow in the diseased artery numerically with the help 
of a fi nite volume technique. Blood was assumed to follow the 
nonNewtonian character.

The evaluation of the attribute of blood fl ow together with 
the degree of obstruction generated in the arteries through 
different geometries was studied by [12]. The Flow of blood 
through the ill- affl icted artery was taken into account.

Other studies that investigated the fl ow of blood in stenosed 
artery are [13-19].

Mathematical formulation for blood fl ow and heat transfer 
during heat therapy is hardly studied as shown in the literature 
above. It is important to model and solve the formulation 
to understand the physics of blood and heat transfer 
during hyperthermia. In that regard therefore, the current 
investigation formulates and simulates the physics of arterial 
blood fl ow and temperature distribution during heat therapy 
along a large vessel.

2. Problem formulation

According to [11,12,20] blood can be considered to follow 
the Newtonian character when it fl ows in large arteries. 
Similarly, the current study assumes the blood to follow the 
Newtonian law of viscosity. It is further considered that the 
fl ow is unsteady, incompressible, axisymmetric rectilinear 
such that only the axial velocity component uz is nonzero. The 
streamlines are also assumed to be straight lines. Besides, it 
is also considered that the fl ow is fully developed pressure-
driven in cylindrical artery. The external heat source is 
assumed to be available to raise the body temperature. These 
considerations are applied to the well known continuity, 
momentum and energy equations, that is in the principles of 
mass, momentum and energy conservation. Besides, in this 
regard, the concentration equation in blood fl ow designates the 
transport of substances such as oxygen, nutrients, drugs, or 
waste products within the bloodstream. This equation accounts 
for both convective transport due to blood fl ow and diffusive 
transport due to concentration gradients.

Continuity equation:     .   0
t
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Mass Transfer:   .   
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Making use of the assumptions considered, the above 
equations become;
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Subject to the boundary and initial conditions

 0
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In this regard, the prescribed axial pressure gradient due to 
the pulsating nature of the blood fl ow in dimensionless form 
has been taken for human beings as:

   cos0 1
P

A A nt
z
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
           (2.12)

The arterial stenotic condition has the function as given 
here under

     1  cos  
2 0

z
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3. Scaling of model equations

The following variables are introduced to scale the variables
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The non-dimensional model equations are written using 
Eq. 3.1, for convenience, we drop the drop the asterisks. This 
results to the following non-dimensional model equations;
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are respectively Reynolds number, Eckert number, Prandtl 
number, Heat source parameter and Schmidt number. The 
dimensionless form of the stenosis geometry is given as
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Besides, the dimensionless form of the boundary and initial 
conditions become;
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4. Method of solution

A radial coordinate transformation is now introduced. 

The variable  such that  
r

R z
  . This has an effect of 

immobilizing the arterial wall in the transformed coordinate 
. Incorporating this transformation we get the following 
governing fl ow equations.
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The above equations are subject to boundary and initial 
conditions
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Now with the help of the axial velocity and the temperature 
of the streaming blood we easily determine the the skin friction 
Cf and the Nusselt number Nu as follows
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4.1 Finite difference scheme

The three equations 4.1−4.3 are solved using the fi nite 
difference method. According to [21] and [22] pointed out 
that the fi nite difference scheme is easier, cheaper and more 
effi cient to employ in solving partial differential equations. 
The Central difference formula is used to express the spatial 
derivatives and the forward difference formula is applied to the 
time derivatives. This is as shown hereunder;
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Similarly;
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For time derivative we have;
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We also defi ne (i) = (i − i)Δ and j = (j − 1)Δ = (j − 1)k. 
Incorporating equations 4.9 − 4.12 into equations 5.1 − 5.3 we 
have;
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Results and discussion

In this section, a graphical results of the study are presented 
to portray various effects of different fl uid fl ow parameters.The 

stability was maintained be ensuring that 
 

0 0.52



 




.

MATLAB software was used to produce the graphical 
results. The following values were used, Re = 3, e = 0.1, A0 = 1, 
A1 = 0.5, Pr = 1, Ec = 0.1, Q = 1, Sc = 0.1.These parameters were 
varied to see their impact on the fl uid fl ow properties.

Figure 1 shows the transient effect of velocity profi les. The 
fi gure is plotted in three dimensions where radial distance, 
time and velocity are shown. Besides, it is found in Figure 2 
velocity profi le increases with increase in Reynolds number. 
Increase of Reynolds number implies the increase in inertia 
force than the viscous force. This increase in inertia forces, 
raises the fl uid’s velocity profi le.

The effect of stenotic condition on the arterial wall to the 
velocity of blood is shown on Figure 3.

The velocity profi le decline as stenotic height increases. 
Increase in stenotic height reduces the arterial radius which 
leads to the increase in resistance of the fl uid to fl ow.

Figure 4 is established to observe the effect of the driving 
force for the blood’s fl ow, this is the steady state part of pressure 
gradient on the axial velocity of blood. The velocity is observed 
to enhance as the steady state part of pressure increases. This 

increases more fl ow of blood because its increase drives more 
fl uid to fl ow.

Here below are the graphical results of the temperature 
profi les. Figure 5 shows the transient effect of fl uid’s 
temperature in three dimensions. However, in Figure 6, fl uid’s 
temperature increases as the radius of the artery decreases 
due to plaques. Increase in stenotic height increases the 
resistance. As stenosis increases, the pressure increases which 

Figure 1: The transient effects of velocity profi les.

Figure 2: The effect of Reynolds number on velocity.

Figure 3: The effect of Stenosis on velocity.
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in turn affect the metabolic activities. The change in metabolic 
activities enhances the fl uids temperature.

The variation of temperature due to Prandtl number 
is elucidated in Figure 7. The graph reveals that increase of 
Prandtl number enhances the temperature. The enhancement 
of temperature is a result of increase in viscosity. This is 
because, increasing Prandtl number implies that viscosity 
is becoming dominant than the thermal conductivity. As 
viscosity increases, the resistance to fl ow increasing due to 
friction which eventually raises the temperature. Figure 8 
shows the variation of temperature due to the increasing in 
Eckert number. The result reveals the increase in temperature 
due to increase in Eckert number. As an Eckert number gets 
higher in values, the kinetic energy or velocity increases than 
temperature differences. This kinetic energy get converted to 
the heat energy which causes rise in temperature.

The variation of temperature profi le for different values 
of heat source parameter is depicted in Figure 9. The fi gure 
shows that, the temperature increases as the heat source 
parameter increases. The enhancement of the temperature as 
heat source rises was expected because heat therapy involves 
raising the body temperature or the affected part of the body 
to the higher temperature. The higher temperature in this 
regard, kills the abnormal mass of tissue that forms when cells 
grow and divide more than they should or do not die when 
they should. Medically, such tissues, their sizes decrease as a 
result of a decrease in the number of malignant cells brought 

on by treatment or hyperthermia-induced cell death. Elevated 
temperatures have the potential to denature and agglomerate 
proteins in cancer cells, ultimately resulting in cell death. 
Similar result was obtained by [23].

In Figure 10, temperature is enhanced as a steady state part 
of pressure gradient increases. The increase in temperature is 
a result of increase velocity by A0. It should be noted that blood 

Figure 4: The effect of Steady state part of pressure gradient on velocity.

Figure 5: The transient effects of temperature profi les.

Figure 6: The effect of Stenotic height on temperature profi les.

Figure 7: The effect of Prandtl number on temperature profi les.

Figure 8: The effect of Eckert number on temperature profi les.



015

https://www.mathematicsgroup.com

Citation: Mwapinga A. Mathematical Modeling of the Physics of Blood Flow along a Constricted Artery during Treatment of Cancer using Hyperthermia. Comput 
Math Appl. 2024; 2(1):010-017. Available from: https://dx.doi.org/10.17352/cma.000006

fl ows from the region with high pressure to the region with low 
pressure. Now, higher pressure differences between two points 
in the circulatory system, enhances blood fl ow which in turn 
raises temperature.

In Figure 11, it is observed that the arterial skin friction 
increases with the increase in the Reynolds number. Physically, 
as the Reynolds number increases, the inertial force becomes 
more dominant that the viscous force. This implies that the 
velocity of the fl uid is increasing. Such increase in velocity, 
eventually raises the arterial skin friction. Besides, getting 
aware of the high skin friction in arterial walls is crucial for 
preventing and managing cardiovascular diseases. The effect of 
stenotic height on skin friction is shown in Figure 12. Unlike in 
Reynolds number, the increase in stenotic height declines the 
skin friction. This is due to the fact that as stenosis increases, 
the velocity declines. The decrease in velocity therefore, leads 
to the decrease in the arterial skin friction.

Skin friction and Nusselt number plots

The variations of skin friction and Nusselt number are 
plotted below.

The Nusselt number which is the ratio of convective heat 
transfer to conductive heat transfer is defi ned as a non-

dimensional number that quantifi es convective heat transfer 
from a surface. Figures 13-16 shows that Nusselt number 
decreases with stenotic height and Reynolds number and 
increases with Prandtl number and heat source. In Figure 13 it 
is revealed that the Nusselt number declines with increase in 
the stenotic height. As stenotic height increases, more blood 
becomes to the wall that easily facilitate conduction of heat. 
Increasing conductive heat transfer leads to the decrease of 
the Nusselt number. The same is observed when the Reynolds 
number is increased. See Figures 14,15 the Nusselt number is 
observed to be enhanced by the Prandtl number which is the 
ration of momentum diffusivity to heat diffusivity. Physically, 
increasing the Prandtl number implies raising the conductivity 
which diminishes the Nusselt number. As expected, the heat 
source parameter is observed to increase the Nusselt number. 
This is as shown in Figures 16,17 exhibits the variation of the 
Nusselt number due to increase in the Eckert number. From the 
fi gure, we see that the Nusselt number increases with increase 
in Eckert number. It is important to note that increasing 
the Eckert number implies that convective heat transfer is 
dominant and kinetic energy gets converted into heat energy.

Conclusion

The investigation on the dynamics of blood fl ow, heat 
and mass transfer during hyperthermia treatment has 

Figure 9: The effect of Heat source parameter number on temperature profi les.

Figure 11: The effect of Reynolds number on arterial skin friction.

Figure 12: The effect of stenotic height on arterial skin friction.

Figure 10: The effect of Steady state part of pressure gradient on temperature 
profi les.
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been conducted for a chemically reacting blood. Blood has 
been assumed to follow the Newtonian law of viscosity. The 
formulated model has been solved numerically using Finite 
difference method. The effect of fl ow parameters were varied 
to see their impact. The profi les for arterial skin friction and 
the Nusselt number were also put in place. Hereunder are some 
of the most outstanding observations and fi ndings, plaques in 
arteries diminishes the velocity profi le, the Reynolds number 

enhances the fl ow fl uid velocity. The Prandtl number, Eckert 
number, stenotic height, and External heat source signifi cantly 
raise fl uid temperature. Chemical reaction parameter, 
Reynolds number and Schmidt number decrease the fl uid’s 
concentration. Besides, concentration is enhanced by the 
increase in stenotic height.

The similar recommended future work include the 
considering blood to suit the non-Newtonian character and the 
blood’s viscosity to be a variable and not a constant
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