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Introduction

In recent years, the demand for rental bikes has been 
steadily increasing in metropolitan areas worldwide, driven by 
a growing global trend towards environmental protection and 
sustainable transportation [1-3]. Bike-sharing systems offer a 
convenient and eco-friendly alternative to traditional modes 
of urban mobility, allowing users to rent bicycles for short 
trips and return them to designated docking stations [4,5]. 
However, providing cities with a stable supply of rental bikes 
to meet the fl uctuating demand has become a major challenge 
for bike-sharing operators [6,7]. Understanding the factors 
that infl uence bike rental demand is crucial for optimizing 
fl eet management, improving user satisfaction, and promoting 
sustainable urban mobility [8-10]. While rental bikes serve as 
a key component of urban mobility, it is important to consider 
alternative options such as public transportation, private 
vehicles, walking, and other micro-mobility solutions like 
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scooters [11-13]. Despite the presence of these alternatives, bike 
sharing remains a dominant force in the realm of sustainable 
transportation [14,15].

The topic of bike sharing demand has attracted signifi cant 
attention from researchers in recent years [16-18]. Numerous 
studies have explored various aspects of bike-sharing systems, 
including demand prediction [19,20], user behavior analysis 
[21,22], and system optimization [23,24]. These studies have 
employed a wide range of methodologies, such as linear 
regression [25], time series analysis [26], and machine 
learning techniques like neural networks [27,28]. However, the 
majority of these works focus primarily on accurate demand 
prediction rather than causal inference [29,30]. While accurate 
prediction is undoubtedly valuable for operational planning, 
understanding the causal relationships behind bike rental 
demand is crucial for designing effective interventions and 
policies to encourage sustainable transportation.
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Causal inference is a statistical approach that aims to 
identify the true causal effects of variables on an outcome of 
interest, going beyond mere correlations [9,10]. In the context 
of bike sharing demand, causal inference can help uncover 
the factors that directly infl uence user behavior and rental 
patterns, such as weather conditions, time of day, or bike 
infrastructure [3,15,20]. Several studies have applied causal 
inference techniques to investigate bike-sharing demand. For 
example, [11] used a difference-in-differences approach to 
evaluate the impact of a policy change on bike rental demand, 
while [12] employed a regression discontinuity design to 
estimate the effect of weather on bike usage. However, there 
remains a need for more comprehensive studies that apply 
causal inference methods to large-scale bike-sharing datasets, 
considering a wide range of potential causal factors [29,30].

To address this gap, this paper uses a dataset of Seoul 
bike-sharing demand and attempts to identify the key factors 
that contribute to the demand for rental bikes. By employing 
multiple linear regression models and analyzing the causal 
relationships between various independent variables and bike 
rental demand, this study aims to provide valuable insights for 
policymakers and bike-sharing operators. The fi ndings can 
inform strategies to optimize bike fl eet management, improve 
user experience, and promote sustainable urban mobility in 
Seoul and beyond [6,8,13,24].

Data and empirical strategy

The dataset used in this paper is from the UCI Machine 
Learning Repository [31], which records the number of rental 
bikes in Seoul every hour from December 1, 2017, at 0:00 to 
November 30, 2018, at 23:00, containing a total of 8,465 
observations. Table 1 lists the variables in the dataset and their 
descriptions.

Among these variables, we do not use the “Functioning 
Day” variable because when the rental station is closed, 
the number of rental bikes is 0. Therefore, we deleted 295 
observations where “Functioning Day” is “No”.

We employed multiple linear regression models to make 
causal inferences about the factors infl uencing bike rental 
demand [32]. The key assumption behind this approach 
is that the regression models can adequately capture the 
causal relationships between the independent variables and 
the dependent variable by controlling for multiple potential 
confounding factors simultaneously. By estimating the 
coeffi cients of the independent variables and assessing their 
statistical and economic signifi cance, the models aim to 
identify the factors that have a causal impact on bike rental 
demand. 

We used the natural logarithm of bike rental counts as the 
dependent variable in the regression models. We made this 
choice based on the following reasons: First, taking the natural 
logarithm can help transform a potential nonlinear relationship 
between bike rental counts and the infl uencing factors into a 
linear one, making the linear regression model more applicable. 
Second, it can reduce heteroscedasticity, which occurs when 
the conditional variance of the dependent variable varies with 
the levels of the independent variables. Third, taking the 
natural logarithm can improve the normality of the residuals, 
as the distribution of bike rental counts may be right-skewed. 
Fourth, when the dependent variable is log-transformed, the 
interpretation of the coeffi cients becomes more intuitive, 
representing the percentage change in bike rental counts for 
a one-unit change in the independent variable. Finally, it can 
reduce the differences in scales among variables, making the 
coeffi cients more comparable.

We considered several multiple linear regression models. 
We used the natural logarithm of bike rental counts as the 
dependent variable; the independent variables are Hour, 
Temperature, Humidity, Wind speed, Visibility, Dew point 
temperature, Solar Radiation, Rainfall, and Snowfall. The values 
of these variables are numeric. For the Season and Holiday 
variables, they can be considered as random samples across 
multiple periods. Therefore, we also introduced 3 dummy 
variables for the season (Spring, Summer, and Autumn) and 1 
dummy variable for holiday. Table 2 lists the variables used in 
the models.

The following 4 models are considered

Model (1): Using Hour, Temperature, 
and Humidity as independent variables.

Model (2): Using Hour, Temperature, Humidity, Wind speed, 
Visibility, and Dew point temperature as independent variables.

Model (3): Adding Solar Radiation, Rainfall, and Snowfall 
as independent variables. 

Model (4): Including all dummy variables.

Table 1: Variables in the dataset and their description.

Variable Description

Rented Bike Count
The integer number of bikes rented every hour (from 12:00 am 

to 11:59 pm)

Hour Takes 24 integers from 0 to 23

Temperature
The temperature in every hour (similarly hereinafter, Celsius 

scale)

Humidity percentage

Wind speed m/s

Visibility 10 meters

Dew point 
temperature

Celsius scale

Solar Radiation MJ/m2

Rainfall mm

Snowfall cm

Seasons Spring, Summer, Autumn, and Winter

Holiday Yes or No

Functioning Day Yes or No (The bike rental station open or close)
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Results

Table 3 shows the results obtained using R software. The 
numbers outside the parentheses are the estimated coeffi cient 
values; the numbers in parentheses are standard errors. 
Estimates with ** are statistically signifi cant at the 1% level, 
and those with * are statistically signifi cant at the 5% level.

Analysis

The analysis of variables is shown in Table 4.

Interpretation:

• From Table 3, it can be seen that the R-squared of all 4 
models exceeds 50%, so all multiple linear models are 
good.

• All dummy variables are statistically and economically 
signifi cant. This means that Seasons and Holiday are 
very important factors.

• Hour, Humidity, Dew point temperature, and Rainfall 
are important factors affecting bike demand. They are 
similar across different models and have statistical and 
economic signifi cance.

• Visibility and Solar Radiation are not important factors.

• Some factors such as Wind speed and Snowfall are 
signifi cant in some models but not in others. This paper 
speculates that the reason is these factors are related to 
Season.

Conclusion and prospects

In conclusion, this paper investigates the factors infl uencing 
the demand for rental bikes in Seoul using a dataset of Seoul 
bike sharing demand. By employing multiple linear regression 
models and analyzing the statistical and economic signifi cance 
of the estimated coeffi cients, this study identifi es several 
key factors that have a causal impact on bike rental demand, 

such as Hour, Humidity, Dew point temperature, Rainfall, and 
dummy variables for Season and Holiday. The results suggest 
that these factors play a crucial role in determining the demand 
for rental bikes in Seoul. Furthermore, the paper highlights the 
importance of considering causal relationships rather than 
solely focusing on prediction accuracy when analyzing bike-
sharing demand.

The methodology and fi ndings of this study have potential 
applications beyond Seoul. Bike-sharing programs are 
becoming increasingly popular in cities around the world as 
a sustainable mode of transportation. Future research could 
apply similar causal inference techniques to analyze bike-
sharing demand in other regions and countries, taking into 
account local contextual factors. This could provide valuable 
insights for policymakers and bike-sharing operators looking 
to optimize their systems and promote sustainable urban 
mobility.

Table 2: Variables used in models.

Variable Letter Independent/Dependent

Natural Log of Rented Bike Count y Independent

Hour x1 Dependent

Temperature x2 Dependent

Humidity x3 Dependent

Wind speed x4 Dependent

Visibility x5 Dependent

Dew point temperature x6 Dependent

Solar Radiation x7 Dependent

Rainfall x8 Dependent

Snowfall x9 Dependent

Spring d1 Dependent/Dummy

Summer d2 Dependent/Dummy

Autumn d3 Dependent/Dummy

Holiday d4 Dependent/Dummy

Table 3: Results of the 4 models obtained by R.

Dependent Variable: Natural log of Rented Bike Count

Independent variables (1) (2) (3) (4)

Constant 6.0043** 8.025** 7.338** 7.403**

(0.0343) (0.1709) (0.1650) (0.1572)

Hour 0.0379** 0.0410** 0.0432** 0.0440**

(0.0013) (0.0013) (0.0013) (0.0013)

Temperature 0.0563** -0.0283** -0.0067 -0.0268**

(0.0008) (0.0064) (0.0065) (0.0062)

Humidity -0.0184** -0.0413** -0.0323** -0.0363**

(0.0005) (0.0019) (0.0018) (0.0017)

Wind speed -0.0522** -0.0423** -0.0144

(0.0093) (0.0091) (0.0088)

Visibility 0.0001** 0.00004* -0.00002

(0.00002) (0.00002) (0.00002)

Dew point temperature 0.0905** 0.0672** 0.0744**

(0.0069) (0.0068) (0.0065)

Solar Radiation -0.0044 -0.0034

(0.0137) (0.013)

Rainfall -0.229** -0.227**

(0.0077) (0.0073)

Snowfall -0.0408* -0.0066

(0.0197) (0.0189)

Spring 0.4713**

(0.0316)

Summer 0.5073**

(0.0479)

Autumn 0.8101**

(0.0335)

Holiday -0.3636**

(0.0375)

R-squared 0.5034 0.5177 0.563 0.6064

Observations 8465 8465 8465 8465
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The insights gained from this study can serve as a 
foundation for further research and policy decisions aimed at 
enhancing bike-sharing systems and encouraging sustainable 
transportation. By understanding the key factors that infl uence 
bike rental demand, policymakers and operators can develop 
targeted strategies to improve system effi ciency, user 
satisfaction, and overall ridership.

Moreover, the causal inference approach employed in 
this study can be extended to investigate the impact of other 
potential factors on bike sharing demand, such as the built 
environment, public transit integration, or socio-economic 
characteristics of users. As cities continue to grapple with the 
challenges of congestion, air pollution, and climate change, 
bike sharing offers a promising solution for promoting 
active, low-carbon mobility. By leveraging the insights from 
this research, cities can create more resilient and adaptable 
bike-sharing systems that contribute to the broader goals of 
sustainable development.
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