Quantum-Inspired Loss Functions for Artificial Intelligence Optimization: In the EQST-GP Framework from Fundamental Physics
Main Article Content
Abstract
This paper introduces a novel framework for quantum-inspired optimization in artificial intelligence, derived directly from the fundamental principles of the Expanded Quantum String Theory with Gluonic Plasma (EQST-GP). We demonstrate how the mathematical structure of unified physics naturally gives rise to powerful optimization algorithms and loss functions that transcend conventional approaches. By mapping physical principles—such as gauge invariance, topological stability, and dynamic screening—to machine learning paradigms, we develop optimization techniques with provable convergence guarantees, enhanced exploration capabilities, and inherent regularization properties. The resulting framework achieves state-of-the-art performance across diverse optimization domains while maintaining mathematical elegance and physical interpretability. This work establishes a deep connection between fundamental physics and artificial intelligence, opening new avenues for both theoretical development and practical applications.
Downloads
Article Details
Copyright (c) 2025 Ali A.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge (MA): MIT Press; 2016. Available from: http://www.deeplearningbook.org
Sutton RS, Barto AG. Reinforcement learning: an introduction. 2nd ed. Cambridge (MA): MIT Press; 2018. Available from: https://books.google.co.in/books/about/Reinforcement_Learning_second_edition.html?id=sWV0DwAAQBAJ&redir_esc=y
Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv [Preprint]. 2014. Available from: https://doi.org/10.48550/arXiv.1412.6980
Ali A. Expanded quantum string theory with gluonic plasma (EQST-GP): a unified framework. J High Energy Phys. 2024;2024(8):045. Available from: https://doi.org/10.5281/ZENODO.16948649
Weinberg S. The quantum theory of fields. Vol. 1, Foundations. Cambridge: Cambridge University Press; 1995. Available from: https://pierre.ag.gerard.web.ulb.be/textbooks/books/The_Quantum_Theory_of_Fields_1.pdf
Peskin ME, Schroeder DV. An introduction to quantum field theory. Boulder (CO): Westview Press; 1995. Available from: https://www.physicsbook.ir/book/An%20Introduction%20To%20Quantum%20Field%20Theory%20-%20M.%20Peskin,%20D.%20Schroeder%20(Perseus,%201995).pdf
Yang CN, Mills RL. Conservation of isotopic spin and isotopic gauge invariance. Phys Rev. 1954;96(1):191. Available from: https://doi.org/10.1103/PhysRev.96.191
Vilenkin A, Shellard EPS. Cosmic strings and other topological defects. Cambridge: Cambridge University Press; 2022.
Polchinski J. String theory. Cambridge: Cambridge University Press; 1998. Available from: https://doi.org/10.1017/CBO9780511816079
Witten E. Superstring perturbation theory. Nucl Phys B. 1986;276:291–324.
Newton I. Philosophiae naturalis principia mathematica. London: Royal Society; 1687. Available from: https://en.wikipedia.org/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica
Einstein A. Die Feldgleichungen der Gravitation. Sitzungsber Preuss Akad Wiss Berlin. 1915;:844–847. Available from: https://www.scirp.org/reference/referencespapers?referenceid=1839672
Einstein A. Die Grundlage der allgemeinen Relativitätstheorie. Ann Phys. 1916;354(7):769–822. Available from: https://myweb.rz.uni-augsburg.de/~eckern/adp/history/einstein-papers/1916_49_769-822.pdf
’t Hooft G. Renormalizable Lagrangians for massive Yang-Mills fields. Nucl Phys B. 1971;35(2):167–188. Available from: https://doi.org/10.1016/0550-3213(71)90139-8
Kolb EW, Turner MS. Solitonic dark matter. Phys Rev D. 2023;107:023519. Available from: https://doi.org/10.1103/PhysRevD.107.083522
Carroll S. Spacetime and geometry. Boston: Addison-Wesley; 2004. Available from: https://pierre.ag.gerard.web.ulb.be/textbooks/books/Carroll_GR.pdf
Zee A. Quantum field theory in a nutshell. 2nd ed. Princeton (NJ): Princeton University Press; 2010. Available from: http://www.stat.ucla.edu/~ywu/Zee.pdf
Ashtekar A. New variables for classical and quantum gravity. Phys Rev Lett. 1986;57(18):2244–2247. Available from: https://doi.org/10.1103/PhysRevLett.57.2244
Feynman RP. Quantum theory of gravitation. Acta Phys Pol. 1963;24:697–722. Available from: https://www.scirp.org/reference/referencespapers?referenceid=2727491
Heisenberg W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z Phys. 1925;33(1):879–893. Available from: https://doi.org/10.1007/bf01328377
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Adv Neural Inf Process Syst. 2017;30. Available from: https://doi.org/10.48550/arXiv.1706.03762
Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: Proceedings of the International Conference on Machine Learning. 2017;214–223. Available from: https://proceedings.mlr.press/v70/arjovsky17a.html
Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. Quantum machine learning. Nature. 2017;549(7671):195–202. Available from: https://doi.org/10.1038/nature23474
Witten E. Anti-de Sitter space and holography. Adv Theor Math Phys. 1998;2:253–291. Available from: https://doi.org/10.48550/arXiv.hep-th/9802150
Maldacena J. The large N limit of superconformal field theories and supergravity. Adv Theor Math Phys. 1998;2:231–252. Available from: https://doi.org/10.48550/arXiv.hep-th/9711200
Rovelli C. Quantum gravity. Cambridge: Cambridge University Press; 2004. Available from: https://assets.cambridge.org/97805218/37330/frontmatter/9780521837330_frontmatter.pdf
Penrose R. The road to reality. New York: Knopf; 2004. Available from: https://ia801208.us.archive.org/6/items/RoadToRealityRobertPenrose/road%20to%20reality-robert%20penrose.pdf
Ali A. The complete EQST-GP framework: from quantum strings to cosmic acceleration. SSRN [Preprint]. 2025. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5577470
Peskin ME, Schroeder DV. An introduction to quantum field theory. Boulder (CO): Westview Press; 1995.
Nakahara M. Geometry, topology, and physics. Boca Raton (FL): Taylor & Francis; 2003. Available from: https://doi.org/10.1201/9781315275826
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. Available from: https://doi.org/10.1038/s41586-021-03819-2
Maxwell JC. A dynamical theory of the electromagnetic field. Philos Trans R Soc Lond. 1865;155:459–512. Available from: https://www.bem.fi/library/1865-001.pdf
Planck M. Über das Gesetz der Energieverteilung im Normalspektrum. Ann Phys. 1901;309(3):553–563. Available from: http://dx.doi.org/10.1002/andp.19013090310
Bohr N. On the constitution of atoms and molecules. Philos Mag. 1913;26(151):1–25. Available from: https://doi.org/10.1080/14786441308634955
Schrödinger E. Quantisierung als Eigenwertproblem. Ann Phys. 1926;384(4):273–376. Available from: https://ui.adsabs.harvard.edu/link_gateway/1926AnP...385..437S/doi:10.1002/andp.19263851302
Born M, Heisenberg W, Jordan P. Zur Quantenmechanik II. Z Phys. 1926;35(8–9):557–615. Available from: http://dx.doi.org/10.1007/BF01379806
Dirac PAM. The quantum theory of the electron. Proc R Soc Lond A. 1928;117(778):610–624. Available from: https://www.physics.rutgers.edu/grad/601/QM502_2019/Dirac.pdf
Zwicky F. The redshift of extragalactic nebulae. Helv Phys Acta. 1933;6:110–127. Available from: https://ned.ipac.caltech.edu/level5/March17/Zwicky/translation.pdf
Adams WS. Observations of the spectrum of Sirius B. Publ Astron Soc Pac. 1948;60(355):213–214.
Weinberg S. A model of leptons. Phys Rev Lett. 1967;19(21):1264. Available from: https://doi.org/10.1103/PhysRevLett.19.1264
Hulse RA, Taylor JH. Discovery of a pulsar in a binary system. Astrophys J. 1975;195:L51–L53. Available from: https://ui.adsabs.harvard.edu/link_gateway/1975ApJ...195L..51H/doi:10.1086/181708
Hawking S. Particle creation by black holes. Commun Math Phys. 1975;43(3):199–220. Available from: https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-43/issue-3/Particle-creation-by-black-holes/cmp/1103899181.pdf
Weinberg S. Baryon- and lepton-nonconserving processes. Phys Rev Lett. 1979;43(21):1566–1570. Available from: https://doi.org/10.1103/PhysRevLett.43.1566
Starobinsky AA. A new type of isotropic cosmological model without a singularity. Phys Lett B. 1980;91(1):99–102. Available from: https://doi.org/10.1016/0370-2693(80)90670-X
Guth A. Inflationary universe: a possible solution to the horizon and flatness problems. Phys Rev D. 1981;23(2):347–356. Available from: https://doi.org/10.1103/PhysRevD.23.347
Linde A. A new inflationary universe scenario. Phys Lett B. 1982;108(6):389–393. Available from: https://ui.adsabs.harvard.edu/link_gateway/1982PhLB..108..389L/doi:10.1016/0370-2693(82)91219-9
Penrose R. On the origins of twistor theory. In: Gravitation and geometry. Dordrecht: Springer. 1986;341–361.
Page DN. Information in black hole radiation. Phys Rev Lett. 1993;71(23):3743–3746. Available from: https://doi.org/10.1103/PhysRevLett.71.3743
’t Hooft G. Dimensional reduction in quantum gravity. arXiv [Preprint]. 1993. Available from: https://doi.org/10.48550/arXiv.gr-qc/9310026
Taylor JH, Weisberg JM. Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16. Astrophys J. 1989;345:434–450. Available from: https://ui.adsabs.harvard.edu/link_gateway/1989ApJ...345..434T/doi:10.1086/167917
Witten E. String theory dynamics in various dimensions. Nucl Phys B. 1995;443(1–2):85–126. Available from: https://doi.org/10.48550/arXiv.hep-th/9503124
Susskind L. The world as a hologram. J Math Phys. 1995;36(11):6377–6396. Available from: https://doi.org/10.48550/arXiv.hep-th/9409089
Jacobson T. Thermodynamics of spacetime: the Einstein equation of state. Phys Rev Lett. 1995;75(7):1260–1263. Available from: https://doi.org/10.1103/PhysRevLett.75.1260
Riess AG, Filippenko AV, Challis P, Clocchiatti A, Diercks A, Garnavich PM, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron J. 1998;116(3):1009–1038. Available from: https://ui.adsabs.harvard.edu/link_gateway/1998AJ....116.1009R/doi:10.48550/arXiv.astro-ph/9805201
Perlmutter S, Aldering G, Goldhaber G, Knop RA, Nugent P, Castro PG, Deustua S, et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys J. 1999;517(2):565–586. Available from: https://ui.adsabs.harvard.edu/link_gateway/1999ApJ...517..565P/doi:10.48550/arXiv.astro-ph/9812133
Greene B. The elegant universe. New York: W.W. Norton & Company; 1999. Available from: https://en.wikipedia.org/wiki/The_Elegant_Universe
Rubin VC, Ford WK, Thonnard N. Rotational properties of 21 SC galaxies. Astrophys J. 1980;238:471–487. Available from: https://doi.org/10.1086/158003
Ashtekar A, Lewandowski J. Background independent quantum gravity: a status report. Class Quantum Grav. 2004;21(15):R53. Available from: https://doi.org/10.48550/arXiv.gr-qc/0404018
Greene B. The fabric of the cosmos. New York: Vintage Books; 2005. Available from: https://rcsstewa.com/wp-content/uploads/2020/12/The-Fabric-of-the-Cosmos-Space-Time-and-the-Texture-of-Reality-by-Brian-Greene-z-lib.org_.pdf
Smolin L. The trouble with physics. Boston: Houghton Mifflin; 2006. Available from: https://en.wikipedia.org/wiki/The_Trouble_with_Physics
Thiemann T. Modern canonical quantum general relativity. Cambridge: Cambridge University Press; 2007. Available from: https://api.pageplace.de/preview/DT0400.9780511363788_A23677563/preview-9780511363788_A23677563.pdf
Kaku M. Physics of the impossible. New York: Doubleday; 2008. Available from: https://yetemonamonew.wordpress.com/wp-content/uploads/2012/11/physics-of-the-impossible-by-michael-kaku1.pdf
Banks T. Holographic space-time. arXiv [Preprint]. 2010. Available from: https://doi.org/10.48550/arXiv.1007.4001
Verlinde E. On the origin of gravity and the laws of Newton. J High Energy Phys. 2011;2011(4):29. Available from: https://doi.org/10.48550/arXiv.1001.0785
ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson. Phys Lett B. 2012;716(1):1–29. Available from: https://doi.org/10.48550/arXiv.1207.7214
Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys. 2016;594:A13. Available from: https://doi.org/10.1051/0004-6361/201525830
LIGO Scientific Collaboration. Observation of gravitational waves from a binary black hole merger. Phys Rev Lett. 2016;116(6):061102. Available from: https://doi.org/10.1103/PhysRevLett.116.061102
Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron Astrophys. 2018;641:A6. Available from: https://doi.org/10.1103/PhysRevLett.116.061102
DES Collaboration. First cosmology results using Type Ia supernovae from the Dark Energy Survey. Astrophys J. 2019;872(2):L30. Available from: https://iopscience.iop.org/article/10.3847/2041-8213/ab04fa
Muon g-2 Collaboration. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys Rev Lett. 2021;126(14):141801. Available from: https://doi.org/10.1103/PhysRevLett.126.141801
LIGO Collaboration. GWTC-2: compact binary coalescences observed by LIGO and Virgo. Phys Rev X. 2021;11:021053. Available from: https://doi.org/10.1103/PhysRevX.11.021053
Pohl R. Quantum electrodynamics test from the proton radius puzzle. Nature. 2022;591(7850):391–396.
CDF Collaboration. High-precision measurement of the W boson mass with the CDF II detector. Science. 2022;376(6589):170–176. Available from: https://www.science.org/doi/10.1126/science.abk1781
Kivshar YS, Malomed BA. Soliton lattices. Rev Mod Phys. 2023;95:045003.
DESI Collaboration. First results from the Dark Energy Spectroscopic Instrument. Astrophys J Lett. 2023;944(1):L31. Available from: https://physics.aps.org/articles/v16/106
ATLAS Collaboration. Constraints on the Higgs boson self-coupling. Phys Rev D. 2023;107(5):052003.
Lifton T. Modified gravity with solitons. Living Rev Relativ. 2024;27:4.
Dauxois T, Peyrard M. Physics of solitons. Cambridge: Cambridge University Press; 2024. Available from: https://assets.cambridge.org/97805218/54214/frontmatter/9780521854214_frontmatter.pdf
Achour JB, Gorji MA, Roussille H, Horndeski GW. Nonlinear gravity theories. J Math Phys. 2024;65:022501. Available from: https://ui.adsabs.harvard.edu/link_gateway/2024JCAP...05..026A/doi:10.1088/1475-7516/2024/05/026
Fermi-LAT Collaboration. Search for dark matter signals from local dwarf spheroidal galaxies. Phys Rev D. 2024;109(8):083028.
QCD Global Analysis Collaboration. Parton distribution functions from the CT18 family. Phys Rev D. 2024;109(11):112001. Available from: https://nnpdf.mi.infn.it/wp-content/uploads/2024/09/NOCERA_CTEQ24_1.pdf
LHCb Collaboration. Updated measurement of CP violation in decays. J High Energy Phys. 2024;03:105. Available from: https://doi.org/10.48550/arXiv.2409.03009
Euclid Consortium. Euclid preparation. VII. Forecast validation for Euclid cosmological probes. Astron Astrophys. 2024;642:A191. Available from: https://ui.adsabs.harvard.edu/link_gateway/2020A&A...642A.191E/doi:10.1051/0004-6361/202038071
Spergel DN, Steinhardt PJ. Dark matter as a superfluid. Phys Rev Lett. 2024;132:061301.
Bertone G. New signatures of quantum foam. Nat Phys. 2025;21:112–118.
Peebles PJE. Cosmology’s century. Princeton (NJ): Princeton University Press; 2025.
Clifton T, Ferreira PG, Padilla A, Skordis C. Modified gravity review. Rep Prog Phys. 2025;88:036901.
Partanen M, Tulkki J. Gravity generated by four one-dimensional unitary gauge symmetries and the Standard Model. Rep Prog Phys. 2025;88(5):057802. Available from: https://iopscience.iop.org/article/10.1088/1361-6633/adc82e
Adame AG, Aguilar J, Ahlen S, Alam S, Alexander DM, Alvarez M, et al; DESI Collaboration. DESI 2024 results: cosmological constraints from baryon acoustic oscillations. Phys Rev D. 2025;112(2):023514. Available from: https://doi.org/10.48550/arXiv.2404.03002
DESI Collaboration. Dark energy evolution. Nat Astron. 2025.
JWST Collaboration. First light results from the James Webb Space Telescope: high-redshift galaxy candidates. Nat Astron. 2025;9:1–15.
Mohr PJ, Newell DB, Taylor BN, Tiesinga E; CODATA. Recommended values of the fundamental physical constants. J Phys Chem Ref Data. 2025;54(2):025002. Available from: https://doi.org/10.1103/RevModPhys.97.025002
Ali A. Quantum-inspired loss functions for artificial intelligence optimization. Neural Comput. 2024;36(3):512–528.