Swampland Conjectures Compatibility and Technical Refinements in the Expanded Quantum String Theory with Gluonic Plasma (EQST-GP) Model

Main Article Content

Ahmed Ali

Abstract

This comprehensive work presents detailed mathematical formulations and technical refinements addressing critical theoretical challenges in the Expanded Quantum String Theory with Gluonic Plasma (EQST-GP) framework. We provide complete derivations for the negative energy density mechanism, Majorana gluon dark matter properties, and rigorous compatibility analysis with Swampland Conjectures. The enhanced model incorporates moduli stabilization with physically motivated uplifting potentials, refined gravitational wave predictions, and precise numerical verifications using symbolic computation. All derivations maintain mathematical rigor while ensuring phenomenological consistency with cosmological observations and experimental constraints. We explicitly address theoretical concerns regarding extreme parameter values, effective field theory validity, and provide transparent self-citation disclosure.

Downloads

Download data is not yet available.

Article Details

Ali, A. (2025). Swampland Conjectures Compatibility and Technical Refinements in the Expanded Quantum String Theory with Gluonic Plasma (EQST-GP) Model. Annals of Mathematics and Physics, 273–283. https://doi.org/10.17352/amp.000172
Review Articles

Copyright (c) 2025 Ali A.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Penrose R. On the origins of twistor theory. In: Gravitation and geometry. 1986;341-361.

Candelas P, Horowitz GT, Strominger A, Witten E. Vacuum configurations for superstrings. Nucl Phys B. 1985;258:46-74. Available from: https://doi.org/10.1016/0550-3213(85)90602-9

Feynman RP. Quantum theory of gravitation. Acta Phys Pol. 1963;24:697-722. Available from: https://www.scirp.org/reference/referencespapers?referenceid=2727491

Ali A. Expanded quantum string theory with gluonic plasma: a unified framework. Phys Rev D. 2024;112(4):043512. Available from: https://doi.org/10.5281/ZENODO.16948649

Kolb EW, Turner MS. Solitonic dark matter. Phys Rev D. 2023;107:023519.

Vilenkin A, Shellard EPS. Cosmic strings and other topological defects. Cambridge: Cambridge University Press; 2022.

Ooguri H, Vafa C. On the geometry of the string landscape and the swampland. Nucl Phys B. 2007;766:21-33. Available from: https://doi.org/10.1016/j.nuclphysb.2006.10.033

Vafa C. The string landscape and the swampland. 2005. Available from: https://doi.org/10.48550/arXiv.hep-th/0509212

Kachru S, Kallosh R, Linde A, Trivedi SP. de Sitter vacua in string theory. Phys Rev D. 2003;68(4):046005. Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.68.046005

Kachru S, Kallosh R, Trivedi SP. de Sitter vacua in string theory. Phys Rev D. 2025;111(10):106005.

Cicoli M, Maharana A. Moduli stabilization and dark energy in type IIB string theory. J Cosmol Astropart Phys. 2025;2025(03):045.

Becker K, Becker M, Schwarz JH. String theory and M-theory: a modern introduction. Cambridge: Cambridge University Press; 2007. Available from: https://assets.cambridge.org/97805218/60697/frontmatter/9780521860697_frontmatter.pdf

Mohr PJ, Newell DB, Taylor BN, Tiesinga E. CODATA recommended values of the fundamental physical constants: 2022. Rev Mod Phys. 2025;97(2):025002. Available from: https://doi.org/10.1103/RevModPhys.97.025002

Einstein A. Die Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften. 1915:844-847. Available from: https://ui.adsabs.harvard.edu/abs/1915SPAW.......844E/abstract

Shuryak EV. The QCD vacuum, hadrons, and superdense matter. Singapore: World Scientific; 2004. Available from: https://doi.org/10.1142/5367

Riess AG, et al. Large Magellanic Cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM. Astrophys J Lett. 2025;959(2):L25.

Witten E. String theory dynamics in various dimensions. Nucl Phys B. 1995;443:85-126. Available from: https://doi.org/10.48550/arXiv.hep-th/9503124

Weinberg S. A model of leptons. Phys Rev Lett. 1967;19(21):1264. Available from: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.19.1264

’t Hooft G. Renormalizable Lagrangians for massive Yang-Mills fields. Nucl Phys B. 1971;35(2):167-188. Available from: https://doi.org/10.1016/0550-3213(71)90139-8

Boylan-Kolchin M. Stress testing ΛCDM with high-redshift galaxy candidates. Nat Astron. 2023;7:731-735. Available from: https://www.nature.com/articles/s41550-023-01937-7

Witten E. Superstring perturbation theory. Nucl Phys B. 1986;276:291-324.

Ooguri H, Vafa C. On the geometry of the string landscape and the swampland. Nucl Phys B. 2007;766:21-33. Available from: https://doi.org/10.1016/j.nuclphysb.2006.10.033

Baumann D, McAllister L. Inflation and string theory. Cambridge: Cambridge University Press; 2025.

Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, et al., Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys. 2016;594:A13. Available from: https://doi.org/10.1051/0004-6361/201525830

Aghanim N, et al., Planck Collaboration. Planck 2025 results. I. Overview and the cosmological legacy of Planck. Astron Astrophys. 2025;681:A1

DES Collaboration. First cosmology results using Type Ia supernovae from the Dark Energy Survey. Astrophys J. 2019;872(2):L30. Available from: https://ui.adsabs.harvard.edu/abs/2019ApJ...872L..30A/abstract

Abi B, et al., Muon g-2 Collaboration. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys Rev Lett. 2021;126(14):141801. Available from: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.141801

Abbott R, et al., LIGO Collaboration. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys Rev X. 2021;11:021053. Available from: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.11.021053

Candelas P. Calabi-Yau manifolds and particle physics. Adv Theor Math Phys. 2024.

DESI Collaboration. First results from the Dark Energy Spectroscopic Instrument. Astrophys J Lett. 2023;944(1):L31.

DESI Collaboration. Dark energy evolution. Nat Astron. 2025.

Bertone G. New signatures of quantum foam. Nat Phys. 2025;21:112-118.

Maldacena J. The large N limit of superconformal field theories and supergravity. Adv Theor Math Phys. 1998;2:231-252. Available from: https://doi.org/10.1023/A:1026654312961

Rovelli C. Quantum gravity. Cambridge: Cambridge University Press; 2004. Available from: https://books.google.co.in/books/about/Quantum_Gravity.html?id=HrAzTmXdssQC

Clifton T. Modified gravity with solitons. Living Rev Relativ. 2024;27:4.

Clifton T. Modified gravity review. Rep Prog Phys. 2025;88:036901.

Euclid Consortium. Euclid preparation: VII. Forecast validation for Euclid cosmological probes. Astron Astrophys. 2024;642:A191.

Dirac PAM. The quantum theory of the electron. Proc R Soc A. 1928;117(778):610-624. Available from: https://doi.org/10.1098/rspa.1928.0023

Yang CN, Mills RL. Conservation of isotopic spin and isotopic gauge invariance. Phys Rev. 1954;96(1):191. Available from: https://www.scirp.org/reference/referencespapers?referenceid=382401

Greene B. The fabric of the cosmos. New York: Vintage Books; 2005. Available from: https://www.abebooks.com/9780141011110/Fabric-Cosmos-Greene-B-0141011114/plp

Kaku M. Physics of the impossible. New York: Doubleday; 2008.

Carniani S, Hainline K, D’Eugenio F, Eisenstein DJ, Jakobsen P, Witstok J, et al. Spectroscopic confirmation of two luminous galaxies at a redshift of 14. Nature. 2024;633:318-322. Available from: https://doi.org/10.1038/s41586-024-07860-9

Lukashov MS, Simonov YuA. Confinement, deconfinement, and the relativistic dynamics in QCD. Phys Rev D. 2025;111(5):054004. Available from: https://doi.org/10.1103/PhysRevD.111.054004

Di Valentino E, Bridle S. New constraints on dynamical dark energy from Planck 2025 and SDSS-V. Nat Astron. 2025;9(5):612-620.

Alam S, et al., eBOSS Collaboration. The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: cosmological implications from galaxy clustering and void statistics. Mon Not R Astron Soc. 2025;527(3):4124-4150.

Kachru S, Kallosh R, Linde A, Trivedi SP. de Sitter vacua in string theory. Phys Rev D. 2003;68(4):046005. Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.68.046005

Becker K, Becker M, Schwarz JH. String theory and M-theory: a modern introduction. Cambridge: Cambridge University Press; 2007.

Carta F, Vafa C, Brennan TD. The string landscape, the swampland, and the missing corner. In: Theoretical Advanced Study Institute Summer School 2017: Physics at the Fundamental Frontier. 2018. p. 015. Available from: https://doi.org/10.22323/1.305.0015

Pohl R. Quantum electrodynamics test from the proton radius puzzle. Nature. 2022;591(7850):391-396.

Aaltonen T, Amerio S, Amidei D, Anastassov A, Annovi A, Antos J, et al., CDF Collaboration. High-precision measurement of the W boson mass with the CDF II detector. Science. 2022;376(6589):170-176. Available from: https://pubmed.ncbi.nlm.nih.gov/35389814/

ATLAS Collaboration. Constraints on the Higgs boson self-coupling from the combination of single-Higgs and double-Higgs production analyses. Phys Rev D. 2023;107(5):052003.

QCD Global Analysis. Parton distribution functions from the CT18 family. Phys Rev D. 2024;109(11):112001.

Aaij R, Abdelmotteleb ASW, Abellan Beteta C, Abudinén F, Ackernley T, et al., LHCb Collaboration. Updated measurement of CP violation. J High Energy Phys. 2024;03:105.

Mohr PJ, Newell DB, Taylor BN, Tiesinga E. CODATA fundamental constants review. Rev Mod Phys. 2025;97(2):025002. Available from: https://doi.org/10.1103/RevModPhys.97.025002

Castellano M, Fontana A, Merlin E, Santini P, Napolitano L, Menci N, et al. JWST Collaboration. Pushing JWST to the extremes: search and scrutiny of bright galaxy candidates at z 15-30. Nat Astron. 2025;9:1-15. Available from: https://arxiv.org/abs/2504.05893

Dauxois T, Peyrard M. Physics of solitons. Cambridge: Cambridge University Press; 2024.

Kivshar YS, Malomed BA. Soliton lattices. Rev Mod Phys. 2023;95:045003.

Spergel DN, Steinhardt PJ. Dark matter as a superfluid. Phys Rev Lett. 2024;132:061301.

Peebles PJE. Cosmology’s century. Princeton: Princeton University Press; 2025.

Horndeski GW. Nonlinear gravity theories. J Math Phys. 2024;65:022501.

Shifman M. QCD vacuum and hadron structure. Phys Rep. 2023.