The Chronotopic Paradigm: The Cosmological Constant from Quantum Entanglement
Main Article Content
Abstract
Downloads
Article Details
Copyright (c) 2025 Patra R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ryu S, Takayanagi T. Holographic derivation of entanglement entropy from the anti–de Sitter space/conformal field theory correspondence. Phys Rev Lett. 2006;96(18):181602. Available from: https://doi.org/10.1103/PhysRevLett.96.181602
Van Raamsdonk M. Building up spacetime with quantum entanglement. Gen Relativ Gravit. 2010;42:2323–2329. Available from: https://link.springer.com/article/10.1007/s10714-010-1034-0
Maldacena J. The large-N limit of superconformal field theories and supergravity. Int J Theor Phys. 1999;38(4):1113–1133. Available from: https://link.springer.com/article/10.1023/A:1026654312961
Jacobson T. Thermodynamics of spacetime: The Einstein equation of state. Phys Rev Lett. 1995;75(7):1260. Available from: https://doi.org/10.1103/PhysRevLett.75.1260
Verlinde E. On the origin of gravity and the laws of Newton. J High Energy Phys. 2011;2011(4):29. Available from: https://pure.uva.nl/ws/files/1162156/105001_357036.pdf
Swingle B. Entanglement renormalization and holography. Phys Rev D. 2012;86(6):065007. Available from: https://doi.org/10.1103/PhysRevD.86.065007
Bianchi E, Myers RC. On the architecture of spacetime geometry. Class Quantum Grav. 2014;31(21):214002. Available from: https://doi.org/10.1088/0264-9381/31/21/214002
Uhlmann A. Parallel transport and “quantum holonomy” along density operators. Rep Math Phys. 1986;24(2):229–240. Available from: https://doi.org/10.1016/0034-4877(86)90055-8
Uhlmann A. The metric of Bures and the geometric phase. In: Groups and Related Topics. Dordrecht: Springer. 1991;267–274. Available from: https://link.springer.com/chapter/10.1007/978-94-011-2801-8_23
Nielsen MA, Chuang IL. Quantum computation and quantum information: 10th anniversary edition. Cambridge: Cambridge University Press; 2010. Available from: https://doi.org/10.1017/CBO9780511976667
Witten E. APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory. Rev Mod Phys. 2018;90(4):045003. Available from: https://doi.org/10.1103/RevModPhys.90.045003
Calabrese P, Cardy J. Entanglement entropy and quantum field theory. J Stat Mech Theory Exp. 2004;2004(06):P06002. Available from: https://doi.org/10.1088/1742-5468/2004/06/P06002
Haag R. Local quantum physics: Fields, particles, algebras. Berlin: Springer Science & Business Media; 1996. Available from: https://link.springer.com/book/10.1007/978-3-642-61458-3
Bengtsson I, Życzkowski K. Geometry of quantum states: an introduction to quantum entanglement. Cambridge: Cambridge University Press; 2017. Available from: https://doi.org/10.1017/9781139207010
Petz D. Monotone metrics on matrix spaces. Linear Algebra Appl. 1996;244:81–96. Available from: https://doi.org/10.1016/0024-3795(94)00211-8
Bures D. An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite w*-????-algebras. Trans Am Math Soc. 1969;135:199–212. Available from: https://www.jstor.org/stable/1995012
Di Francesco P, Mathieu P, Sénéchal D. Conformal field theory. New York: Springer Science & Business Media; 1997. Available from: https://doi.org/10.1007/978-1-4612-2256-9
Sachdev S. Quantum phase transitions. Cambridge: Cambridge University Press; 2011. Available from: https://doi.org/10.1017/CBO9780511973765
Henkel M. Conformal invariance and critical phenomena. Berlin: Springer Science & Business Media; 1999. Available from: https://doi.org/10.1007/978-3-662-03937-3
Wald RM. General relativity. Chicago: University of Chicago Press; 1984. Available from: https://fma.if.usp.br/~mlima/teaching/PGF5292_2021/Wald_GR.pdf
Petersen P. Riemannian geometry. Vol. 171. New York: Springer Science & Business Media; 2006. Available from: https://link.springer.com/book/10.1007/978-0-387-29403-2
Nakahara M. Geometry, topology, and physics. Boca Raton: CRC Press; 2003. Available from: https://doi.org/10.1201/9781315275826
Pfeuty P. The one-dimensional Ising model with a transverse field. Ann Phys. 1970;57(1):79–90. Available from: https://www.math.ucdavis.edu/~bxn/pfeuty1970.pdf
Calabrese P, Campostrini M, Essler F, Nienhuis B. Parity effects in the scaling of block entanglement in gapless spin chains. Phys Rev Lett. 2010;104(9):095701. Available from: https://doi.org/10.1103/PhysRevLett.104.095701
Latorre JI, Rico E, Vidal G. Ground state entanglement in quantum spin chains. Quantum Inf Comput. 2004;4(1):48–92. Available from: https://dl.acm.org/doi/abs/10.5555/2011572.2011576
Takesaki M. Theory of operator algebras II. Vol. 125. Berlin: Springer Science & Business Media; 2003. Available from: https://link.springer.com/series/5515?srsltid=AfmBOoo0Y4y-YTsUwwHm8rk8KJ4-R_XDOjysTqpRU5xOqdLeAF4fzA_G
Borchers HJ. On revolutionizing quantum field theory with Tomita’s modular theory. J Math Phys. 2000;41(6):3604–3673. Available from: https://doi.org/10.1063/1.533323
Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes: The art of scientific computing. 3rd ed. Cambridge: Cambridge University Press; 2007. Available from: https://books.google.co.in/books/about/Numerical_Recipes_3rd_Edition.html?id=1aAOdzK3FegC&redir_esc=y
Taylor JR. An introduction to error analysis: The study of uncertainties in physical measurements. Sausalito (CA): University Science Books; 1997. Available from: https://www.scirp.org/reference/referencespapers?referenceid=2927559