Contraction and Periodic Orbits in Time-Periodic Filippov Systems

Main Article Content

Pascal Stiefenhofer

Abstract

We develop an explicit and verifiable contraction framework for planar, time-periodic Filippov systems with a single codimension-one switching manifold. On compact forward-invariant sets, the framework treats smooth flow, switching, and sliding within a single calculus by combining (i) differential contraction off the manifold via Clarke’s generalized Jacobian, (ii) multiplicative jump contraction at switching instants encoded directly in a weighted distance, and (iii) tangential contraction along the Filippov sliding vector field. The analysis is saltation-free and yields computable exponential rates directly from model data.
Three structural results underpin the theory. (1) Local-to-global contraction: a local uniform exponential bound extends to global contraction on compact convex invariant sets. (2) Metric transfer: contraction in the weighted distance implies exponential decay in the Euclidean norm with the same rate up to fixed constants, ensuring physical interpretability. (3) Average contraction under bounded switching: if smooth/sliding segments contract at rate ν > 0, each switch contributes at most a factor eκ, and the switch count satisfies N(t) ≤ ρt+N0, then trajectories decay at the effective rate νeff = ν-ρκ. Under T-periodic forcing, the stroboscopic map is a contraction, and Banach’s theorem yields a unique exponentially orbitally stable T- periodic Filippov solution with an explicit convergence rate.
The assumptions (time periodicity, piecewise-C1 regularity, a single switching manifold, compact forward invariance, and a mild dwell-time/no-Zeno condition) are minimal for our purposes. An explicit two-dimensional piecewise-smooth oscillator (mass–spring–damper with Coulomb friction) demonstrates closed-form verification of the hypotheses; simulations visualize contraction across smooth and sliding regimes.
MSC: 34A36, 34D20, 37C60.

Downloads

Download data is not yet available.

Article Details

Stiefenhofer, P. (2025). Contraction and Periodic Orbits in Time-Periodic Filippov Systems. Annals of Mathematics and Physics, 166–176. https://doi.org/10.17352/amp.000161
Research Articles

Copyright (c) 2025 Stiefenhofer P

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

di Bernardo M, Budd CJ, Champneys AR, Kowalczyk P. Piecewise-smooth dynamical systems: theory and applications. Springer; 2008. Available from: http://dx.doi.org/10.1109/MCS.2008.929164

Kunze M. Non-smooth dynamical systems. Lecture Notes in Mathematics, vol. 1744. Springer-Verlag; 2000. Available from: https://link.springer.com/book/10.1007/BFb0103843

Giesl P. Existence of periodic orbits in nonsmooth differential equations using contraction mappings. J Math Anal Appl. 2005;306(1):203–18. Available from: http://dx.doi.org/10.1002/zamm.200310164

Leine RI, van Campen DH, van de Vrande BL. Stick–slip vibrations induced by alternate friction models. Nonlinear Dyn. 2000;23(2):105–30. Available from: http://dx.doi.org/10.1177/1461348419853658

Leine RI, van Campen DH, van de Vrande BL. Stick–slip vibrations induced by alternate friction models. Nonlinear Dyn. 2000;23(2):105–30. https://pure.tue.nl/ws/files/1478861/605090.pdf

Guardia M, Seara TM, Teixeira MA. Generic bifurcations of low codimension of planar Filippov systems. J Differ Equations. 2010;250(4):1967–2023. Available from: https://doi.org/10.1016/j.jde.2010.11.016

Li Y, Dankowicz H. Bifurcation analysis of stick–slip oscillations in discontinuous dynamical systems. Nonlinear Dyn. 2021;103(2):1355–74.

Stiefenhofer P, Giesl P. Switching regimes in economics: the contraction mapping and the ω-limit set. Appl Math. 2019;10(7):513–20. Available from: https://doi.org/10.4236/am.2019.107035

Stiefenhofer P, Giesl P. A global stability theory of nonsmooth periodic orbits: example I. Appl Math Sci. 2019;13(11):511–20. Available from: https://www.m-hikari.com/ams/ams-2019/ams-9-12-2019/p/stiefenhoferAMS9-12-2019-1.pdf

Stiefenhofer P. Economic stability of non-smooth periodic orbits in the plane: omega limit sets Part I. Nonlinear Anal Differ Equ. 2020;8(1):41–52. Available from: https://www.m-hikari.com/nade/nade2020/1-2020/p/stiefenhoferNADE1-2020-1.pdf

Stiefenhofer P. Economic stability of non-smooth periodic orbits in the plane: omega limit sets Part II. Nonlinear Anal Differ Equ. 2020;8(1):53–65. Available from: https://www.m-hikari.com/nade/nade2020/1-2020/p/stiefenhoferNADE1-2020-2.pdf

Pavlov A, Pogromsky A, van de Wouw N, Nijmeijer H. Convergent dynamics: a tribute to Boris Pavlovich Demidovich. Syst Control Lett. 2004;52(3–4):257–61. Available from: http://dx.doi.org/10.1016/j.sysconle.2004.02.003

Itō F. A Filippov solution of a system of differential equations with discontinuous right-hand side. Econ Lett. 1979;4:349–54. Available from: https://ideas.repec.org/a/eee/ecolet/v4y1979i4p349-354.html

Stiefenhofer P, Giesl P. Economic periodic orbits: a theory of exponential asymptotic stability. Nonlinear Anal Differ Equ. 2019;7(1):9–16. Available from: https://www.m-hikari.com/nade/nade2019/1-4-2019/p/stiefenhoferNADE1-4-2019.pdf

Dieci L, Elia C, Lopez L. Networks of piecewise-smooth Filippov systems and stability of synchronous periodic orbits. Discret Contin Dyn Syst B. Forthcoming 2025;30:6. https://www.aimsciences.org/article/doi/10.3934/dcdsb.2024146

Filippov AF. Differential equations with discontinuous righthand sides. Kluwer Academic Publishers; 1988. Available from: https://doi.org/10.1007/978-94-015-7793-9

Stiefenhofer P. Exponential stability of nonsmooth periodic orbits in the complex space. Phys Lett A. Forthcoming 2025. Available from: https://doi.org/10.1016/j.physleta.2025.130935

Stiefenhofer P. Spectral contraction framework for planar Filippov systems: existence and stability of nonsmooth periodic orbits. Commun Adv Math Sci. Forthcoming 2025. Available from: https://doi.org/10.48550/arXiv.2507.06408

Stiefenhofer P. A spectral contraction framework for periodic solutions in nonsmooth dynamical systems. arXiv preprint. 2025;arXiv:2507.06408. Available from: http://dx.doi.org/10.48550/arXiv.2507.06408

Clarke FH. Optimization and nonsmooth analysis. Wiley; 1983. Available from: https://doi.org/10.1137/1.9781611971309

Bullo F. Contraction theory for dynamical systems. 1.1 ed. Kindle Direct Publishing; 2023. Available from: https://fbullo.github.io/ctds/

Giesl P. Necessary condition for the basin of attraction of a periodic orbit in non-smooth periodic systems. Discrete Contin Dyn Syst. 2007;18:355–73. Available from: https://doi.org/10.3934/dcds.2007.18.355

Giesl P, Argaez C, Hafstein S, Wendland H. Minimization with differential inequality constraints applied to complete Lyapunov functions. Math Comput. 2021;90:2137–60.

Giesl P, Hafstein S, Kawan C. Review on contraction analysis and computation of contraction metrics. J Comput Dyn. 2023;10:1–47. Available from: https://doi.org/10.3934/jcd.2022018

Kunze M, Kuepper T. Non-smooth dynamical systems: an overview. In: Fiedler B, editor. Ergodic theory, analysis, and efficient simulation of dynamical systems. Berlin: Springer; 2001;431–52. Available from: https://link.springer.com/chapter/10.1007/978-3-642-56589-2_19

Lohmiller W, Slotine JE. Nonlinear process control using contraction theory. AIChE J. 2000;46(3):588–96. Available from: https://web.mit.edu/nsl/www/preprints/contraction.pdf

Novaes DD, Seara TM, Teixeira MA, Zeli IO. Study of periodic orbits in periodic perturbations of planar reversible Filippov systems having a two-fold cycle. SIAM J Appl Dyn Syst. 2020;19(2):1343–71. Available from: https://web.mat.upc.edu/tere.m-seara/articles/NovaesSTZSIADS2020.pdf

Sontag E. Contractive systems with inputs. In: Perspectives in mathematical system theory, control, and signal processing. Lecture Notes in Control and Information Sciences. Berlin: Springer-Verlag; 2010;398:217–28. Available from: https://link.springer.com/chapter/10.1007/978-3-540-93918-4_20

Stiefenhofer P, Giesl P. A local stability theory of nonsmooth periodic orbits: example II. Appl Math Sci. 2019;13(11). Available from: https://research.brighton.ac.uk/en/publications/a-local-stability-theory-of-nonsmooth-periodic-orbits-example-ii

Stiefenhofer P, Giesl P, Wagner H. A system of inverted nonsmooth pendula: modelling an elderly person stepping over an obstacle. Nonlinear Anal Differ Equ. 2019;7(1):1–15. Available from: https://www.m-hikari.com/nade/nade2019/1-4-2019/p/stiefenhoferNADE1-4-2019-2.pdf