How To Solve Convolution–Type Functional Equations?

Main Article Content

László Székelyhidi

Abstract

Convolution–type functional equations appear in all fields of pure and applied mathematics. The description of the solution space of such equations is based on the study of the fundamental problems of spectral analysis and spectral synthesis. Here we exhibit the possibility of using our recent results on spectral synthesis to offer a general method to solve systems of convolution–type functional equations.
AMS (2000) Subject Classification: 43A45, 22D99.

Downloads

Download data is not yet available.

Article Details

Székelyhidi, L. (2025). How To Solve Convolution–Type Functional Equations?. Annals of Mathematics and Physics, 160–165. https://doi.org/10.17352/amp.000160
Mini Reviews

Copyright (c) 2025 Székelyhidi L.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Rudin W. Functional analysis. New York: McGraw-Hill Book Co.; 1973. (McGraw-Hill Series in Higher Mathematics). Available from: https://59clc.wordpress.com/wp-content/uploads/2012/08/functional-analysis-_-rudin-2th.pdf

Rudin W. Fourier analysis on groups. New York: John Wiley & Sons Inc.; 1990. (Wiley Classics Library).

Székelyhidi L. Harmonic and spectral analysis. Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd.; 2014. Available from: https://books.google.co.in/books/about/Harmonic_and_Spectral_Analysis.html?id=mu8inwEACAAJ&redir_esc=y

Székelyhidi L. Annihilator methods for spectral synthesis on locally compact Abelian groups. Monatsh Math. 2016;180(2):357–71. Available from: https://tudoster.unideb.hu/en/publikacio/BIBFORM080991

Székelyhidi L. Annihilator methods in discrete spectral synthesis. Acta Math Acad Sci Hungar. 2014;143(2):351–66. Available from: http://dx.doi.org/10.1007/s10474-014-0396-2

Laczkovich M, Székelyhidi G. Harmonic analysis on discrete abelian groups. Proc Am Math Soc. 2005;133(6):1581–6. Available from: https://www.ams.org/journals/proc/2005-133-06/S0002-9939-04-07749-4/S0002-9939-04-07749-4.pdf

Fréchet M. Une définition fonctionelle des polynômes. Nouv Ann. 1909;49:145–62. Available from: https://eudml.org/doc/102345

Matsumura H. Commutative ring theory. Cambridge: Cambridge University Press; 1986.

Székelyhidi L. Fréchet’s equation and Hyers theorem on noncommutative semigroups. Ann Polon Math. 1988;48(2):183–9. Available from: https://eudml.org/doc/265629

Székelyhidi L. The failure of spectral synthesis on some types of discrete abelian groups. J Math Anal Appl. 2004;291(2):757–63. Available from: https://doi.org/10.1016/j.jmaa.2003.11.041

Székelyhidi L. A characterization of exponential polynomials. Publ Math Debrecen. 2013;83(4):757–71. Available from: https://publi.math.unideb.hu/load_doc.php?p=1845&t=pap

Schwaiger J, Prager W. Polynomials in additive functions and generalized polynomials. Demonstratio Math. 2008;41(3):589–613.

Schwartz L. Théorie générale des fonctions moyenne-périodiques. Ann Math (2). 1947;48:857–929. Available from: https://www.jstor.org/stable/1969386

Laczkovich M, Székelyhidi L. Spectral synthesis on discrete abelian groups. Math Proc Camb Philos Soc. 2007;143(1):103–20. Available from: https://doi.org/10.1017/S0305004107000114

Gurevič DI. Counterexamples to a problem of L. Schwartz. Funktsional Anal i Prilozhen. 1975;9(2):29–35. Available from: https://link.springer.com/article/10.1007/BF01075447

Székelyhidi L. Characterisation of locally compact Abelian groups having spectral synthesis. Forum Math Sigma. [To appear].

Schwartz L. On a property of spectral synthesis in non-compact groups. C R Acad Sci Paris. 1948;227:424–6.

Malgrange B. On some properties of convolution equations. C R Acad Sci Paris. 1954;238:2219–21.

Ehrenpreis L. Mean periodic functions I: Part I. Varieties whose annihilator ideals are principal. Am J Math. 1955;77(2):293–328. Available from: https://doi.org/10.2307/2372533

Malgrange B. Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution. Ann Inst Fourier (Grenoble). 1956;6:271–355. Available from: https://www.numdam.org/item/AIF_1956__6__271_0/

Lefranc M. Spectral analysis on Zn. C R Acad Sci Paris. 1958;246:1951–3.

Malgrange B. On convolution equations. Rend Semin Mat Torino. 1959;19:19–27.

Malliavin P. Impossibility of spectral synthesis on non-compact abelian groups. Inst Hautes Études Sci Publ Math. 1959;(1959):85–92.