Modelling Spacecraft Control Systems for On-Orbit Manufacturing Using Quaternion-Based Variational Integration
Main Article Content
Downloads
Article Details
Copyright (c) 2025 Radice G.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Marsden JE, West M. Discrete mechanics and variational integrators. Acta Numer. 2001;10(1):357–514. Available from: https://www.cds.caltech.edu/~marsden/bib/2001/09-MaWe2001/MaWe2001.pdf
Hairer E, Lubich C, Wanner G. Geometric numerical integration illustrated by the Stormer-Verlet method. Acta Numer. 2003;12(1):399–450. Available from: https://www.math.kit.edu/ianm3/lehre/geonumint2009s/media/gni_by_stoermer-verlet.pdf
Dante AB, Anton HJ. Galerkin variational integrators for orbit propagation with application to small bodies. J Guid Control Dyn. 2018;1–17. Available from: https://doi.org/10.2514/1.G003767
Lee T, McClamroch N, Leok M. Lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum. Proc IEEE Conf Control Appl. 2005:962–7. Available from: https://mathweb.ucsd.edu/~mleok/pdf/LeLeMc2005_lgvi.pdf
Lee T, Leok M, McClamroch NH. Lie group variational integrators for the full body problem in orbital mechanics. Celest Mech Dyn Astron. 2007;98(2):121–44. Available from: http://dx.doi.org/10.1007/s10569-007-9073-x
Hussein I, Leok M, Sanyal A, Bloch A. Discrete variational integrator for optimal control problems on SO(3). Proc IEEE Conf Decis Control. 2006:6636–41. Available from: https://mathweb.ucsd.edu/~mleok/pdf/HuLeSaBl2006_dvioc.pdf
Barth E, Leimkuhler B. Symplectic methods for conservative multibody systems. In: Integration Algorithms and Classical Mechanics. Fields Inst Commun. 1999;10(1):25–43.
McLachlan RI. Explicit Lie-Poisson integration and the Euler equations. Phys Rev Lett. 1993;71(19):3043–6. Available from: https://doi.org/10.1103/PhysRevLett.71.3043
Omelyan IP. Algorithm for numerical integration of the rigid body equations of motion. Phys Rev E Stat Nonlin Soft Matter Phys. 1998;58(1):1169. Available from: https://doi.org/10.1103/PhysRevE.58.1169
Omelyan IP. On the numerical integration of motion for rigid polyatomics: the modified quaternion approach. Comput Phys. 1998;12(1):97–103. Available from: https://doi.org/10.1063/1.168642
Krysl P. Direct time integration of rigid body motion with discrete-impulse midpoint approximation: explicit Newmark algorithms. Commun Numer Methods Eng. 2006;22(5):441–51. Available from: http://dx.doi.org/10.1002/cnm.826
Altmann S. Rotations, quaternions, and double groups. Oxford: Clarendon Press; 1986;201–223. Available from: https://archive.org/details/rotationsquatern0000altm/page/n5/mode/2up
Nikravesh P, Wehage R, Kwon O. Euler parameters in computational kinematics and dynamics. Part 1. J Mech Des. 1985;107(3):358–65. Available from: https://experts.arizona.edu/en/publications/euler-parameters-in-computational-kinematics-and-dynamics-part-1
Udwadia FE, Schutte AD. Alternative derivation of the quaternion equations of motion for rigid-body rotational dynamics. J Appl Mech. 2010;77(4):044505. Available from: https://doi.org/10.1115/1.4000917
Schaub H, Junkins JL. Analytical mechanics of space systems. 2nd ed. Reston (VA): AIAA Education Series; 2009. p. 79–199.
Holm D. Geometric mechanics. Part II: Rotating, translating, and rolling. 2nd ed. London: Imperial College Press; 2011. p. 19–135. Available from: https://www.ma.ic.ac.uk/~dholm/classnotes/GeomMech2-2nd.pdf
Goldstein H, Poole C, Safko J. Classical mechanics. 3rd ed. San Francisco: Addison Wesley; 2001;34–64.
Lanczos C. Variational principles of mechanics. 4th ed. New York: Dover Publications; 1986;35–68.
Morton HS. Hamiltonian and Lagrangian formulations of rigid-body rotational dynamics based on the Euler parameters. J Astronaut Sci. 1993;41(4):569–91. Available from: https://ui.adsabs.harvard.edu/abs/1993JAnSc..41..569M/abstract
Ascher U, Greif C. A first course on numerical methods. Philadelphia: SIAM; 2011;251–61.
Hughes P. Spacecraft attitude dynamics. New York: Dover Publications; 2004;156–61.
Marsden J, Ratiu T. Introduction to mechanics and symmetry. New York: Springer; 1994;186–91.
Kane T, Barba P. Effects of energy dissipation on a spinning satellite. AIAA J. 1966;4(8):1454–5. Available from: https://doi.org/10.2514/3.3683
Shampine LF, Reichelt MW. The MATLAB ODE suite. SIAM J Sci Comput. 1997;18(1):1–22. Available from: https://doi.org/10.1137/S1064827594276424
Lefferts EJ, Markley FL, Shuster MD. Kalman filtering for spacecraft attitude estimation. J Guid Control Dyn. 1982;5(5):417–29. Available from: https://doi.org/10.2514/3.56190
Markley FL. Attitude error representations for Kalman filtering. J Guid Control Dyn. 2003;26(2):311–7. Available from: https://doi.org/10.2514/2.5048
Black HD. Passive system for determining the attitude of a satellite. AIAA J. 1964;2(7):1350–1. Available from: https://doi.org/10.2514/3.2555
Xueteng S, Melvin L. Lie group variational integrators for rigid body problems using quaternions. arXiv. 2017; Available from: https://doi.org/10.48550/arXiv.1705.04404
Manchester Z, Peck AM. Quaternion variational integrators for spacecraft dynamics. J Guid Control Dyn. 2015;39:1–8. Available from: https://doi.org/10.2514/1.G001176