Simple Proof of the Hardy–littlewood Conjecture

Main Article Content

Mohamed Amine Chebba

Abstract

Abstract


The Hardy–Littlewood conjecture suggests that every odd integer 2n + 1 greater than or equal to 7 is the sum of three prime numbers, two of which are equal. In this paper, we present a simple approach that attempts to prove this conjecture.

Downloads

Download data is not yet available.

Article Details

Chebba, M. A. (2025). Simple Proof of the Hardy–littlewood Conjecture. Annals of Mathematics and Physics, 8(3), 094–095. https://doi.org/10.17352/amp.000153 (Original work published June 20, 2025)
Short Communications

Copyright (c) 2025 Chebba MA.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Tao T. Every odd number greater than 1 is the sum of at most five primes. Math Comput. 2014;83(286):997–1038.

Hardy GH, Littlewood JE. Some problems of 'Partitio Numerorum.' III. On the expression of a number as a sum of primes. Acta Math. 1923;44:1–70. Available from: http://dx.doi.org/10.1007/BF02403921

Chen JR, Wang TZ. On odd Goldbach problem. Acta Math Sinica. 1989;32:702–718.

Aletheia-Zomlefer S, Fukshansky L, Garcia SR. The Bateman–Horn conjecture: Heuristic, history, and applications. Expo Math. 2020;38(4):430–479. Available from: https://doi.org/10.48550/arXiv.1807.08899

Helfgott HA. The ternary Goldbach conjecture is true. Ann Math Stud [Preprint]. 2015. Available from: https://arxiv.org/abs/1312.7748

Montgomery HL, Vaughan RC. Multiplicative number theory I: Classical theory. Cambridge: Cambridge University Press; 2007. Available from: https://assets.cambridge.org/97805218/49036/frontmatter/9780521849036_frontmatter.pdf

Granville A. Harald Cramér and the distribution of prime numbers. Scand Actuar J. 1995;1995(1):12–28. Available from: https://doi.org/10.1080/03461238.1995.10413946

Pomerance C. A tale of two sieves. Notices Am Math Soc. 1996;43(12):1473–1485. Available from: https://www.ams.org/notices/199612/pomerance.pdf

Nathanson MB. Additive number theory: The classical bases. New York: Springer; 1996. (Graduate Texts in Mathematics; vol. 164). Available from: https://download.e-bookshelf.de/download/0000/0017/29/L-G-0000001729-0002340718.pdf