Graceful Labeling of Posets
ISSN: 2689-7636
Annals of Mathematics and Physics
Research Article       Open Access      Peer-Reviewed

Graceful Labeling of Posets

AN Bhavale and DS Shelke*

Department of Mathematics, PES Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 411005, India

*Corresponding authors: DS Shelke, Department of Mathematics, PES Modern College of Arts, Science and Commerce (Autonomous), Shivajinagar, Pune - 411005, India, E-mail: [email protected]
Received: 21 January, 2025 | Accepted: 30 January, 2025 | Published: 31 January, 2025
Keywords: Poset; Chain; Graph labeling

Cite this as

Bhavale AN, Shelke DS. Graceful Labeling of Posets. Ann Math Phys. 2025;8(1):018-028. Available from: 10.17352/amp.000142

Copyright Licence

© 2025 Bhavale AN, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

The concept of graph labeling was introduced in the mid-1960s by Rosa. In this paper, we introduce a notion of graceful labeling of a finite poset. We obtain graceful labeling of some postes such as a chain, a fence, and a crown. In 2002 Thakare, Pawar, and Waphare introduced the `adjunct' operation of two lattices with respect to an adjunct pair of elements. We obtain the graceful labeling of an adjunct sum of two chains with respect to an adjunct pair (0, 1).

AMS Subject Classification 2020: 06A05, 06A06, 05C78

Introduction

A graph labeling assigns integers to the vertices or edges (or both), subject to certain conditions. Interest in graph labeling began in the mid-1960s with the conjecture by Kotzing - Ringel [1] and a paper by Rosa [2]. There are different types of graph labeling such as prime labeling, magic labeling, antimagic labeling, graceful labeling [3], etc. Labeled graphs have wide applications in different fields such as circuit design, traffic control systems, communication network addressing, Automated Teller Machine (ATM) controlling devices, Local Area Network (LAN) network, radio astronomy, and Multiprotocol Label Switching (MPLS) protocols see [4-7]. In this paper, we define graceful labeling of finite posets. We obtain in particular graceful labeling of some posets like a chain, a fence, and a crown. Thakare, Pawar, and Waphare [8] introduced the `adjunct' operation of two lattices with respect to a pair of elements. In this connection, We obtain the graceful labeling of an adjunct sum of two chains concerning an adjunct pair (0, 1).

A non-empty set P, together with a binary relation £ that is reflexive, antisymmetric, and transitive is called a partially ordered set or a Poset. A Hasse diagram is a type of mathematical diagram used to represent a finite partially ordered set. Specifically, for a poset (P, £) each element of P represents a vertex in the plane, and whenever y covers x, it indicates that x £ y and there is no z such that x < z < y, which is represented by xy MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiablQNiWjaadMhaaaa@3B22@ . These curves (or lines) may cross each other but must not touch any vertex other than endpoints; we call such curves (or lines) as edges. Two elements a, b Î P are said to be comparable if either a£b or b£a; otherwise they are said to be incomparable. A poset in which every pair of elements is comparable is called a chain. A chain on n elements is denoted by Cn. In particular, see Figure 1 for C3.

Definition 1 [9] A partially ordered set F n ={ x 1 , x 2 ,, x n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaaleaacaWGUbaabeaakiaai2dacaaI7bGaamiEamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiablAciljaaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGyFaaaa@4598@  is called a fence (of order n ³ 3), if either x 1 < x 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiYdacaWG4bWaaSbaaSqaaiaaikdaaeqaaaaa@3C23@ , x 2 > x 3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaakiaai6dacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaa@3C27@ , , x 2m1 < x 2m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIYaGaamyBaiabgkHiTiaaigdaaeqaaOGaaGipaiaadIhadaWgaaWcbaGaaGOmaiaad2gaaeqaaaaa@3FB0@ , x 2m > x 2m+1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIYaGaamyBaaqabaGccaaI+aGaamiEamaaBaaaleaacaaIYaGaamyBaiabgUcaRiaaigdaaeqaaaaa@3FA7@ , , x n1 < x n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaI8aGaamiEamaaBaaaleaacaWGUbaabeaaaaa@3E3A@ , if n is even ( x n1 > x n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaI+aGaamiEamaaBaaaleaacaWGUbaabeaaaaa@3E3C@  if n is odd) or x 1 > x 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiaai6dacaWG4bWaaSbaaSqaaiaaikdaaeqaaaaa@3C25@ , x 2 < x 3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiYdacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaa@3C25@ , , x 2m1 > x 2m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIYaGaamyBaiabgkHiTiaaigdaaeqaaOGaaGOpaiaadIhadaWgaaWcbaGaaGOmaiaad2gaaeqaaaaa@3FB2@ , x 2m < x 2m+1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIYaGaamyBaaqabaGccaaI8aGaamiEamaaBaaaleaacaaIYaGaamyBaiabgUcaRiaaigdaaeqaaaaa@3FA5@ , , x n1 > x n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaI+aGaamiEamaaBaaaleaacaWGUbaabeaaaaa@3E3C@ , if n is even ( x n1 < x n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaI8aGaamiEamaaBaaaleaacaWGUbaabeaaaaa@3E3A@  if n is odd) are the only comparability relations. A fence Fn is called a lower fence if x 1 < x 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiYdacaWG4bWaaSbaaSqaaiaaikdaaeqaaaaa@3C23@ , and upper fence if x 1 > x 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiaai6dacaWG4bWaaSbaaSqaaiaaikdaaeqaaaaa@3C25@ . In particular, see Figure 1 for F3 and F4.

 Definition 2 [10] A crown is a poset { x 1 , x 2 ,, x n , y 1 , y 2 ,, y n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiYcacqWIMaYscaaISaGaamiEamaaBaaaleaacaWGUbaabeaakiaaiYcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadMhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGSKaaGilaiaadMhadaWgaaWcbaGaamOBaaqabaGccaaI9baaaa@4CDD@  of order n2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaaikdaaaa@3AFF@ , whose elements satisfy precisely the comparabilities x 1 < y 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiYdacaWG5bWaaSbaaSqaaiaaigdaaeqaaaaa@3C23@ , y 1 > x 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaaIXaaabeaakiaai6dacaWG4bWaaSbaaSqaaiaaikdaaeqaaaaa@3C26@ , x 2 < y 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiYdacaWG5bWaaSbaaSqaaiaaikdaaeqaaaaa@3C25@ , y 2 > x 3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaaIYaaabeaakiaai6dacaWG4bWaaSbaaSqaaiaaiodaaeqaaaaa@3C28@ , x 3 < y 3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIZaaabeaakiaaiYdacaWG5bWaaSbaaSqaaiaaiodaaeqaaaaa@3C27@ , y 3 > x 4 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaaIZaaabeaakiaai6dacaWG4bWaaSbaaSqaaiaaisdaaeqaaaaa@3C2A@ , , x n1 < y n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaI8aGaamyEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaaaaa@3FE3@ , y n1 > x n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaI+aGaamiEamaaBaaaleaacaWGUbaabeaaaaa@3E3D@ , x n < y n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGUbaabeaakiaaiYdacaWG5bWaaSbaaSqaaiaad6gaaeqaaaaa@3C93@ , y n > x 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBaaaleaacaWGUbaabeaakiaai6dacaWG4bWaaSbaaSqaaiaaigdaaeqaaaaa@3C5D@ . The crown of order n is denoted by n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ . In particular, see Figure 1 for n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ .

For other definitions, notation, and terminology, see [11-13]. In the following section, we introduce the notion of graceful labeling of a poset.

2. Graceful labeling of posets

On the line of graceful labeling of graphs, we define graceful labeling of a finite poset as follows.

Definition 3 Let P be a poset on n elements with m coverings, x 1 , x 2 ,, x n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiablAciljaaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaaaa@40C7@ . Let V = { x 1 , x 2 ,, x n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiYcacqWIMaYscaaISaGaamiEamaaBaaaleaacaWGUbaabeaakiaai2haaaa@42DD@ and E = {0,1,2,3,,m} MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaaicdacaaISaGaaGymaiaaiYcacaaIYaGaaGilaiaaiodacaaISaGaeSOjGSKaaGilaiaad2gacaaI9baaaa@4226@ . If ϕ:VE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGOoaiaadAfacqGHsgIRcaWGfbaaaa@3DA8@  is a one-to-one function, then when each covering, say x i x j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaakiablQNiWjaadIhadaWgaaWcbaGaamOAaaqabaaaaa@3D60@ , is given the label |ϕ( x i )ϕ( x j )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiaaiYhaaaa@4520@ , the resulting cover labels are unique numbers from the set E. This is known as the graceful labeling of P. A poset is called graceful if it has a graceful labeling. For example, C3, F4 and 4 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaaGinaaqabaaaaa@4302@  are graceful (Figure 2).

Theorem 2.1 A chain Cn is graceful for n2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaaikdaaaa@3AFF@ .

Proof. Let C n : x 1 x 2 x n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaaleaacaWGUbaabeaakiaaiQdacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeSOEIaNaamiEamaaBaaaleaacaaIYaaabeaakiablQNiWjabl+UimjablQNiWjaadIhadaWgaaWcbaGaamOBaaqabaaaaa@46FD@  be a chain. Note that Cn contains n - 1 edges. Let V = { x 1 , x 2 ,, x n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiYcacqWIMaYscaaISaGaamiEamaaBaaaleaacaWGUbaabeaakiaai2haaaa@42DD@  be the set of elements of Cn and E = {0, 1, 2, …, n-1}. Define a map ϕ:VE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGOoaiaadAfacqGHsgIRcaWGfbaaaa@3DA8@  as follows.

ϕ( x i )={ i1 2 , if i is odd n i 2 , if i is even. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvpGzcaaIOaGaamiEaOWaaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaaiMcacaaI9aGcdaGabaqaaKqzGeqbaeqabiGaaaGcbaWaaSaaaeaajugibiaadMgacqGHsislcaaIXaaakeaajugibiaaikdaaaGaaGilaaGcbaqcLbsacaqGPbGaaeOzaiaabccacaqGPbGaaeiiaiaabMgacaqGZbGaaeiiaiaab+gacaqGKbGaaeizaaGcbaqcLbsacaWGUbGaeyOeI0IcdaWcaaqaaKqzGeGaamyAaaGcbaqcLbsacaaIYaaaaiaaiYcaaOqaaKqzGeGaaeyAaiaabAgacaqGGaGaaeyAaiaabccacaqGPbGaae4CaiaabccacaqGLbGaaeODaiaabwgacaqGUbGaaGOlaaaaaOGaay5Eaaaaaa@627F@

We claim that the map φ is the required graceful labeling of Cn. Firstly we prove that φ is one - one. One of the following four cases occurs.

  1. ϕ( x i )=ϕ( x j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42EE@  and both i and j are odd. But then i1 2 = j1 2 A MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGPbGaeyOeI0IaaGymaaqaaiaaikdaaaGaaGypamaalaaabaGaamOAaiabgkHiTiaaigdaaeaacaaIYaaaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFaaFqaaa@4B8D@  which implies that i = j and hence x i = x j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaakiaai2dacaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa@3C8A@ .
  2. ϕ( x i )=ϕ( x j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42EE@  and both i and j are even. But then n i 2 =n j 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgkHiTmaalaaabaGaamyAaaqaaiaaikdaaaGaaGypaiaad6gacqGHsisldaWcaaqaaiaadQgaaeaacaaIYaaaaaaa@3F86@  implies that i = j and hence x i = x j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaakiaai2dacaWG4bWaaSbaaSqaaiaadQgaaeqaaaaa@3C8A@ .
  3. i is odd and j is even. Then i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiyIKlaaa@3951@  j and x i x j ϕ( x i )ϕ( x j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaakiabgcMi5kaadIhadaWgaaWcbaGaamOAaaqabaGccqGHshI3cqaHvpGzcaaIOaGaamiEamaaBaaaleaacaWGPbaabeaakiaaiMcacqGHGjsUcqaHvpGzcaaIOaGaamiEamaaBaaaleaacaWGQbaabeaakiaaiMcaaaa@4C55@ . For if, suppose ϕ( x i )=ϕ( x j ) i1 2 =n j 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiabgkDiEpaalaaabaGaamyAaiabgkHiTiaaigdaaeaacaaIYaaaaiaai2dacaWGUbGaeyOeI0YaaSaaaeaacaWGQbaabaGaaGOmaaaaaaa@4D0F@ MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@39E7@ i1=2nji+j=2n+1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgkHiTiaaigdacaaI9aGaaGOmaiaad6gacqGHsislcaWGQbGaeyO0H4TaamyAaiabgUcaRiaadQgacaaI9aGaaGOmaiaad6gacqGHRaWkcaaIXaaaaa@47A1@ . This is not possible, since 1in MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadMgacqGHKjYOcaWGUbaaaa@3D90@  and 1jn MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadQgacqGHKjYOcaWGUbaaaa@3D91@ .
  4. i is even and j is odd. In this case, we get the proof on similar lines of Case (3). Thus, φis one - one.

Secondly, we prove that the edge labels of Cn are all distinct. Now the edge label between the elements xi and xi+1 is given by |ϕ( x i+1 )ϕ( x i )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiaaiMcacqGHsislcqaHvpGzcaaIOaGaamiEamaaBaaaleaacaWGPbaabeaakiaaiMcacaaI8baaaa@46BC@ .

Suppose for ij MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgcMi5kaadQgaaaa@3B2E@ , |ϕ( x i+1 )ϕ( x i )|=|ϕ( x j+1 )ϕ( x j )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiaaiMcacqGHsislcqaHvpGzcaaIOaGaamiEamaaBaaaleaacaWGPbaabeaakiaaiMcacaaI8bGaaGypaiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaWGQbGaey4kaSIaaGymaaqabaGccaaIPaGaeyOeI0Iaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamOAaaqabaGccaaIPaGaaGiFaaaa@56B7@ . One of the following three cases occurs.

  1. Both i and j are odd. Then we have |n( i+1 2 )( i1 2 )|=|n( j+1 2 )( j1 2 )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaad6gacqGHsislcaaIOaWaaSaaaeaacaWGPbGaey4kaSIaaGymaaqaaiaaikdaaaGaaGykaiabgkHiTiaaiIcadaWcaaqaaiaadMgacqGHsislcaaIXaaabaGaaGOmaaaacaaIPaGaaGiFaiaai2dacaaI8bGaamOBaiabgkHiTiaaiIcadaWcaaqaaiaadQgacqGHRaWkcaaIXaaabaGaaGOmaaaacaaIPaGaeyOeI0IaaGikamaalaaabaGaamOAaiabgkHiTiaaigdaaeaacaaIYaaaaiaaiMcacaaI8baaaa@550B@ . This implies that |ni|=|nj| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaad6gacqGHsislcaWGPbGaaGiFaiaai2dacaaI8bGaamOBaiabgkHiTiaadQgacaaI8baaaa@4206@  and hence i = j, which is a contradiction.
  2. Both i and j are even. Then we have | (i+1)1 2 (n i 2 )|=| (j+1)1 2 (n j 2 )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaalaaabaGaaGikaiaadMgacqGHRaWkcaaIXaGaaGykaiabgkHiTiaaigdaaeaacaaIYaaaaiabgkHiTiaaiIcacaWGUbGaeyOeI0YaaSaaaeaacaWGPbaabaGaaGOmaaaacaaIPaGaaGiFaiaai2dacaaI8bWaaSaaaeaacaaIOaGaamOAaiabgUcaRiaaigdacaaIPaGaeyOeI0IaaGymaaqaaiaaikdaaaGaeyOeI0IaaGikaiaad6gacqGHsisldaWcaaqaaiaadQgaaeaacaaIYaaaaiaaiMcacaaI8baaaa@550B@ . This implies that |ni|=|nj| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaad6gacqGHsislcaWGPbGaaGiFaiaai2dacaaI8bGaamOBaiabgkHiTiaadQgacaaI8baaaa@4206@  and hence i = j which is a contradiction.
  3. Without loss of generality, if i is even and j is odd, then we have | (i+1)1 2 (n i 2 )|=|n (j+1) 2 ( j1 2 )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFamaalaaabaGaaGikaiaadMgacqGHRaWkcaaIXaGaaGykaiabgkHiTiaaigdaaeaacaaIYaaaaiabgkHiTiaaiIcacaWGUbGaeyOeI0YaaSaaaeaacaWGPbaabaGaaGOmaaaacaaIPaGaaGiFaiaai2dacaaI8bGaamOBaiabgkHiTmaalaaabaGaaGikaiaadQgacqGHRaWkcaaIXaGaaGykaaqaaiaaikdaaaGaeyOeI0IaaGikamaalaaabaGaamOAaiabgkHiTiaaigdaaeaacaaIYaaaaiaaiMcacaaI8baaaa@550B@ . This implies that |in|=|nj| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadMgacqGHsislcaWGUbGaaGiFaiaai2dacaaI8bGaamOBaiabgkHiTiaadQgacaaI8baaaa@4206@  and hence i = j, which is a contradiction. Hence the edge labels of Cn are distinct.

Therefore φ is required graceful labeling Cn.

Remark 1 Let C n : x 0 x 1 x n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaaleaacaWGUbaabeaakiaaiQdacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaeSOEIaNaamiEamaaBaaaleaacaaIXaaabeaakiablQNiWjabl+UimjablQNiWjaadIhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaaa@48A3@  be a chain where n2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgwMiZkaaikdaaaa@3AFF@ . Define a function ψ:V( C n ){0,1,2,,n1} MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaGOoaiaadAfacaaIOaGaam4qamaaBaaaleaacaWGUbaabeaakiaaiMcacqGHsgIRcaaI7bGaaGimaiaaiYcacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaiaad6gacqGHsislcaaIXaGaaGyFaaaa@4B0C@  as follows.

1. If n is odd

ψ( x i )={ (n1) ni 2 , if i is even ni 2 1, if i is odd. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHipqEcaaIOaGaamiEaOWaaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaaiMcacaaI9aGcdaGabaqaaKqzGeqbaeqabiGaaaGcbaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaeyOeI0Iaeyi84VUcdaWcaaqaaKqzGeGaamOBaiabgkHiTiaadMgaaOqaaKqzGeGaaGOmaaaacqGH7J=+caaISaaakeaajugibiaabMgacaqGMbGaaeiiaiaabMgacaqGGaGaaeyAaiaabohacaqGGaGaaeyzaiaabAhacaqGLbGaaeOBaaGcbaWaaSaaaeaajugibiaad6gacqGHsislcaWGPbaakeaajugibiaaikdaaaGaeyOeI0IaaGymaiaaiYcaaOqaaKqzGeGaaeyAaiaabAgacaqGGaGaaeyAaiaabccacaqGPbGaae4CaiaabccacaqGVbGaaeizaiaabsgacaaIUaaaaaGccaGL7baaaaa@702B@

2. If n is even

ψ( x i )={ (n1) ni 2 , if i is odd ni 2 1, if i is even. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHipqEcaaIOaGaamiEaOWaaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaaiMcacaaI9aGcdaGabaqaaKqzGeqbaeqabiGaaaGcbaqcLbsacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaeyOeI0Iaeyi84VUcdaWcaaqaaKqzGeGaamOBaiabgkHiTiaadMgaaOqaaKqzGeGaaGOmaaaacqGH7J=+caaISaaakeaajugibiaabMgacaqGMbGaaeiiaiaabMgacaqGGaGaaeyAaiaabohacaqGGaGaae4BaiaabsgacaqGKbaakeaadaWcaaqaaKqzGeGaamOBaiabgkHiTiaadMgaaOqaaKqzGeGaaGOmaaaacqGHsislcaaIXaGaaGilaaGcbaqcLbsacaqGPbGaaeOzaiaabccacaqGPbGaaeiiaiaabMgacaqGZbGaaeiiaiaabwgacaqG2bGaaeyzaiaab6gacaaIUaaaaaGccaGL7baaaaa@702B@

Then Y is also a graceful labeling of Cn.

By the arguments similar to one given in the proof of Theorem 2.1, we obtain the proof of the following result, since, Fn the edge labels are the same as that of the chain Cn.

Corollary 2.2 A fence Fn is graceful for n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyzImlaaa@3950@  3.

Note that, the graceful labeling of a chain on n elements and a fence on n elements are the same. Therefore, we have the following.

Theorem 2.3 A crown n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ is graceful if n is even.

Proof. Suppose the set of elements of crown n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@  is ={ x 1 , x 2 ,, x n , y 1 , y 2 ,, y n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGwbGaaeiiaiabg2da9iaaiUhacaWG4bGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGilaiaadIhakmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaISaGaeSOjGSKaaGilaiaadIhakmaaBaaaleaajugibiaad6gaaSqabaqcLbsacaaISaGaamyEaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiaaiYcacaWG5bGcdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaGilaiablAciljaaiYcacaWG5bGcdaWgaaWcbaqcLbsacaWGUbaaleqaaKqzGeGaaGyFaaaa@575E@ with 2n coverings x 1 y 1 , x 2 y 1 , x 2 y 2 , x 3 y 2 ,, x n1 y n1 , x n y n1 , x n y n , x 1 y n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiablQNiWjaadMhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaaIYaaabeaakiablQNiWjaadMhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaaIYaaabeaakiablQNiWjaadMhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamiEamaaBaaaleaacaaIZaaabeaakiablQNiWjaadMhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaeS47IWKaaGilaiaadIhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaeSOEIaNaamyEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaWGUbaabeaakiablQNiWjaadMhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGilaiaadIhadaWgaaWcbaGaamOBaaqabaGccqWI6jcCcaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaGilaiaadIhadaWgaaWcbaGaaGymaaqabaGccqWI6jcCcaWG5bWaaSbaaSqaaiaad6gaaeqaaaaa@7174@ . Let ={0,1,2,,2n} MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGfbGaaeiiaiabg2da9iaaiUhacaaIWaGaaGilaiaaigdacaaISaGaaGOmaiaaiYcacqWIMaYscaaISaGaaGOmaiaad6gacaaI9baaaa@44EA@ . Define a map ϕ:VE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvpGzcaaI6aGaamOvaiabgkziUkaadweaaaa@3EB1@ as follows.

ϕ( x i )=i1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiaadMgacqGHsislcaaIXaaaaa@4035@ , if 1in MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadMgacqGHKjYOcaWGUbaaaa@3E0A@ , and ϕ( y i ) = { 2n(i1), if 1i n 2 . 2ni,         if n 2 +1in. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvpGzcaGGOaGaamyEaOWaaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaacMcacaqGGaGaaeypaiaabccakmaaceaajugibqaabeGcbaqcLbsacaaIYaGaamOBaiabgkHiTiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiMcacaaISaGaaeiiaiaadMgacaWGMbGaaeiiaiaabgdacqGHKjYOcaWGPbGaeyizImQcdaWcaaqaaKqzGeGaamOBaaGcbaqcLbsacaaIYaaaaiaac6caaOqaaKqzGeGaaGOmaiaad6gacqGHsislcaWGPbGaaiilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaadMgacaWGMbGcdaWcaaqaaKqzGeGaamOBaaGcbaqcLbsacaaIYaaaaiabgUcaRiaaigdacqGHKjYOcaWGPbGaeyizImQaamOBaiaac6caaaGccaGL7baaaaa@6D6F@

We claim that the map f is a graceful labeling of n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ . Firstly we prove that f is one-one. One of the following five cases occurs.

  1. ϕ( x i )=ϕ( x j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42EE@  and 1i,jn MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadMgacaaISaGaamOAaiabgsMiJkaad6gaaaa@3F35@ . Then i - 1 = j - 1 implies that i - j and hence xi = xj.
  2. Suppose that ϕ( y i )=ϕ( y j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42F0@  and 1i,j n 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadMgacaaISaGaamOAaiabgsMiJoaalaaabaGaamOBaaqaaiaaikdaaaaaaa@4001@ . Then 2n(i1)=2n(j1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaad6gacqGHsislcaaIOaGaamyAaiabgkHiTiaaigdacaaIPaGaaGypaiaaikdacaWGUbGaeyOeI0IaaGikaiaadQgacqGHsislcaaIXaGaaGykaaaa@4580@  implies that i - j and hence yi = yj.
  3. that ϕ( y i )=ϕ( y j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42F0@  and n 2 +1i,jn MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGUbaabaGaaGOmaaaacqGHRaWkcaaIXaGaeyizImQaamyAaiaaiYcacaWGQbGaeyizImQaamOBaaaa@41D6@ . Then 2n - i = 2n -j implies that i - j and hence yi = yj.
  4. 1i n 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadMgacqGHKjYOdaWcaaqaaiaad6gaaeaacaaIYaaaaaaa@3E5C@  and x i y i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaakiabgcMi5kaadMhadaWgaaWcbaGaamyAaaqabaaaaa@3D8A@ . Then ϕ( x i )ϕ( y i ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaamyAaaqabaGccaaIPaaaaa@43EE@ . For if, suppose ϕ( x i )=ϕ( y i ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaaaa@42EE@  implies that i1=2n(i1)2i=2n+2i=n+1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgkHiTiaaigdacaaI9aGaaGOmaiaad6gacqGHsislcaaIOaGaamyAaiabgkHiTiaaigdacaaIPaGaeyO0H4TaaGOmaiaadMgacaaI9aGaaGOmaiaad6gacqGHRaWkcaaIYaGaeyO0H4TaamyAaiaai2dacaWGUbGaey4kaSIaaGymaaaa@50B5@  which is not possible.
  5. n 2 +1in MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGUbaabaGaaGOmaaaacqGHRaWkcaaIXaGaeyizImQaamyAaiabgsMiJkaad6gaaaa@4031@  and x i y i MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGPbaabeaakiabgcMi5kaadMhadaWgaaWcbaGaamyAaaqabaaaaa@3D8A@ . Then ϕ( x i )ϕ( y i ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaamyAaaqabaGccaaIPaaaaa@43EE@ . Since, ϕ( x i )=ϕ( y i ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaaaa@42EE@  then i1=2ni2i=2n+1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgkHiTiaaigdacaaI9aGaaGOmaiaad6gacqGHsislcaWGPbGaeyO0H4TaaGOmaiaadMgacaaI9aGaaGOmaiaad6gacqGHRaWkcaaIXaaaaa@468B@ , which is not possible.

Thus φ is one - one.

Secondly, we prove the edge labels of n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ are all distinct. Consider the edge labels of n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ for 1in MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadMgacqGHKjYOcaWGUbaaaa@3D90@ as |ϕ( x i )ϕ( y i )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaaiYhaaaa@4520@ , for 2in MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgsMiJkaadMgacqGHKjYOcaWGUbaaaa@3D91@ as |ϕ( x i )ϕ( y i1 )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaaiMcacaaI8baaaa@46C8@ , and |ϕ( y n )ϕ( x 1 )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYhaaaa@44F2@ . One of the following five cases occurs.

|ϕ( y n )ϕ( x 1 )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYhaaaa@44F2@

Suppose |ϕ( x i )ϕ( y i )|=|ϕ( x k )ϕ( y k )||i1(2n(i1))|=|k1(2n(k1))||2n+2i2|=|2n+2k2|i=k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaaiYhacaaI9aGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaaGykaiaaiYhacqGHshI3caaI8bGaamyAaiabgkHiTiaaigdacqGHsislcaaIOaGaaGOmaiaad6gacqGHsislcaaIOaGaamyAaiabgkHiTiaaigdacaaIPaGaaGykaiaaiYhacaaI9aGaaGiFaiaadUgacqGHsislcaaIXaGaeyOeI0IaaGikaiaaikdacaWGUbGaeyOeI0IaaGikaiaadUgacqGHsislcaaIXaGaaGykaiaaiMcacaaI8bGaeyO0H4TaaGiFaiabgkHiTiaaikdacaWGUbGaey4kaSIaaGOmaiaadMgacqGHsislcaaIYaGaaGiFaiaai2dacaaI8bGaeyOeI0IaaGOmaiaad6gacqGHRaWkcaaIYaGaam4AaiabgkHiTiaaikdacaaI8bGaeyO0H4TaamyAaiaai2dacaWGRbaaaa@8BA1@ which is a contradiction. Now let n 2 +1i,kn MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGUbaabaGaaGOmaaaacqGHRaWkcaaIXaGaeyizImQaamyAaiaaiYcacaWGRbGaeyizImQaamOBaaaa@41D7@ and ik MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgcMi5kaadUgaaaa@3B2F@ . Suppose |ϕ( x i )ϕ( y i )|=|ϕ( x k )ϕ( y k )||i1(2ni)|=|k1(2nk)||2n+2i1|=|2n+2k1|i=k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaaiYhacaaI9aGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaaGykaiaaiYhacqGHshI3caaI8bGaamyAaiabgkHiTiaaigdacqGHsislcaaIOaGaaGOmaiaad6gacqGHsislcaWGPbGaaGykaiaaiYhacaaI9aGaaGiFaiaadUgacqGHsislcaaIXaGaeyOeI0IaaGikaiaaikdacaWGUbGaeyOeI0Iaam4AaiaaiMcacaaI8bGaeyO0H4TaaGiFaiabgkHiTiaaikdacaWGUbGaey4kaSIaaGOmaiaadMgacqGHsislcaaIXaGaaGiFaiaai2dacaaI8bGaeyOeI0IaaGOmaiaad6gacqGHRaWkcaaIYaGaam4AaiabgkHiTiaaigdacaaI8bGaeyO0H4TaamyAaiaai2dacaWGRbaaaa@8585@ which is a contradiction.

2. 2i,k n 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgsMiJkaadMgacaaISaGaam4AaiabgsMiJoaalaaabaGaamOBaaqaaiaaikdaaaaaaa@4003@ and ik MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgcMi5kaadUgaaaa@3B2F@ .

Suppose |ϕ( x i )ϕ( y i1 )|=|ϕ( x k )ϕ( y k1 )||i1(2n((i1)1))|=|k1(2n(k1))||2n+2i3|=|2n+2k3|i=k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaaiMcacaaI8bGaaGypaiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaWGRbaabeaakiaaiMcacqGHsislcqaHvpGzcaaIOaGaamyEamaaBaaaleaacaWGRbGaeyOeI0IaaGymaaqabaGccaaIPaGaaGiFaiabgkDiElaaiYhacaWGPbGaeyOeI0IaaGymaiabgkHiTiaaiIcacaaIYaGaamOBaiabgkHiTiaaiIcacaaIOaGaamyAaiabgkHiTiaaigdacaaIPaGaeyOeI0IaaGymaiaaiMcacaaIPaGaaGiFaiaai2dacaaI8bGaam4AaiabgkHiTiaaigdacqGHsislcaaIOaGaaGOmaiaad6gacqGHsislcaaIOaGaam4AaiabgkHiTiaaigdacaaIPaGaaGykaiaaiYhacqGHshI3caaI8bGaeyOeI0IaaGOmaiaad6gacqGHRaWkcaaIYaGaamyAaiabgkHiTiaaiodacaaI8bGaaGypaiaaiYhacqGHsislcaaIYaGaamOBaiabgUcaRiaaikdacaWGRbGaeyOeI0IaaG4maiaaiYhacqGHshI3caWGPbGaaGypaiaadUgaaaa@9200@ which is a contradiction. Now let n 2 +1i,kn MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGUbaabaGaaGOmaaaacqGHRaWkcaaIXaGaeyizImQaamyAaiaaiYcacaWGRbGaeyizImQaamOBaaaa@41D7@ and ik MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgcMi5kaadUgaaaa@3B2F@ . Suppose |ϕ( x i )ϕ( y i1 )|=|ϕ( x k )ϕ( y k1 )||i1(2n(i1))|=|k1(2n(k1)||2n+2i2|=|2n+2k2|i=k MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaaiMcacaaI8bGaaGypaiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaWGRbaabeaakiaaiMcacqGHsislcqaHvpGzcaaIOaGaamyEamaaBaaaleaacaWGRbGaeyOeI0IaaGymaaqabaGccaaIPaGaaGiFaiabgkDiElaaiYhacaWGPbGaeyOeI0IaaGymaiabgkHiTiaaiIcacaaIYaGaamOBaiabgkHiTiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiMcacaaIPaGaaGiFaiaai2dacaaI8bGaam4AaiabgkHiTiaaigdacqGHsislcaaIOaGaaGOmaiaad6gacqGHsislcaaIOaGaam4AaiabgkHiTiaaigdacaaIPaGaaGiFaiabgkDiElaaiYhacqGHsislcaaIYaGaamOBaiabgUcaRiaaikdacaWGPbGaeyOeI0IaaGOmaiaaiYhacaaI9aGaaGiFaiabgkHiTiaaikdacaWGUbGaey4kaSIaaGOmaiaadUgacqGHsislcaaIYaGaaGiFaiabgkDiElaadMgacaaI9aGaam4Aaaaa@8E3E@ which is a contradiction.

3. 1i n 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadMgacqGHKjYOdaWcaaqaaiaad6gaaeaacaaIYaaaaaaa@3E5C@ and suppose |ϕ( x i )ϕ( y i )|=|ϕ( x 1 )ϕ( y n )||i1(2n(i1))|=|11(2n(n1))||2i2n2|=|n+1|2i=n+3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaaiYhacaaI9aGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYhacqGHshI3caaI8bGaamyAaiabgkHiTiaaigdacqGHsislcaaIOaGaaGOmaiaad6gacqGHsislcaaIOaGaamyAaiabgkHiTiaaigdacaaIPaGaaGykaiaaiYhacaaI9aGaaGiFaiaaigdacqGHsislcaaIXaGaeyOeI0IaaGikaiaaikdacaWGUbGaeyOeI0IaaGikaiaad6gacqGHsislcaaIXaGaaGykaiaaiMcacaaI8bGaeyO0H4TaaGiFaiaaikdacaWGPbGaeyOeI0IaaGOmaiaad6gacqGHsislcaaIYaGaaGiFaiaai2dacaaI8bGaeyOeI0IaamOBaiabgUcaRiaaigdacaaI8bGaeyO0H4TaaGOmaiaadMgacaaI9aGaamOBaiabgUcaRiaaiodaaaa@8963@ which is not possible. Let n 2 +1in MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGUbaabaGaaGOmaaaacqGHRaWkcaaIXaGaeyizImQaamyAaiabgsMiJkaad6gaaaa@4031@ and suppose |ϕ( x i )ϕ( y i )|=|ϕ( x 1 )ϕ( y n )||i1(2n(i))|=|11(2n(n))||2i2n1|=|n|2i1=3n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaaiYhacaaI9aGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYhacqGHshI3caaI8bGaamyAaiabgkHiTiaaigdacqGHsislcaaIOaGaaGOmaiaad6gacqGHsislcaaIOaGaamyAaiaaiMcacaaIPaGaaGiFaiaai2dacaaI8bGaaGymaiabgkHiTiaaigdacqGHsislcaaIOaGaaGOmaiaad6gacqGHsislcaaIOaGaamOBaiaaiMcacaaIPaGaaGiFaiabgkDiElaaiYhacaaIYaGaamyAaiabgkHiTiaaikdacaWGUbGaeyOeI0IaaGymaiaaiYhacaaI9aGaaGiFaiabgkHiTiaad6gacaaI8bGaeyO0H4TaaGOmaiaadMgacqGHsislcaaIXaGaaGypaiaaiodacaWGUbaaaa@853B@ which is not possible.

4. 2i n 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgsMiJkaadMgacqGHKjYOdaWcaaqaaiaad6gaaeaacaaIYaaaaaaa@3E5D@ and suppose |ϕ( x i )ϕ( y i1 )|=|ϕ( x 1 )ϕ( y n )||i1(2n((i1)1))|=|11(2n(n))||i12n+i2|=|n|2i2n3=n2i3=3n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaaiMcacaaI8bGaaGypaiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacqGHsislcqaHvpGzcaaIOaGaamyEamaaBaaaleaacaWGUbaabeaakiaaiMcacaaI8bGaeyO0H4TaaGiFaiaadMgacqGHsislcaaIXaGaeyOeI0IaaGikaiaaikdacaWGUbGaeyOeI0IaaGikaiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiMcacqGHsislcaaIXaGaaGykaiaaiMcacaaI8bGaaGypaiaaiYhacaaIXaGaeyOeI0IaaGymaiabgkHiTiaaiIcacaaIYaGaamOBaiabgkHiTiaaiIcacaWGUbGaaGykaiaaiMcacaaI8bGaeyO0H4TaaGiFaiaadMgacqGHsislcaaIXaGaeyOeI0IaaGOmaiaad6gacqGHRaWkcaWGPbGaeyOeI0IaaGOmaiaaiYhacaaI9aGaaGiFaiabgkHiTiaad6gacaaI8bGaeyO0H4TaaGOmaiaadMgacqGHsislcaaIYaGaamOBaiabgkHiTiaaiodacaaI9aGaamOBaiabgkDiElaaikdacaWGPbGaeyOeI0IaaG4maiaai2dacaaIZaGaamOBaaaa@985E@ which is not possible. Let n 2 +1in MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGUbaabaGaaGOmaaaacqGHRaWkcaaIXaGaeyizImQaamyAaiabgsMiJkaad6gaaaa@4031@ and suppose |ϕ( x i )ϕ( y i1 )|=|ϕ( x 1 )ϕ( y n )||i1(2n(i1))|=|11(2nn)||2i2n2|=|n|2i2=3n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaaiMcacaaI8bGaaGypaiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacqGHsislcqaHvpGzcaaIOaGaamyEamaaBaaaleaacaWGUbaabeaakiaaiMcacaaI8bGaeyO0H4TaaGiFaiaadMgacqGHsislcaaIXaGaeyOeI0IaaGikaiaaikdacaWGUbGaeyOeI0IaaGikaiaadMgacqGHsislcaaIXaGaaGykaiaaiMcacaaI8bGaaGypaiaaiYhacaaIXaGaeyOeI0IaaGymaiabgkHiTiaaiIcacaaIYaGaamOBaiabgkHiTiaad6gacaaIPaGaaGiFaiabgkDiElaaiYhacaaIYaGaamyAaiabgkHiTiaaikdacaWGUbGaeyOeI0IaaGOmaiaaiYhacaaI9aGaaGiFaiabgkHiTiaad6gacaaI8bGaeyO0H4TaaGOmaiaadMgacqGHsislcaaIYaGaaGypaiaaiodacaWGUbaaaa@8728@ which is not possible.

5. 1i n 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadMgacqGHKjYOdaWcaaqaaiaad6gaaeaacaaIYaaaaaaa@3E5C@ and 2k n 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgsMiJkaadUgacqGHKjYOdaWcaaqaaiaad6gaaeaacaaIYaaaaaaa@3E5F@ , suppose |ϕ( x i )ϕ( y i )|=|ϕ( x k )ϕ( y k1 )||i1(2n(i1))|=|k1(2n((k1)1)||2i2n2|=|2k2n3|2i2=2k32i2k=1ik= 1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaaiYhacaaI9aGaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaadUgacqGHsislcaaIXaaabeaakiaaiMcacaaI8bGaeyO0H4TaaGiFaiaadMgacqGHsislcaaIXaGaeyOeI0IaaGikaiaaikdacaWGUbGaeyOeI0IaaGikaiaadMgacqGHsislcaaIXaGaaGykaiaaiMcacaaI8bGaaGypaiaaiYhacaWGRbGaeyOeI0IaaGymaiabgkHiTiaaiIcacaaIYaGaamOBaiabgkHiTiaaiIcacaaIOaGaam4AaiabgkHiTiaaigdacaaIPaGaeyOeI0IaaGymaiaaiMcacaaI8bGaeyO0H4TaaGiFaiaaikdacaWGPbGaeyOeI0IaaGOmaiaad6gacqGHsislcaaIYaGaaGiFaiaai2dacaaI8bGaaGOmaiaadUgacqGHsislcaaIYaGaamOBaiabgkHiTiaaiodacaaI8bGaeyO0H4TaaGOmaiaadMgacqGHsislcaaIYaGaaGypaiaaikdacaWGRbGaeyOeI0IaaG4maiabgkDiElaaikdacaWGPbGaeyOeI0IaaGOmaiaadUgacaaI9aGaeyOeI0IaaGymaiabgkDiElaadMgacqGHsislcaWGRbGaaGypamaalaaabaGaeyOeI0IaaGymaaqaaiaaikdaaaaaaa@A41D@ which is not possible.

Here, the map φ gives the required graceful labeling of the n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ .

Theorem 2.4 A crown n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@  has no graceful labeling if n is odd.

Proof. Let n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ be crown with the set of elements V={ x 1 , x 2 ,, x n , y 1 , y 2 ,, y n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2dacaaI7bGaamiEamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiablAciljaaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGilaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamyEamaaBaaaleaacaaIYaaabeaakiaaiYcacqWIMaYscaaISaGaamyEamaaBaaaleaacaWGUbaabeaakiaai2haaaa@4E7F@ with 2n Coverings x 1 y 1 , x 2 y 1 , x 2 y 2 , x 3 y 2 ,, x n1 y n1 , x n y n1 , x n y n , x 1 y n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaaIXaaabeaakiablQNiWjaadMhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaaIYaaabeaakiablQNiWjaadMhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaaIYaaabeaakiablQNiWjaadMhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamiEamaaBaaaleaacaaIZaaabeaakiablQNiWjaadMhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaeS47IWKaaGilaiaadIhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaeSOEIaNaamyEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaWGUbaabeaakiablQNiWjaadMhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGilaiaadIhadaWgaaWcbaGaamOBaaqabaGccqWI6jcCcaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaGilaiaadIhadaWgaaWcbaGaaGymaaqabaGccqWI6jcCcaWG5bWaaSbaaSqaaiaad6gaaeqaaaaa@7174@ . Let E={0,1,2,,2n} MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaai2dacaaI7bGaaGimaiaaiYcacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaiaaikdacaWGUbGaaGyFaaaa@4301@ . Suppose n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ has p - labeling as ϕ:VE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGOoaiaadAfacqGHsgIRcaWGfbaaaa@3DA8@ . Taking the sum of edge labels of the crown n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ . We have 0(|ϕ( x 1 )ϕ( y 1 )|+|ϕ( y 1 )ϕ( x 2 )|+|ϕ( x 2 )ϕ( y 2 )|++|ϕ( x n1 )ϕ( y n1 )|+|ϕ( x n )ϕ( y n1 )|+|ϕ( x n )ϕ( y n )|+|ϕ( x 1 )ϕ( y n )|) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaaiIcacaaI8bGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyOeI0Iaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFaiabgUcaRiaaiYhacqaHvpGzcaaIOaGaamyEamaaBaaaleaacaaIXaaabeaakiaaiMcacqGHsislcqaHvpGzcaaIOaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI8bGaey4kaSIaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhacqGHRaWkcqWIMaYscqGHRaWkcaaI8bGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiMcacaaI8bGaey4kaSIaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiMcacaaI8bGaey4kaSIaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYhacqGHRaWkcaaI8bGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyOeI0Iaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaamOBaaqabaGccaaIPaGaaGiFaiaaiMcaaaa@A581@ (|ϕ( x 1 )|+|ϕ( y 1 )|+|ϕ( y 1 )|+|ϕ( x 2 )|+|ϕ( x 2 )|+|ϕ( y 2 )|++|ϕ( x n1 )|+|ϕ( y n1 )|+|ϕ( x n )|+|ϕ( y n1 )|+|ϕ( x n )|+|ϕ( y n )|+|ϕ( x 1 )|+|ϕ( y n )|) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaGikaiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGaey4kaSIaaGiFaiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYhacqGHRaWkcaaI8bGaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFaiabgUcaRiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI8bGaey4kaSIaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhacqGHRaWkcaaI8bGaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFaiabgUcaRiablAciljabgUcaRiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaIPaGaaGiFaiabgUcaRiaaiYhacqaHvpGzcaaIOaGaamyEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaIPaGaaGiFaiabgUcaRiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaWGUbaabeaakiaaiMcacaaI8bGaey4kaSIaaGiFaiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiMcacaaI8bGaey4kaSIaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYhacqGHRaWkcaaI8bGaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaamOBaaqabaGccaaIPaGaaGiFaiabgUcaRiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGaey4kaSIaaGiFaiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYhacaaIPaaaaa@B2CE@ = 2(|ϕ( x 1 )|+|ϕ( x 2 )|++|ϕ( x n )|+|ϕ( y 1 )|+|ϕ( y 2 )|++|ϕ( y n )| MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiIcacaaI8bGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFaiabgUcaRiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI8bGaey4kaSIaeSOjGSKaey4kaSIaaGiFaiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYhacqGHRaWkcaaI8bGaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFaiabgUcaRiaaiYhacqaHvpGzcaaIOaGaamyEamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI8bGaey4kaSIaeSOjGSKaey4kaSIaaGiFaiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYhaaaa@6CC9@ ).

Therefore,

(|ϕ( x 1 )ϕ( y 1 )|+|ϕ( y 1 )ϕ( x 2 )|+|ϕ( x 2 )ϕ( y 2 )|++|ϕ( x n1 )ϕ( y n1 )|+|ϕ( x n )ϕ( y n1 )|+|ϕ( x n )ϕ( y n )|+|ϕ( x 1 )ϕ( y n )|)0( MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacqGHsislcqaHvpGzcaaIOaGaamyEamaaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGaey4kaSIaaGiFaiabew9aMjaaiIcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhacqGHRaWkcaaI8bGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaeyOeI0Iaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFaiabgUcaRiablAciljabgUcaRiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaIPaGaeyOeI0Iaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGykaiaaiYhacqGHRaWkcaaI8bGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamOBaaqabaGccaaIPaGaeyOeI0Iaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGykaiaaiYhacqGHRaWkcaaI8bGaeqy1dyMaaGikaiaadIhadaWgaaWcbaGaamOBaaqabaGccaaIPaGaeyOeI0Iaeqy1dyMaaGikaiaadMhadaWgaaWcbaGaamOBaaqabaGccaaIPaGaaGiFaiabgUcaRiaaiYhacqaHvpGzcaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacqGHsislcqaHvpGzcaaIOaGaamyEamaaBaaaleaacaWGUbaabeaakiaaiMcacaaI8bGaaGykaiabggMi6kaaicdacaaIOaaaaa@A647@ mod 2)

In the crown n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ , edge labels are from 1 to 2n. So, the sum of edge labels of n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ is

k=1 2k k= 2n(2n+1) 2 =n(2n+1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeqaleaacaWGRbGaaGypaiaaigdaaeaacaaIYaGaam4AaaqdcqGHris5aOGaam4Aaiaai2dadaWcaaqaaiaaikdacaWGUbGaaGikaiaaikdacaWGUbGaey4kaSIaaGymaiaaiMcaaeaacaaIYaaaaiaai2dacaWGUbGaaGikaiaaikdacaWGUbGaey4kaSIaaGymaiaaiMcaaaa@4D03@ which is odd. As n is odd, 2n+1 is odd, and therefore n(2n+1) must be odd. Therefore we get a contradiction. Hence we conclude that n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFceYqdaWgaaWcbaGaamOBaaqabaaaaa@4337@ has no graceful labeling, if n odd.

3. Adjunct sum of lattices

In 2002, Thakare, Pawar, and Waphare [8] introduced the concept of an adjunct sum of lattices.

Definition 4 [8] Suppose L1 and L2 are two disjoint lattices and (a,b) is a pair of elements in L1 such that a<b and a b MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiqblQNiWzaawaGaamOyaaaa@3B11@ . Define the partial order MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImkaaa@393F@  on L= L 1 L 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaeyOkIGSaamitamaaBaaaleaacaaIYaaabeaaaaa@3E3D@  with respect to the pair (a,b) as follows: xy MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgsMiJkaadMhaaaa@3B3A@  in L if x,y L 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiYcacaWG5bGaeyicI4SaamitamaaBaaaleaacaaIXaaabeaaaaa@3D77@  and xy MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgsMiJkaadMhaaaa@3B3A@  in L1, or x,y L 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiYcacaWG5bGaeyicI4SaamitamaaBaaaleaacaaIYaaabeaaaaa@3D78@  and xy MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgsMiJkaadMhaaaa@3B3A@  in L 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBaaaleaacaaIYaaabeaaaaa@3943@ , or x L 1 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadYeadaWgaaWcbaGaaGymaaqabaGccaaISaaaaa@3C83@ y L 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqabaaaaa@3BC5@  and xa MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgsMiJkaadggaaaa@3B22@  in L1, or x L 2 , MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgIGiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaISaaaaa@3C84@ y L 1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgIGiolaadYeadaWgaaWcbaGaaGymaaqabaaaaa@3BC4@  and by MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabgsMiJkaadMhaaaa@3B24@  in L1.

It is easy to see that L is a lattice containing L1 and L2 as sublattices. The procedure for obtaining L in this way is called adjunct operation (or adjunct sum) of L1 with L2. We call the pair (a,b) as an adjunct pair and L as an adjunct of L1 with L2 concerning the adjunct pair (a,b) and write L= L 1 ] a b L 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaGyxamaaDaaaleaacaWGHbaabaGaamOyaaaakiaadYeadaWgaaWcbaGaaGOmaaqabaaaaa@3F88@ . A diagram of L is obtained by placing a diagram of L1 and a diagram of L2 side by side in such a way that the largest element 1 of L2 is at lower position than b and the least element 0 of L2 is at the higher position than a and then by adding the coverings <1, b> and <a, 0>, as shown in Figure III. This gives |E(L)|=|E( L 1 )|+|E( L 2 )|+2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadweacaaIOaGaamitaiaaiMcacaaI8bGaaGypaiaaiYhacaWGfbGaaGikaiaadYeadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFaiabgUcaRiaaiYhacaWGfbGaaGikaiaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFaiabgUcaRiaaikdaaaa@4BD8@ .

The adjunct sum is often utilized to construct and analyze complex lattices from simpler, well-defined components while retaining the essential properties of a lattice. To obtain graceful labeling for lattices formed by the adjunct sum of two chains, we construct the following sets. Let A = {1,3,5,,m1},m3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaaigdacaaISaGaaG4maiaaiYcacaaI1aGaaGilaiablAciljaaiYcacaWGTbGaeyOeI0IaaGymaiaai2hacaaISaGaamyBaiabgwMiZkaaiodaaaa@468C@ , B ={2,4,6,, m+n+1 2 }, B ={ m+n+1 2 +2, m+n+1 2 +4,,m} MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOqayaafaGaaGypaiaaiUhacaaIYaGaaGilaiaaisdacaaISaGaaGOnaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaaigdaaeaacaaIYaaaaiaai2hacaaISaGabmOqayaafyaafaGaaGypaiaaiUhadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaaGymaaqaaiaaikdaaaGaey4kaSIaaGOmaiaaiYcadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaaGymaaqaaiaaikdaaaGaey4kaSIaaGinaiaaiYcacqWIMaYscaaISaGaamyBaiaai2haaaa@5CCF@ and B= B B MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaai2daceWGcbGbauaacqGHQicYceWGcbGbauGbauaaaaa@3C69@ . Also, let D={1,3,5,,n},n1, F ={2,4,6,, m+n+1 2 2}, F ={ m+n+1 2 , m+n+1 2 +2,,n1} MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaai2dacaaI7bGaaGymaiaaiYcacaaIZaGaaGilaiaaiwdacaaISaGaeSOjGSKaaGilaiaad6gacaaI9bGaaGilaiaad6gacqGHLjYScaaIXaGaaGilaiqadAeagaqbaiaai2dacaaI7bGaaGOmaiaaiYcacaaI0aGaaGilaiaaiAdacaaISaGaeSOjGSKaaGilamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaabaGaaGOmaaaacqGHsislcaaIYaGaaGyFaiaaiYcaceWGgbGbauGbauaacaaI9aGaaG4EamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaabaGaaGOmaaaacaaISaWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaaigdaaeaacaaIYaaaaiabgUcaRiaaikdacaaISaGaeSOjGSKaaGilaiaad6gacqGHsislcaaIXaGaaGyFaaaa@6E29@ , and F= F F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaai2daceWGgbGbauaacqGHQicYceWGgbGbauGbauaaaaa@3C75@ .

Theorem 3.1 Let C and C¢ be the chains with |C|=m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadoeacaaI8bGaaGypaiaad2gacqGHLjYSaaa@3DDD@  3, | C |=n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiqadoeagaqbaiaaiYhacaaI9aGaamOBaiabgwMiZkaaigdaaaa@3EA5@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3D51@ . Then L has graceful labeling if m º 2(mod 4) and n º 1(mod 4).

Proof. Let C and C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaafaaaaa@385E@  be the chains with m and n elements, respectively. Suppose m º 2(mod 4) and n º 1(mod 4) and. Suppose C= a 1 a 2 a 3 a m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2dacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeSOEIaNaamyyamaaBaaaleaacaaIYaaabeaakiablQNiWjaadggadaWgaaWcbaGaaG4maaqabaGccqWIMaYscqWI6jcCcaWGHbWaaSbaaSqaaiaad2gaaeqaaaaa@469E@ , C = b 1 b 2 b 3 b n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaafaGaaGypaiaadkgadaWgaaWcbaGaaGymaaqabaGccqWI6jcCcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaeSOEIaNaamOyamaaBaaaleaacaaIZaaabeaakiablAciljablQNiWjaadkgadaWgaaWcbaGaamOBaaqabaaaaa@46AF@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3D51@ . Clearly, L has m+n elements and m+n coverings (edges). Suppose V = { a 1 , a 2 , a 3 ,, a m , b 1 , b 2 , b 3 ,, b n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadggadaWgaaWcbaGaaGymaaqabaGccaaISaGaamyyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGHbWaaSbaaSqaaiaad2gaaeqaaOGaaGilaiaadkgadaWgaaWcbaGaaGymaaqabaGccaaISaGaamOyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGyFaaaa@5171@  and E = {0, 1, 2, … , m+n} . Consider a map ϕ:VE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGOoaiaadAfacqGHsgIRcaWGfbaaaa@3DA8@  defined as follows :

ϕ( a i )={ i1 2 ifiA m+n i1 2 ifi B m+n i 2 ifi B MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyAaiabgkHiTiaaigdaaeaacaaIYaaaaaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaeyicI4Saamyqaaqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0YaayWaaeaadaWcaaqaaiaadMgacqGHsislcaaIXaaabaGaaGOmaaaaaiaawcp+caGL7JpaaeaacaqGPbGaaeOzaiaaywW7caaMf8UaamyAaiabgIGiolqadkeagaqbaaqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0YaaSaaaeaacaWGPbaabaGaaGOmaaaaaeaacaqGPbGaaeOzaiaaywW7caaMf8UaamyAaiabgIGiolqadkeagaqbgaqbaaaaaiaawUhaaaaa@6C53@

ϕ( b j )={ m+nj 2 ifjD m+n+j1 2 ifj F m+n+j+1 2 ifj F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHsislcaWGQbaabaGaaGOmaaaaaeaacaaMf8UaaGzbVlaabMgacaqGMbGaaGzbVlaaywW7caWGQbGaeyicI4SaamiraaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaWGQbGaeyOeI0IaaGymaaqaaiaaikdaaaaabaGaaGzbVlaaywW7caqGPbGaaeOzaiaaywW7caaMf8UaamOAaiabgIGiolqadAeagaqbaaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaWGQbGaey4kaSIaaGymaaqaaiaaikdaaaaabaGaaGzbVlaaywW7caqGPbGaaeOzaiaaywW7caaMf8UaamOAaiabgIGiolqadAeagaqbgaqbaaaaaiaawUhaaaaa@7435@

We claim that the map f is the required graceful labeling for lattice L. Firstly we prove that f is one - one. For this purpose, we consider the following sets. Let S 1 ={ a i |iA} MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaaIXaaabeaakiaai2dacaaI7bGaamyyamaaBaaaleaacaWGPbaabeaakiaaiYhacaWGPbGaeyicI4Saamyqaiaai2haaaa@426E@ S 2 ={ a i |i B } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGtbGbauaakmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaI9aGaaG4EaiaadggakmaaBaaaleaajugibiaadMgaaSqabaqcLbsacaaI8bGaamyAaiabgIGiolqadkeagaqbaiaai2haaaa@45E3@ , S 2 ={ a i |i B } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGtbGbauGbauaakmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaI9aGaaG4EaiaadggakmaaBaaaleaajugibiaadMgaaSqabaqcLbsacaaI8bGaamyAaiabgIGiolqadkeagaqbgaqbaiaai2haaaa@45F9@ , and S 2 = S 2 S 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtbGcdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaGypaiqadofagaqbaOWaaSbaaSqaaKqzGeGaaGOmaaWcbeaajugibiabgQIiilqadofagaqbgaqbaOWaaSbaaSqaaKqzGeGaaGOmaaWcbeaaaaa@4367@ . Also, let T 1 ={ b j |jD}, T 2 ={ b j |jF} MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGubGcdaWgaaWcbaqcLbsacaaIXaaaleqaaKqzGeGaaGypaiaaiUhacaWGIbGcdaWgaaWcbaqcLbsacaWGQbaaleqaaKqzGeGaaGiFaiaadQgacqGHiiIZcaWGebGaaGyFaiaaiYcaceWGubGbauaakmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaI9aGaaG4EaiaadkgakmaaBaaaleaajugibiaadQgaaSqabaqcLbsacaaI8bGaamOAaiabgIGiolaadAeacaaI9baaaa@53D2@ , T 2 ={ b j |j F } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWGubGbauGbauaakmaaBaaaleaajugibiaaikdaaSqabaqcLbsacaaI9aGaaG4EaiaadkgakmaaBaaaleaajugibiaadQgaaSqabaqcLbsacaaI8bGaamOAaiabgIGiolqadAeagaqbgaqbaiaai2haaaa@4601@  and T 2 = T 1 T 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGubGcdaWgaaWcbaqcLbsacaaIYaaaleqaaKqzGeGaaGypaiqadsfagaqbaOWaaSbaaSqaaKqzGeGaaGymaaWcbeaajugibiabgQIiilqadsfagaqbgaqbaOWaaSbaaSqaaKqzGeGaaGOmaaWcbeaaaaa@4369@ . Let a, b Î V. Now to show f is one-one. For this proof, one of the following five cases occurs depending on a, b Î Sk (k = 1, 2) and a, b ÎTk (k =1, 2):

1) Suppose a, bSk (k = 1, 2).

a) Suppose a, bS1. Therefore a = ai and b = aj for i, jA. Consider ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@ i.e. ϕ( a i )=ϕ( a j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C0@ . (i1) 2 = (j1) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHshI3kmaalaaabaqcLbsacaaIOaGaamyAaiabgkHiTiaaigdacaaIPaaakeaajugibiaaikdaaaGaaGypaOWaaSaaaeaajugibiaaiIcacaWGQbGaeyOeI0IaaGymaiaaiMcaaOqaaKqzGeGaaGOmaaaaaaa@47AA@ for i, jA. i=j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaamyAaiaai2dacaWGQbaaaa@3C8B@ a i = a j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaamyyamaaBaaaleaacaWGPbaabeaakiaai2dacaWGHbWaaSbaaSqaaiaadQgaaeqaaaaa@3EB9@ i.e a = b.

b) Let a, bS2 , here we have three parts.

  1. Suppose a, b Î S¢2. Therefore a = ai and b = aj for i,j B MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiYcacaWGQbGaeyicI4SabmOqayaafaaaaa@3C74@ . Consider ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( a i )=ϕ( a j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGHbWaaSbaaSqaaiaadQgaaeqaaaaa@4203@ ).  for i,j B MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiYcacaWGQbGaeyicI4SabmOqayaafaaaaa@3C74@ . (i1) 2 = (j1) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taeyi84V+aaSaaaeaacaaIOaGaamyAaiabgkHiTiaaigdacaaIPaaabaGaaGOmaaaacqGH7J=+caaI9aGaeyi84V+aaSaaaeaacaaIOaGaamOAaiabgkHiTiaaigdacaaIPaaabaGaaGOmaaaacqGH7J=+aaa@51EF@ i=j a i = a j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaamyAaiaai2dacaWGQbGaeyO0H4TaamyyamaaBaaaleaacaWGPbaabeaakiaai2dacaWGHbWaaSbaaSqaaiaadQgaaeqaaaaa@43BA@  i.e. a = b.
  2. Suppose a, b S¢¢2. Therefore a = ai and b = aj for i,j B MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiYcacaWGQbGaeyicI4SabmOqayaafyaafaaaaa@3C7F@ . Consider ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( a i )=ϕ( a j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C0@ . m+n i 2 =m+n j 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gacqGHsisldaWcaaqaaiaadMgaaeaacaaIYaaaaiaai2dacaWGTbGaey4kaSIaamOBaiabgkHiTmaalaaabaGaamOAaaqaaiaaikdaaaaaaa@432E@ i=j a i = a j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaamyAaiaai2dacaWGQbGaeyO0H4TaamyyamaaBaaaleaacaWGPbaabeaakiaai2dacaWGHbWaaSbaaSqaaiaadQgaaeqaaaaa@43BA@  i.e. a = b.
  3. Without loss of generality suppose that aS¢2 and bS¢¢2. Therefore a = ai and b = aj for i B MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgIGiolqadkeagaqbaaaa@3ACF@  and j ∈ B¢¢. Claim: If ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@ . For if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( a i )=ϕ( a j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C0@ . Therefore m+n (i1) 2 =m+n j 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gacqGHsislcqGHWJ=6daWcaaqaaiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiMcaaeaacaaIYaaaaiabgUp+7laai2dacaWGTbGaey4kaSIaamOBaiabgkHiTmaalaaabaGaamOAaaqaaiaaikdaaaaaaa@4D14@ . (i1) 2 = j 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taeyi84V+aaSaaaeaacaaIOaGaamyAaiabgkHiTiaaigdacaaIPaaabaGaaGOmaaaacqGH7J=+caaI9aWaaSaaaeaacaWGQbaabaGaaGOmaaaaaaa@4809@ . Which is not possible, since (i1) 2 < j 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi84V+aaSaaaeaacaaIOaGaamyAaiabgkHiTiaaigdacaaIPaaabaGaaGOmaaaacqGH7J=+caaI8aWaaSaaaeaacaWGQbaabaGaaGOmaaaaaaa@45AB@  for i B MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgIGiolqadkeagaqbaaaa@3ACF@  and j B MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgIGiolqadkeagaqbgaqbaaaa@3ADB@ . Thus, ϕ( a i )ϕ( a j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@43C0@ i.e. ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ .

c) Without loss of generality suppose that a ∈ S1 and b ∈ S′2, then we have the following two cases.

  1. Let aS1 and bS¢2. Therefore a = ai and b = aj for iA and jÎB¢. Claim: ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@ . For if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( a i )=ϕ( a j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGHbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C0@ . Therefore i1 2 =m+n j1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGPbGaeyOeI0IaaGymaaqaaiaaikdaaaGaaGypaiaad2gacqGHRaWkcaWGUbGaeyOeI0Iaeyi84V+aaSaaaeaacaWGQbGaeyOeI0IaaGymaaqaaiaaikdaaaGaey4+4Vpaaa@49A3@ . i.e. m+n= i1 2 + j1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gacaaI9aWaaSaaaeaacaWGPbGaeyOeI0IaaGymaaqaaiaaikdaaaGaey4kaSIaeyi84V+aaSaaaeaacaWGQbGaeyOeI0IaaGymaaqaaiaaikdaaaGaey4+4Vpaaa@4998@ . Which is not possible, since m+n> i1 2 + j1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gacaaI+aWaaSaaaeaacaWGPbGaeyOeI0IaaGymaaqaaiaaikdaaaGaey4kaSIaeyi84V+aaSaaaeaacaWGQbGaeyOeI0IaaGymaaqaaiaaikdaaaGaey4+4Vpaaa@4999@ , as im1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgsMiJkaad2gacqGHsislcaaIXaaaaa@3CC7@ and j m+n+1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgsMiJoaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaabaGaaGOmaaaaaaa@3F5E@ . Thus, ϕ( a i )ϕ( a j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@43C0@  i.e. ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ .
  2. Let a S1 and b S¢¢2. Therefore a = ai and b = aj for iA and j∈B¢¢. Claim: If ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  For, if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( a i )=ϕ( a j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGHbWaaSbaaSqaaiaadQgaaeqaaaaa@4203@ ). Therefore i1 2 =m+n j 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGPbGaeyOeI0IaaGymaaqaaiaaikdaaaGaaGypaiaad2gacqGHRaWkcaWGUbGaeyOeI0YaaSaaaeaacaWGQbaabaGaaGOmaaaaaaa@4122@ . i.e. i+j1=2(m+n). MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgUcaRiaadQgacqGHsislcaaIXaGaaGypaiaaikdacaaIOaGaamyBaiabgUcaRiaad6gacaaIPaGaaGOlaaaa@4258@  Which is not possible since, 2(m+n)>i+j1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiIcacaWGTbGaey4kaSIaamOBaiaaiMcacaaI+aGaamyAaiabgUcaRiaadQgacqGHsislcaaIXaaaaa@41A1@  as im1,jn MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgsMiJkaad2gacqGHsislcaaIXaGaaGilaiaadQgacqGHKjYOcaWGUbaaaa@4114@ . Thus, ϕ( a i )ϕ( a j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@43C0@  i.e. ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ .

2. Suppose a,bTk (k = 1, 2.)

a) Suppose a,bT1. Therefore a = bi and b = bj for i, jD. Suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@ i.e. ϕ( b i )=ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C2@ . Therefore m+ni 2 = m+nj 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgkHiTiaadMgaaeaacaaIYaaaaiaai2dadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaamOAaaqaaiaaikdaaaaaaa@432E@ . i=j b i = b j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaamyAaiaai2dacaWGQbGaeyO0H4TaamOyamaaBaaaleaacaWGPbaabeaakiaai2dacaWGIbWaaSbaaSqaaiaadQgaaeqaaaaa@43BC@ i.e. a = b.

b) Suppose a,bT2, here we have three parts.

  1. Suppose a,b T¢2. Therefore a = bi and b = bj for i, jF¢. Consider ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( b i )=ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C2@ . m+n+i1 2 = m+n+j1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H49aaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaadMgacqGHsislcaaIXaaabaGaaGOmaaaacaaI9aWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaadQgacqGHsislcaaIXaaabaGaaGOmaaaaaaa@48C5@ . i=j b i = b j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaamyAaiaai2dacaWGQbGaeyO0H4TaamOyamaaBaaaleaacaWGPbaabeaakiaai2dacaWGIbWaaSbaaSqaaiaadQgaaeqaaaaa@43BC@  i.e. a = b.
  2. Suppose a,b T¢¢2. Therefore a = bi and b = bj for i, jF¢¢. Suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( b i )=ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C2@ . m+n+i+1 2 = m+n+j+1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H49aaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaadMgacqGHRaWkcaaIXaaabaGaaGOmaaaacaaI9aWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaadQgacqGHRaWkcaaIXaaabaGaaGOmaaaaaaa@48AF@ i=j b i = b j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaamyAaiaai2dacaWGQbGaeyO0H4TaamOyamaaBaaaleaacaWGPbaabeaakiaai2dacaWGIbWaaSbaaSqaaiaadQgaaeqaaaaa@43BC@  i.e. a = b.
  3. Without loss of generality a T¢2 and b T¢¢2. Therefore a = bi and b = bj for some iF¢ and jF¢¢. Claim: ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  For, if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@ i.e. ϕ( b i )=ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C2@ . Therefore m+n+i1 2 = m+n+j+1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaadMgacqGHsislcaaIXaaabaGaaGOmaaaacaaI9aWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaadQgacqGHRaWkcaaIXaaabaGaaGOmaaaaaaa@465D@ . i.e. i1=j+1i=j+2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgkHiTiaaigdacaaI9aGaamOAaiabgUcaRiaaigdacqGHshI3caWGPbGaaGypaiaadQgacqGHRaWkcaaIYaaaaa@4412@ . Which is not possible since j > i as i m+n+1 2 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgsMiJoaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaabaGaaGOmaaaacqGHsislcaaIYaaaaa@4106@ , jn1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgsMiJkaad6gacqGHsislcaaIXaaaaa@3CC9@ . ϕ( b i )ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@461F@  i.e. ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ .

c) Without loss of generality, let aT1 and bT2, then we have the following two parts.

  1. Suppose a T1 and b T¢2. Therefore a = bi and b = bj for some iD and jF¢. Claim: If ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  For, if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( b i )=ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C2@ . m+ni 2 = m+n+j1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H49aaSaaaeaacaWGTbGaey4kaSIaamOBaiabgkHiTiaadMgaaeaacaaIYaaaaiaai2dadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaamOAaiabgkHiTiaaigdaaeaacaaIYaaaaaaa@4728@  which is not possible since iD and j F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgIGiolqadAeagaqbaaaa@3AD4@ . ϕ( b i )ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@461F@  i.e. ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ .
  2. Suppose a ∈ T1 and b ∈ T¢¢2. Therefore a = bi and b = bj for some iD and jF¢¢. Claim: If ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@ . For, if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( b i )=ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C2@ . Therefore m+ni 2 = m+n+j+1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgkHiTiaadMgaaeaacaaIYaaaaiaai2dadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaamOAaiabgUcaRiaaigdaaeaacaaIYaaaaaaa@44C0@  i.e. i=j+1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamyAaiaai2dacaWGQbGaey4kaSIaaGymaaaa@3CB8@ , which is not possible since iD and j F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgIGiolqadAeagaqbgaqbaaaa@3ADF@ . ϕ( b i )ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@461F@  i.e ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ .

3. Let aSk (k = 1,2) and bTk (k = 1, 2).

a) Suppose aS1 and bT1. Therefore a = ai and b = bj for some iA and jD. Claim: If ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@ then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@ For, if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@ i.e. ϕ( a i )=ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C1@ . Therefore i1 2 = m+nj 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGPbGaeyOeI0IaaGymaaqaaiaaikdaaaGaaGypamaalaaabaGaamyBaiabgUcaRiaad6gacqGHsislcaWGQbaabaGaaGOmaaaaaaa@4122@ . m+n=i+j1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaamyBaiabgUcaRiaad6gacaaI9aGaamyAaiabgUcaRiaadQgacqGHsislcaaIXaaaaa@41DC@ which is not possible since m+n>i+j1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gacaaI+aGaamyAaiabgUcaRiaadQgacqGHsislcaaIXaaaaa@3F80@ , since im1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgsMiJkaad2gacqGHsislcaaIXaaaaa@3CC7@ , and jn MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgsMiJkaad6gaaaa@3B21@ . Thus, ϕ( a i )ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@43C1@ i.e. ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ .

b) Suppose aS1 and bT2, then we have the following two parts.

  1. Suppose a S1 and b T¢2 and. Therefore a = ai and b = bj for iA and jF¢ . Claim: If ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@ . For, if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( a i )=ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C1@ . i1 2 = m+n+j1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H49aaSaaaeaacaWGPbGaeyOeI0IaaGymaaqaaiaaikdaaaGaaGypamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaWGQbGaeyOeI0IaaGymaaqaaiaaikdaaaaaaa@451C@ . m+n=ij MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaamyBaiabgUcaRiaad6gacaaI9aGaamyAaiabgkHiTiaadQgaaaa@403F@  which is not possible since m+n>ij MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gacaaI+aGaamyAaiabgkHiTiaadQgaaaa@3DE3@ , since im1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgsMiJkaad2gacqGHsislcaaIXaaaaa@3CC7@  and j m+n1 2 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgsMiJoaalaaabaGaamyBaiabgUcaRiaad6gacaaIXaaabaGaaGOmaaaacqGHsislcaaIYaaaaa@4025@ . Thus, ϕ( a i )ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@43C1@  i.e. ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ .
  2. Suppose a S1 and b T¢¢2. Therefore a = ai and b = bj. for iA and jF¢¢. Claim: If ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  For, if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( a i )=ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C1@ . i1 2 = m+n+j+1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H49aaSaaaeaacaWGPbGaeyOeI0IaaGymaaqaaiaaikdaaaGaaGypamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaWGQbGaey4kaSIaaGymaaqaaiaaikdaaaaaaa@4511@ m+n=ij MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaamyBaiabgUcaRiaad6gacaaI9aGaamyAaiabgkHiTiaadQgaaaa@403F@  which is not possible since m+n>ij2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gacaaI+aGaamyAaiabgkHiTiaadQgacqGHsislcaaIYaaaaa@3F8C@ , as im1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgsMiJkaad2gacqGHsislcaaIXaaaaa@3CC7@  and jn1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgsMiJkaad6gacqGHsislcaaIXaaaaa@3CC9@ . ϕ( a i )ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@461E@ i.e. ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ .

c) Suppose aS2 and bT2 and then we have the following parts.

  1. Suppose a S¢2 and b T¢2. Therefore a = ai and b = bj for some iB¢ and jF¢ . Claim: If ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@ then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@ . For, if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@ i.e. ϕ( a i )=ϕ( b j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaaaa@4204@ ). Therefore m+n (i1) 2 = m+n+j1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gacqGHsislcqGHWJ=6daWcaaqaaiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiMcaaeaacaaIYaaaaiabgUp+7laai2dadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaamOAaiabgkHiTiaaigdaaeaacaaIYaaaaaaa@4EB1@ . 2(m+n)2( (i1) 2 )=m+n+j1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaaGOmaiaaiIcacaWGTbGaey4kaSIaamOBaiaaiMcacqGHsislcaaIYaGaaGikaiabgcp+RpaalaaabaGaaGikaiaadMgacqGHsislcaaIXaGaaGykaaqaaiaaikdaaaGaey4+4VVaaGykaiaai2dacaWGTbGaey4kaSIaamOBaiabgUcaRiaadQgacqGHsislcaaIXaaaaa@5484@ . m+n=j+2( (i1) 2 )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaamyBaiabgUcaRiaad6gacaaI9aGaamOAaiabgUcaRiaaikdacaaIOaGaeyi84V+aaSaaaeaacaaIOaGaamyAaiabgkHiTiaaigdacaaIPaaabaGaaGOmaaaacqGH7J=+caaIPaGaeyOeI0IaaGymaaaa@4EAF@  which is not possible since, m+n>j( (i1) 2 )1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gacaaI+aGaamOAaiabgkHiTiaaiIcacqGHWJ=6daWcaaqaaiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiMcaaeaacaaIYaaaaiabgUp+7laaiMcacqGHsislcaaIXaaaaa@4BA2@  since, i m+n+1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgsMiJoaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaabaGaaGOmaaaaaaa@3F5D@  and j m+n+1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgsMiJoaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaabaGaaGOmaaaaaaa@3F5E@ . Thus ϕ( a i )ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@43C1@  i.e. ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ .
  2. Suppose a S¢2 and b T¢¢2. Therefore a = ai and b = bj for iB¢ and jF¢. Claim: If ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@ . For, if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( a i )=ϕ( b j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaaaa@4204@ ). m+n (i1) 2 = m+n+j+1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaamyBaiabgUcaRiaad6gacqGHsislcqGHWJ=6daWcaaqaaiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiMcaaeaacaaIYaaaaiabgUp+7laai2dadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaamOAaiabgUcaRiaaigdaaeaacaaIYaaaaaaa@5103@ . 2(m+n)2( (i1) 2 )=m+n+j1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaaGOmaiaaiIcacaWGTbGaey4kaSIaamOBaiaaiMcacqGHsislcaaIYaGaaGikaiabgcp+RpaalaaabaGaaGikaiaadMgacqGHsislcaaIXaGaaGykaaqaaiaaikdaaaGaey4+4VVaaGykaiaai2dacaWGTbGaey4kaSIaamOBaiabgUcaRiaadQgacqGHsislcaaIXaaaaa@5484@ . m+n=j+2( (i1) 2 )+1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gacaaI9aGaamOAaiabgUcaRiaaikdacaaIOaGaeyi84V+aaSaaaeaacaaIOaGaamyAaiabgkHiTiaaigdacaaIPaaabaGaaGOmaaaacqGH7J=+caaIPaGaey4kaSIaaGymaaaa@4C47@  which is not possible Since, i B MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgIGiolqadkeagaqbaaaa@3ACF@  and j F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgIGiolqadAeagaqbaaaa@3B4E@ . ϕ( a i )ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@461E@  i.e. ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ .
  3. Suppose a S¢¢2 and b T¢2. Therefore a = ai and b = bj for iB¢¢ and jF¢. Claim: If ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@ . For, if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@  i.e. ϕ( a i )=ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaaa@42C1@ . Therefore m+n i 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gacqGHsisldaWcaaqaaiaadMgaaeaacaaIYaaaaaaa@3CF8@  = m+n+j1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaadQgacqGHsislcaaIXaaabaGaaGOmaaaaaaa@3E96@ . (m+n)=j+i1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaaGikaiaad2gacqGHRaWkcaWGUbGaaGykaiaai2dacaWGQbGaey4kaSIaamyAaiabgkHiTiaaigdaaaa@4341@  which is not possible since, i B MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgIGiolqadkeagaqbgaqbaaaa@3ADA@  and j F MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgIGiolqadAeagaqbaaaa@3B4E@ . Thus, ϕ( a i )ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@43C1@  i.e. ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ .
  4. Suppose a S¢¢2 and b T¢¢2. Therefore a = ai and b = bj for iB¢¢ and jF¢¢. Claim: If ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@  then ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Suppose ab MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgcMi5kaadkgaaaa@3B1E@ . For, if suppose ϕ(a)=ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaaGypaiabew9aMjaaiIcacaWGIbGaaGykaaaa@4078@ i.e. ϕ( a i )=ϕ( b j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaaaa@4204@ .) Therefore m+n i 2 = m+n+j+1 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gacqGHsisldaWcaaqaaiaadMgaaeaacaaIYaaaaiaai2dadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaamOAaiabgUcaRiaaigdaaeaacaaIYaaaaaaa@44C0@ . (m+n)=j+i+1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaaGikaiaad2gacqGHRaWkcaWGUbGaaGykaiaai2dacaWGQbGaey4kaSIaamyAaiabgUcaRiaaigdaaaa@4336@  which is not possible since iB¢¢ and jF¢¢. ϕ( a i )ϕ( b j ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaaaaa@461E@  i.e. ϕ(a)ϕ(b) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggacaaIPaGaeyiyIKRaeqy1dyMaaGikaiaadkgacaaIPaaaaa@4178@ . Hence f is one - one function.

Secondly to show edge labels of L are distinct. We have edge labels of L are

|ϕ( a i )ϕ( a i+1 )|=m+n(i1) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWGHbWaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiaaiMcacaaI8bGaaGypaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGikaiaadMgacqGHsislcaaIXaGaaGykaaaa@4F04@ for 1im2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadMgacqGHKjYOcaWGTbGaeyOeI0IaaGOmaaaa@3F38@ .

|ϕ( a i )ϕ( a i+1 )|=m+n(i) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWGHbWaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiaaiMcacaaI8bGaaGypaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGikaiaadMgacaaIPaaaaa@4D5C@ for i=m1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2dacaWGTbGaeyOeI0IaaGymaaaa@3BD9@ .

|ϕ( b j )ϕ( b j+1 )|=j MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgacqGHRaWkcaaIXaaabeaakiaaiMcacaaI8bGaaGypaiaadQgaaaa@4848@ for 1jn1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgsMiJkaadQgacqGHKjYOcaWGUbGaeyOeI0IaaGymaaaa@3F39@ .

|ϕ( a i )ϕ( b j )|= (m+n1) 2 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiaaiYhacaaI9aWaaSaaaeaacaaIOaGaamyBaiabgUcaRiaad6gacqGHsislcaaIXaGaaGykaaqaaiaaikdaaaaaaa@4C5A@ for i=j=1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2dacaWGQbGaaGypaiaaigdaaaa@3BB0@ .

|ϕ( a m )ϕ( b j )|=n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew9aMjaaiIcacaWGHbWaaSbaaSqaaiaad2gaaeqaaOGaaGykaiabgkHiTiabew9aMjaaiIcacaWGIbWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiaaiYhacaaI9aGaamOBaaaa@46B1@ for i = m and j = n. From the above labeling pattern, it is observed that the edge labels of L are distinct. Thus, lattice L has graceful labeling.

Using proof of theorem 4.1, one can obtain the proof of the following theorems.

Theorem 3.2 Let C and  are chains with |C|=m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadoeacaaI8bGaaGypaiaad2gacqGHLjYSaaa@3DDD@  3 and  and | C |=n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiqadoeagaqbaiaaiYhacaaI9aGaamOBaiabgwMiZkaaigdaaaa@3EA5@ L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3D51@ . Then L has graceful labeling if m º 3(mod 4) and n º 1(mod 4).

Proof. Let C and C¢ be the chains with m and n elements, respectively. Suppose m º 3(mod 4) and n º 1(mod 4). Suppose C= a 1 a 2 a 3 a m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2dacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeSOEIaNaamyyamaaBaaaleaacaaIYaaabeaakiablQNiWjaadggadaWgaaWcbaGaaG4maaqabaGccqWIMaYscqWI6jcCcaWGHbWaaSbaaSqaaiaad2gaaeqaaaaa@469E@ , C = b 1 b 2 b 3 b n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaafaGaaGypaiaadkgadaWgaaWcbaGaaGymaaqabaGccqWI6jcCcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaeSOEIaNaamOyamaaBaaaleaacaaIZaaabeaakiablAciljablQNiWjaadkgadaWgaaWcbaGaamOBaaqabaaaaa@46AF@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3D51@ . Clearly, L has m+n elements and m+n coverings (edges). Suppose V = { a 1 , a 2 , a 3 ,, a m , b 1 , b 2 , b 3 ,, b n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadggadaWgaaWcbaGaaGymaaqabaGccaaISaGaamyyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGHbWaaSbaaSqaaiaad2gaaeqaaOGaaGilaiaadkgadaWgaaWcbaGaaGymaaqabaGccaaISaGaamOyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGyFaaaa@5171@  and E = {0, 1, 2, … , m+n}. Consider a map ϕ:VE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGOoaiaadAfacqGHsgIRcaWGfbaaaa@3DA8@ defined as follows :

ϕ( a i )={ i1 2 ifi=1,3,5,,m m+n i1 2 ifi=2,4,6,, m+n 2 m+n i 2 ifi= m+n 2 +2, m+n 2 +4,m1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyAaiabgkHiTiaaigdaaeaacaaIYaaaaaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaaGypaiaaigdacaaISaGaaG4maiaaiYcacaaI1aGaaGilaiablAciljaaiYcacaWGTbaabaGaamyBaiabgUcaRiaad6gacqGHsisldaGbdaqaamaalaaabaGaamyAaiabgkHiTiaaigdaaeaacaaIYaaaaaGaayj84laawUp+aaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaaGypaiaaikdacaaISaGaaGinaiaaiYcacaaI2aGaaGilaiablAciljaaiYcadaWcaaqaaiaad2gacqGHRaWkcaWGUbaabaGaaGOmaaaaaeaacaWGTbGaey4kaSIaamOBaiabgkHiTmaalaaabaGaamyAaaqaaiaaikdaaaaabaGaaeyAaiaabAgacaaMf8UaaGzbVlaadMgacaaI9aWaaSaaaeaacaWGTbGaey4kaSIaamOBaaqaaiaaikdaaaGaey4kaSIaaGOmaiaaiYcadaWcaaqaaiaad2gacqGHRaWkcaWGUbaabaGaaGOmaaaacqGHRaWkcaaI0aGaeSOjGSKaaGilaiaad2gacqGHsislcaaIXaaaaaGaay5Eaaaaaa@881B@

ϕ( b j )={ m+n+j1 2 ifj=1,3,5,, m+n 2 1 m+n+j+1 2 ifj= m+n 2 +1, m+n 2 +3,,n m+nj 2 ifj=2,4,6,,n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaWGQbGaeyOeI0IaaGymaaqaaiaaikdaaaaabaGaaGzbVlaaywW7caqGPbGaaeOzaiaaywW7caaMf8UaamOAaiaai2dacaaIXaGaaGilaiaaiodacaaISaGaaGynaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbGaey4kaSIaamOBaaqaaiaaikdaaaGaeyOeI0IaaGymaaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaWGQbGaey4kaSIaaGymaaqaaiaaikdaaaaabaGaaGzbVlaaywW7caqGPbGaaeOzaiaaywW7caaMf8UaamOAaiaai2dadaWcaaqaaiaad2gacqGHRaWkcaWGUbaabaGaaGOmaaaacqGHRaWkcaaIXaGaaGilamaalaaabaGaamyBaiabgUcaRiaad6gaaeaacaaIYaaaaiabgUcaRiaaiodacaaISaGaeSOjGSKaaGilaiaad6gaaeaadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaamOAaaqaaiaaikdaaaaabaGaaGzbVlaaywW7caqGPbGaaeOzaiaaywW7caaMf8UaamOAaiaai2dacaaIYaGaaGilaiaaisdacaaISaGaaGOnaiaaiYcacqWIMaYscaaISaGaamOBaiabgkHiTiaaigdaaaaacaGL7baaaaa@9250@

Clearly φ gives the required graceful labeling for L.

Theorem 3.3 Let C and C¢ are chains with |C|=m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadoeacaaI8bGaaGypaiaad2gacqGHLjYSaaa@3DDD@ 3 and | C |=n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiqadoeagaqbaiaaiYhacaaI9aGaamOBaiabgwMiZkaaigdaaaa@3EA5@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3DCB@ . Then L has graceful labeling if m º 1(mod 4) and n º 2(mod 4).

Proof. Let C and C¢ be the chains with m and n elements, respectively. Suppose m º 1(mod 4) and n º 3(mod 4). Suppose C= a 1 a 2 a 3 a m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2dacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeSOEIaNaamyyamaaBaaaleaacaaIYaaabeaakiablQNiWjaadggadaWgaaWcbaGaaG4maaqabaGccqWIMaYscqWI6jcCcaWGHbWaaSbaaSqaaiaad2gaaeqaaaaa@469E@ , C = b 1 b 2 b 3 b n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaafaGaaGypaiaadkgadaWgaaWcbaGaaGymaaqabaGccqWI6jcCcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaeSOEIaNaamOyamaaBaaaleaacaaIZaaabeaakiablAciljablQNiWjaadkgadaWgaaWcbaGaamOBaaqabaaaaa@46AF@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3D51@ . Clearly, L has m+n elements and m+n coverings (edges). Suppose V = { a 1 , a 2 , a 3 ,, a m , b 1 , b 2 , b 3 ,, b n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadggadaWgaaWcbaGaaGymaaqabaGccaaISaGaamyyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGHbWaaSbaaSqaaiaad2gaaeqaaOGaaGilaiaadkgadaWgaaWcbaGaaGymaaqabaGccaaISaGaamOyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGyFaaaa@5171@  and E = {0, 1, 2, … , m+n}. Consider a map ϕ:VE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGOoaiaadAfacqGHsgIRcaWGfbaaaa@3DA8@  defined as follows :

ϕ( a i )={ i1 2 ifi=1,3,5,,m m+n i1 2 ifi=2,4,6,, m+n+1 2 m+n i 2 ifi= m+n+1 2 +2, m+n+1 2 +4,,m1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyAaiabgkHiTiaaigdaaeaacaaIYaaaaaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaaGypaiaaigdacaaISaGaaG4maiaaiYcacaaI1aGaaGilaiablAciljaaiYcacaWGTbaabaGaamyBaiabgUcaRiaad6gacqGHsisldaGbdaqaamaalaaabaGaamyAaiabgkHiTiaaigdaaeaacaaIYaaaaaGaayj84laawUp+aaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaaGypaiaaikdacaaISaGaaGinaiaaiYcacaaI2aGaaGilaiablAciljaaiYcadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaaGymaaqaaiaaikdaaaaabaGaamyBaiabgUcaRiaad6gacqGHsisldaWcaaqaaiaadMgaaeaacaaIYaaaaaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaaGypamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaabaGaaGOmaaaacqGHRaWkcaaIYaGaaGilamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaabaGaaGOmaaaacqGHRaWkcaaI0aGaaGilaiablAciljaaiYcacaWGTbGaeyOeI0IaaGymaaaaaiaawUhaaaaa@8DA8@

ϕ( b j )={ m+nj 2 ifj=1,3,5,,n1 m+n+j1 2 ifj=2,4,6,, m+n+1 2 2 m+n+j+1 2 ifj= m+n+1 2 , m+n+1 2 +2,,n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHsislcaWGQbaabaGaaGOmaaaaaeaacaaMf8UaaGzbVlaabMgacaqGMbGaaGzbVlaaywW7caWGQbGaaGypaiaaigdacaaISaGaaG4maiaaiYcacaaI1aGaaGilaiablAciljaaiYcacaWGUbGaeyOeI0IaaGymaaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaWGQbGaeyOeI0IaaGymaaqaaiaaikdaaaaabaGaaGzbVlaaywW7caqGPbGaaeOzaiaaywW7caaMf8UaamOAaiaai2dacaaIYaGaaGilaiaaisdacaaISaGaaGOnaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaaigdaaeaacaaIYaaaaiabgkHiTiaaikdaaeaadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaamOAaiabgUcaRiaaigdaaeaacaaIYaaaaaqaaiaaywW7caaMf8UaaeyAaiaabAgacaaMf8UaaGzbVlaadQgacaaI9aWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaaigdaaeaacaaIYaaaaiaaiYcadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaaGymaaqaaiaaikdaaaGaey4kaSIaaGOmaiaaiYcacqWIMaYscaaISaGaamOBaaaaaiaawUhaaaaa@958A@

Clearly φ gives the required graceful labeling for L.

Theorem 3.4 Let C and C¢ are chains with |C|=m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadoeacaaI8bGaaGypaiaad2gacqGHLjYSaaa@3DDD@  3 and | C |=n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiqadoeagaqbaiaaiYhacaaI9aGaamOBaiabgwMiZkaaigdaaaa@3EA5@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3D51@ . Then L has graceful labeling if m º 2(mod 4) and n º 2(mod 4).

Proof. Let C and C¢ be the chains with m and n elements, respectively. Suppose m º 2(mod 4) and n º 2(mod 4). Suppose C= a 1 a 2 a 3 a m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2dacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeSOEIaNaamyyamaaBaaaleaacaaIYaaabeaakiablQNiWjaadggadaWgaaWcbaGaaG4maaqabaGccqWIMaYscqWI6jcCcaWGHbWaaSbaaSqaaiaad2gaaeqaaaaa@469E@ , C = b 1 b 2 b 3 b n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaafaGaaGypaiaadkgadaWgaaWcbaGaaGymaaqabaGccqWI6jcCcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaeSOEIaNaamOyamaaBaaaleaacaaIZaaabeaakiablAciljablQNiWjaadkgadaWgaaWcbaGaamOBaaqabaaaaa@46AF@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3D51@ . Here, L has m+n elements and m+n coverings (edges). Suppose V = { a 1 , a 2 , a 3 ,, a m , b 1 , b 2 , b 3 ,, b n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadggadaWgaaWcbaGaaGymaaqabaGccaaISaGaamyyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGHbWaaSbaaSqaaiaad2gaaeqaaOGaaGilaiaadkgadaWgaaWcbaGaaGymaaqabaGccaaISaGaamOyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGyFaaaa@5171@  and E = {0, 1, 2, … , m+n}. Consider a map ϕ:VE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGOoaiaadAfacqGHsgIRcaWGfbaaaa@3DA8@  defined as follows :

ϕ( a i )={ i1 2 ifi=1,3,5,,m1 m+n i1 2 ifi=2,4,6,, m+n 2 m+n i 2 ifi= m+n 2 +2, m+n 2 +4,,m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyAaiabgkHiTiaaigdaaeaacaaIYaaaaaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaaGypaiaaigdacaaISaGaaG4maiaaiYcacaaI1aGaaGilaiablAciljaaiYcacaWGTbGaeyOeI0IaaGymaaqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0YaayWaaeaadaWcaaqaaiaadMgacqGHsislcaaIXaaabaGaaGOmaaaaaiaawcp+caGL7JpaaeaacaqGPbGaaeOzaiaaywW7caaMf8UaamyAaiaai2dacaaIYaGaaGilaiaaisdacaaISaGaaGOnaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbGaey4kaSIaamOBaaqaaiaaikdaaaaabaGaamyBaiabgUcaRiaad6gacqGHsisldaWcaaqaaiaadMgaaeaacaaIYaaaaaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaaGypamaalaaabaGaamyBaiabgUcaRiaad6gaaeaacaaIYaaaaiabgUcaRiaaikdacaaISaWaaSaaaeaacaWGTbGaey4kaSIaamOBaaqaaiaaikdaaaGaey4kaSIaaGinaiaaiYcacqWIMaYscaaISaGaamyBaaaaaiaawUhaaaaa@88D1@

ϕ( b j )={ m+n+j1 2 ifj=1,3,5,,m1 m+n+j+1 2 ifj= m+n 2 +1, m+n 2 +3,,n1 m+nj 2 ifj=2,4,6,,n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaWGQbGaeyOeI0IaaGymaaqaaiaaikdaaaaabaGaaGzbVlaaywW7caqGPbGaaeOzaiaaywW7caaMf8UaamOAaiaai2dacaaIXaGaaGilaiaaiodacaaISaGaaGynaiaaiYcacqWIMaYscaaISaGaamyBaiabgkHiTiaaigdaaeaadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaamOAaiabgUcaRiaaigdaaeaacaaIYaaaaaqaaiaaywW7caaMf8UaaeyAaiaabAgacaaMf8UaaGzbVlaadQgacaaI9aWaaSaaaeaacaWGTbGaey4kaSIaamOBaaqaaiaaikdaaaGaey4kaSIaaGymaiaaiYcadaWcaaqaaiaad2gacqGHRaWkcaWGUbaabaGaaGOmaaaacqGHRaWkcaaIZaGaaGilaiablAciljaaiYcacaWGUbGaeyOeI0IaaGymaaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHsislcaWGQbaabaGaaGOmaaaaaeaacaaMf8UaaGzbVlaabMgacaqGMbGaaGzbVlaaywW7caWGQbGaaGypaiaaikdacaaISaGaaGinaiaaiYcacaaI2aGaaGilaiablAciljaaiYcacaWGUbaaaaGaay5Eaaaaaa@8FAF@

Clearly φ gives the required graceful labeling for L.

Theorem 3.5 Let C and C¢ are chains with |C|=m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadoeacaaI8bGaaGypaiaad2gacqGHLjYSaaa@3DDD@  3 and | C |=n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiqadoeagaqbaiaaiYhacaaI9aGaamOBaiabgwMiZkaaigdaaaa@3EA5@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3DCB@ . Then L has graceful labeling if m º 0(mod 4) and n º 3(mod 4).

Proof. Let C and C¢ be the chains with m and n elements, respectively. Suppose m º 0(mod 4) and n º 4(mod 4). Suppose C= a 1 a 2 a 3 a m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2dacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeSOEIaNaamyyamaaBaaaleaacaaIYaaabeaakiablQNiWjaadggadaWgaaWcbaGaaG4maaqabaGccqWIMaYscqWI6jcCcaWGHbWaaSbaaSqaaiaad2gaaeqaaaaa@469E@ , C = b 1 b 2 b 3 b n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaafaGaaGypaiaadkgadaWgaaWcbaGaaGymaaqabaGccqWI6jcCcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaeSOEIaNaamOyamaaBaaaleaacaaIZaaabeaakiablAciljablQNiWjaadkgadaWgaaWcbaGaamOBaaqabaaaaa@46AF@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3D51@ . Clearly, L has m+n elements and m+n coverings (edges). Suppose V = { a 1 , a 2 , a 3 ,, a m , b 1 , b 2 , b 3 ,, b n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadggadaWgaaWcbaGaaGymaaqabaGccaaISaGaamyyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGHbWaaSbaaSqaaiaad2gaaeqaaOGaaGilaiaadkgadaWgaaWcbaGaaGymaaqabaGccaaISaGaamOyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGyFaaaa@5171@  and E = {0, 1, 2, … , m+n}. Consider a map ϕ:VE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGOoaiaadAfacqGHsgIRcaWGfbaaaa@3DA8@  defined as follows :

ϕ( a i )={ i1 2 ifi=1,3,5,,m1 m+n( i 2 1) ifi=2,4,6,, m+n+1 2 m+n i 2 ifi= m+n+1 2 +2, m+n+1 2 +4,,m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyAaiabgkHiTiaaigdaaeaacaaIYaaaaaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaaGypaiaaigdacaaISaGaaG4maiaaiYcacaaI1aGaaGilaiablAciljaaiYcacaWGTbGaeyOeI0IaaGymaaqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGikamaalaaabaGaamyAaaqaaiaaikdaaaGaeyOeI0IaaGymaiaaiMcaaeaacaqGPbGaaeOzaiaaywW7caaMf8UaamyAaiaai2dacaaIYaGaaGilaiaaisdacaaISaGaaGOnaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaaigdaaeaacaaIYaaaaaqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0YaaSaaaeaacaWGPbaabaGaaGOmaaaaaeaacaqGPbGaaeOzaiaaywW7caaMf8UaamyAaiaai2dadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaaGymaaqaaiaaikdaaaGaey4kaSIaaGOmaiaaiYcadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaaGymaaqaaiaaikdaaaGaey4kaSIaaGinaiaaiYcacqWIMaYscaaISaGaamyBaaaaaiaawUhaaaaa@89F5@

ϕ( b j )={ m+nj 2 ifj=1,3,5,,n m+n+j1 2 ifj=2,4,6,, m+n+1 2 2 m+n+j+1 2 ifj= m+n+1 2 , m+n+1 2 +2,,n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHsislcaWGQbaabaGaaGOmaaaaaeaacaaMf8UaaGzbVlaabMgacaqGMbGaaGzbVlaaywW7caWGQbGaaGypaiaaigdacaaISaGaaG4maiaaiYcacaaI1aGaaGilaiablAciljaaiYcacaWGUbaabaWaaSaaaeaacaWGTbGaey4kaSIaamOBaiabgUcaRiaadQgacqGHsislcaaIXaaabaGaaGOmaaaaaeaacaaMf8UaaGzbVlaabMgacaqGMbGaaGzbVlaaywW7caWGQbGaaGypaiaaikdacaaISaGaaGinaiaaiYcacaaI2aGaaGilaiablAciljaaiYcadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaaGymaaqaaiaaikdaaaGaeyOeI0IaaGOmaaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaWGQbGaey4kaSIaaGymaaqaaiaaikdaaaaabaGaaGzbVlaaywW7caqGPbGaaeOzaiaaywW7caaMf8UaamOAaiaai2dadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaey4kaSIaaGymaaqaaiaaikdaaaGaaGilamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaabaGaaGOmaaaacqGHRaWkcaaIYaGaaGilaiablAciljaaiYcacaWGUbGaeyOeI0IaaGymaaaaaiaawUhaaaaa@958A@

Clearly gives the required graceful labeling for L.

Theorem 3.6 Let C and C¢ are chains with |C|=m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadoeacaaI8bGaaGypaiaad2gacqGHLjYSaaa@3DDD@ 3 and | C |=n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiqadoeagaqbaiaaiYhacaaI9aGaamOBaiabgwMiZkaaigdaaaa@3EA5@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3DCB@ . Then L has graceful labeling if m º 1(mod 4) and n º 3(mod 4).

Proof. Let C and C¢ be the chains with m and n elements, respectively. Suppose m º 1(mod 4) and n º 3(mod 4). Suppose C= a 1 a 2 a 3 a m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2dacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeSOEIaNaamyyamaaBaaaleaacaaIYaaabeaakiablQNiWjaadggadaWgaaWcbaGaaG4maaqabaGccqWIMaYscqWI6jcCcaWGHbWaaSbaaSqaaiaad2gaaeqaaaaa@469E@ , C = b 1 b 2 b 3 b n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaafaGaaGypaiaadkgadaWgaaWcbaGaaGymaaqabaGccqWI6jcCcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaeSOEIaNaamOyamaaBaaaleaacaaIZaaabeaakiablAciljablQNiWjaadkgadaWgaaWcbaGaamOBaaqabaaaaa@46AF@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3DCB@ . Here, L has m+n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gaaaa@3A51@  elements and m+n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgUcaRiaad6gaaaa@3A51@  coverings (edges). Suppose V = { a 1 , a 2 , a 3 ,, a m , b 1 , b 2 , b 3 ,, b n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadggadaWgaaWcbaGaaGymaaqabaGccaaISaGaamyyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGHbWaaSbaaSqaaiaad2gaaeqaaOGaaGilaiaadkgadaWgaaWcbaGaaGymaaqabaGccaaISaGaamOyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGyFaaaa@5171@ and E = {0, 1, 2, … , m+n}. Consider a map ϕ:VE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGOoaiaadAfacqGHsgIRcaWGfbaaaa@3DA8@  defined as follows :

ϕ( a i )={ i1 2 ifi=1,3,5,,m m+n( i 2 1) ifi=2,4,6,, m+n 2 m+n i 2 ifi= m+n 2 +2, m+n 2 +4,,m1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyAaiabgkHiTiaaigdaaeaacaaIYaaaaaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaaGypaiaaigdacaaISaGaaG4maiaaiYcacaaI1aGaaGilaiablAciljaaiYcacaWGTbaabaGaamyBaiabgUcaRiaad6gacqGHsislcaaIOaWaaSaaaeaacaWGPbaabaGaaGOmaaaacqGHsislcaaIXaGaaGykaaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaaGypaiaaikdacaaISaGaaGinaiaaiYcacaaI2aGaaGilaiablAciljaaiYcadaWcaaqaaiaad2gacqGHRaWkcaWGUbaabaGaaGOmaaaaaeaacaWGTbGaey4kaSIaamOBaiabgkHiTmaalaaabaGaamyAaaqaaiaaikdaaaaabaGaaeyAaiaabAgacaaMf8UaaGzbVlaadMgacaaI9aWaaSaaaeaacaWGTbGaey4kaSIaamOBaaqaaiaaikdaaaGaey4kaSIaaGOmaiaaiYcadaWcaaqaaiaad2gacqGHRaWkcaWGUbaabaGaaGOmaaaacqGHRaWkcaaI0aGaaGilaiablAciljaaiYcacaWGTbGaeyOeI0IaaGymaaaaaiaawUhaaaaa@851E@

ϕ( b j )={ m+n+j1 2 ifj=1,3,5,, m+n 2 1 m+n+j+1 2 ifj= m+n 2 +1, m+n 2 +3,,n m+nj 2 ifj=2,4,6,,n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadkgadaWgaaWcbaGaamOAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaWGQbGaeyOeI0IaaGymaaqaaiaaikdaaaaabaGaaGzbVlaaywW7caqGPbGaaeOzaiaaywW7caaMf8UaamOAaiaai2dacaaIXaGaaGilaiaaiodacaaISaGaaGynaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbGaey4kaSIaamOBaaqaaiaaikdaaaGaeyOeI0IaaGymaaqaamaalaaabaGaamyBaiabgUcaRiaad6gacqGHRaWkcaWGQbGaey4kaSIaaGymaaqaaiaaikdaaaaabaGaaGzbVlaaywW7caqGPbGaaeOzaiaaywW7caaMf8UaamOAaiaai2dadaWcaaqaaiaad2gacqGHRaWkcaWGUbaabaGaaGOmaaaacqGHRaWkcaaIXaGaaGilamaalaaabaGaamyBaiabgUcaRiaad6gaaeaacaaIYaaaaiabgUcaRiaaiodacaaISaGaeSOjGSKaaGilaiaad6gaaeaadaWcaaqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaamOAaaqaaiaaikdaaaaabaGaaGzbVlaaywW7caqGPbGaaeOzaiaaywW7caaMf8UaamOAaiaai2dacaaIYaGaaGilaiaaisdacaaISaGaaGOnaiaaiYcacqWIMaYscaaISaGaamOBaiabgkHiTiaaigdaaaaacaGL7baaaaa@9250@

Clearly φ gives the required graceful labeling for L.

Theorem 3.7 Let C and C¢ are chains with |C|=m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadoeacaaI8bGaaGypaiaad2gacqGHLjYSaaa@3DDD@  3 and | C |=n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiqadoeagaqbaiaaiYhacaaI9aGaamOBaiabgwMiZkaaigdaaaa@3EA5@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3DCB@ . Then L has graceful labeling if m º 0(mod 4) and n º 0(mod 4).

Proof. Let C and C¢ be the chains with m and n elements, respectively. Suppose m = 0(mod 4) and n = 0(mod 4). Suppose C= a 1 a 2 a 3 a m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2dacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeSOEIaNaamyyamaaBaaaleaacaaIYaaabeaakiablQNiWjaadggadaWgaaWcbaGaaG4maaqabaGccqWIMaYscqWI6jcCcaWGHbWaaSbaaSqaaiaad2gaaeqaaaaa@469E@ , C = b 1 b 2 b 3 b n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaafaGaaGypaiaadkgadaWgaaWcbaGaaGymaaqabaGccqWI6jcCcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaeSOEIaNaamOyamaaBaaaleaacaaIZaaabeaakiablAciljablQNiWjaadkgadaWgaaWcbaGaamOBaaqabaaaaa@46AF@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3D51@ . L has m+n elements and m+n coverings (edges). Suppose V = { a 1 , a 2 , a 3 ,, a m , b 1 , b 2 , b 3 ,, b n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadggadaWgaaWcbaGaaGymaaqabaGccaaISaGaamyyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGHbWaaSbaaSqaaiaad2gaaeqaaOGaaGilaiaadkgadaWgaaWcbaGaaGymaaqabaGccaaISaGaamOyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGyFaaaa@5171@  and E = {0, 1, 2, … , m+n}. Consider a map ϕ:VE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGOoaiaadAfacqGHsgIRcaWGfbaaaa@3DA8@  defined as follows :

ϕ( a i )={ i1 2 ifi=1,3,5,,m1 m+n( i 2 1) ifi=2,4,6,, m+n 2 m+n i 2 ifi= m+n 2 +2, m+n 2 +4,,m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGikaiaadggadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypamaaceaabaqbaeqabmGaaaqaamaalaaabaGaamyAaiabgkHiTiaaigdaaeaacaaIYaaaaaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaaGypaiaaigdacaaISaGaaG4maiaaiYcacaaI1aGaaGilaiablAciljaaiYcacaWGTbGaeyOeI0IaaGymaaqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGikamaalaaabaGaamyAaaqaaiaaikdaaaGaeyOeI0IaaGymaiaaiMcaaeaacaqGPbGaaeOzaiaaywW7caaMf8UaamyAaiaai2dacaaIYaGaaGilaiaaisdacaaISaGaaGOnaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbGaey4kaSIaamOBaaqaaiaaikdaaaaabaGaamyBaiabgUcaRiaad6gacqGHsisldaWcaaqaaiaadMgaaeaacaaIYaaaaaqaaiaabMgacaqGMbGaaGzbVlaaywW7caWGPbGaaGypamaalaaabaGaamyBaiabgUcaRiaad6gaaeaacaaIYaaaaiabgUcaRiaaikdacaaISaWaaSaaaeaacaWGTbGaey4kaSIaamOBaaqaaiaaikdaaaGaey4kaSIaaGinaiaaiYcacqWIMaYscaaISaGaamyBaaaaaiaawUhaaaaa@851E@

ϕ( b j )={ m+n+j1 2         if  j=1,3,5, m+n 2 1 m+n+j+1 2          if  j= m+n 2 +1, m+n 2 +3,,n1 m+n+j+1 2          if  j=2,4,6,,n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvpGzcaaIOaGaamOyaOWaaSbaaSqaaKqzGeGaamOAaaWcbeaajugibiaaiMcacaaI9aGcdaGabaqcLbsaeaqabOqaamaalaaabaqcLbsacaWGTbGaey4kaSIaamOBaiabgUcaRiaadQgacqGHsislcaaIXaaakeaajugibiaaikdaaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGPbGaaeOzaiaabccacaqGGaGaamOAaiaai2dacaaIXaGaaGilaiaaiodacaaISaGaeSOjGSKaaGynaiaaiYcakmaalaaabaqcLbsacaWGTbGaey4kaSIaamOBaaGcbaqcLbsacaaIYaaaaiabgkHiTiaaigdaaOqaamaalaaabaqcLbsacaWGTbGaey4kaSIaamOBaiabgUcaRiaadQgacqGHRaWkcaaIXaaakeaajugibiaaikdaaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeyAaiaabAgacaqGGaGaaeiiaiaadQgacaaI9aGcdaWcaaqaaKqzGeGaamyBaiabgUcaRiaad6gaaOqaaKqzGeGaaGOmaaaacqGHRaWkcaaIXaGaaGilaOWaaSaaaeaajugibiaad2gacqGHRaWkcaWGUbaakeaajugibiaaikdaaaGaey4kaSIaaG4maiaaiYcacqWIMaYscaaISaGaamOBaiabgkHiTiaaigdaaOqaamaalaaabaqcLbsacaWGTbGaey4kaSIaamOBaiabgUcaRiaadQgacqGHRaWkcaaIXaaakeaajugibiaaikdaaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeyAaiaabAgacaqGGaGaaeiiaiaadQgacaaI9aGaaGOmaiaaiYcacaaI0aGaaGilaiaaiAdacaaISaGaeSOjGSKaaGilaiaad6gaaaGccaGL7baaaaa@9EDA@

Clearly φ gives the required graceful labeling for L.

Theorem 3.8 Let C and C¢ are chains with |C|=m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadoeacaaI8bGaaGypaiaad2gacqGHLjYSaaa@3DDD@  3 and | C |=n1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiqadoeagaqbaiaaiYhacaaI9aGaamOBaiabgwMiZkaaigdaaaa@3EA5@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3DCB@ . Then L has graceful labeling if m º 3(mod 4) and n º 0(mod 4).

Proof. Let C and C¢ be the chains with m and n elements, respectively. Suppose m º 3(mod 4) and 0 º 1(mod 4). Suppose C= a 1 a 2 a 3 a m MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2dacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeSOEIaNaamyyamaaBaaaleaacaaIYaaabeaakiablQNiWjaadggadaWgaaWcbaGaaG4maaqabaGccqWIMaYscqWI6jcCcaWGHbWaaSbaaSqaaiaad2gaaeqaaaaa@469E@ , C = b 1 b 2 b 3 b n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaafaGaaGypaiaadkgadaWgaaWcbaGaaGymaaqabaGccqWI6jcCcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaeSOEIaNaamOyamaaBaaaleaacaaIZaaabeaakiablAciljablQNiWjaadkgadaWgaaWcbaGaamOBaaqabaaaaa@46AF@  and L=C ] 0 1 C MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2dacaWGdbGaaGyxamaaDaaaleaacaaIWaaabaGaaGymaaaakiqadoeagaqbaaaa@3D51@ . Here, L has m+n elements and m+n coverings (edges). Suppose V = { a 1 , a 2 , a 3 ,, a m , b 1 , b 2 , b 3 ,, b n } MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadggadaWgaaWcbaGaaGymaaqabaGccaaISaGaamyyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGHbWaaSbaaSqaaiaad2gaaeqaaOGaaGilaiaadkgadaWgaaWcbaGaaGymaaqabaGccaaISaGaamOyamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaiablAciljaaiYcacaWGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGyFaaaa@5171@  and E = {0, 1, 2, … , m+n}. Consider a map ϕ:VE MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnvMCYL2DLfgDOvMCaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaGOoaiaadAfacqGHsgIRcaWGfbaaaa@3DA8@  defined as follows :

ϕ( a i )={ i1 2                    if  i=1,3,5,,m m+n( i 2 1)   if  i=2,4,6,, m+n+1 2 m+n i 2            if  i= m+n+1 2 +2, m+n+1 2 +4,,m1 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvpGzcaaIOaGaamyyaOWaaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiaaiMcacaaI9aGcdaGabaqcLbsaeaqabOqaamaalaaabaqcLbsacaWGPbGaeyOeI0IaaGymaaGcbaqcLbsacaaIYaaaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGPbGaaeOzaiaabccacaqGGaGaamyAaiaai2dacaaIXaGaaGilaiaaiodacaaISaGaaGynaiaaiYcacqWIMaYscaaISaGaamyBaaGcbaqcLbsacaWGTbGaey4kaSIaamOBaiabgkHiTiaaiIcakmaalaaabaqcLbsacaWGPbaakeaajugibiaaikdaaaGaeyOeI0IaaGymaiaaiMcacaqGGaGaaeiiaiaabccacaqGPbGaaeOzaiaabccacaqGGaGaamyAaiaai2dacaaIYaGaaGilaiaaisdacaaISaGaaGOnaiaaiYcacqWIMaYscaaISaGcdaWcaaqaaKqzGeGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaakeaajugibiaaikdaaaaakeaajugibiaad2gacqGHRaWkcaWGUbGaeyOeI0IcdaWcaaqaaKqzGeGaamyAaaGcbaqcLbsacaaIYaaaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeyAaiaabAgacaqGGaGaaeiiaiaadMgacaaI9aGcdaWcaaqaaKqzGeGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaakeaajugibiaaikdaaaGaey4kaSIaaGOmaiaaiYcakmaalaaabaqcLbsacaWGTbGaey4kaSIaamOBaiabgUcaRiaaigdaaOqaaKqzGeGaaGOmaaaacqGHRaWkcaaI0aGaaGilaiablAciljaaiYcacaWGTbGaeyOeI0IaaGymaaaakiaawUhaaaaa@A49E@

ϕ( b j )={ m+nj 2          if  j=1,3,5,m m+n+j1 2     if  j=2,4,6,, m+n+1 2 2 m+n+j+1 2     if  j= m+n+1 2 , m+n+1 2 +2,,n MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHvpGzcaaIOaGaamOyaOWaaSbaaSqaaKqzGeGaamOAaaWcbeaajugibiaaiMcacaaI9aGcdaGabaqcLbsaeaqabOqaamaalaaabaqcLbsacaWGTbGaey4kaSIaamOBaiabgkHiTiaadQgaaOqaaKqzGeGaaGOmaaaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGPbGaaeOzaiaabccacaqGGaGaamOAaiaai2dacaaIXaGaaGilaiaaiodacaaISaGaeSOjGSKaaGynaiaaiYcacaWGTbaakeaadaWcaaqaaKqzGeGaamyBaiabgUcaRiaad6gacqGHRaWkcaWGQbGaeyOeI0IaaGymaaGcbaqcLbsacaaIYaaaaiaabccacaqGGaGaaeiiaiaabccacaqGPbGaaeOzaiaabccacaqGGaGaamOAaiaai2dacaaIYaGaaGilaiaaisdacaaISaGaaGOnaiaaiYcacqWIMaYscaaISaGcdaWcaaqaaKqzGeGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaakeaajugibiaaikdaaaGaeyOeI0IaaGOmaaGcbaWaaSaaaeaajugibiaad2gacqGHRaWkcaWGUbGaey4kaSIaamOAaiabgUcaRiaaigdaaOqaaKqzGeGaaGOmaaaacaqGGaGaaeiiaiaabccacaqGGaGaaeyAaiaabAgacaqGGaGaaeiiaiaadQgacaaI9aGcdaWcaaqaaKqzGeGaamyBaiabgUcaRiaad6gacqGHRaWkcaaIXaaakeaajugibiaaikdaaaGaaGilaOWaaSaaaeaajugibiaad2gacqGHRaWkcaWGUbGaey4kaSIaaGymaaGcbaqcLbsacaaIYaaaaiabgUcaRiaaikdacaaISaGaeSOjGSKaaGilaiaad6gaaaGccaGL7baaaaa@991E@

Clearly φ gives the required graceful labeling for L.

Conclusion

In this paper, we introduced graceful labeling for finite posets. We obtained graceful labeling of some finite posets such as a chain, a fence, and a crown. Also, we obtained graceful labeling of an adjunct sum of two chains concerning an adjunct pair (0,1). We raise the problem of finding graceful labeling of an adjunct sum of two chains concerning an adjunct pair (a,b) in general. Further, the problem may be extended to the class of finite dismantlable lattices/posets also.

  1. Ringel G. Theory of graphs and its applications. In: Proceedings of the Symposium Smolenice. 1963.
  2. Rosa A. On certain valuations of the vertices of a graph. In: Theory of Graphs (International Symposium, Rome, July 1966). Gordon and Breach; Dunod; New York, Paris; 1967. Available from: https://www.scirp.org/reference/referencespapers?referenceid=2964508
  3. Gallian JA. A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics. 2022;25:1-623. Available from: https://www.combinatorics.org/files/Surveys/ds6/ds6v25-2022.pdf
  4. Biatch MP, Bagga JS, Arumugam S. A survey and a new class of graceful unicyclic graphs. AKCE International Journal of Graphs and Combinatorics. 2020;17(2):673–8. Available from: https://doi.org/10.1080/09728600.2020.1832853
  5. Sivaraman R. Graceful graphs and its applications. International Journal of Current Research. 2016;8:41062-7. Available from: https://www.journalcra.com/sites/default/files/issue-pdf/18683.pdf
  6. Venkatesh S, Balasubramanian K. Some results on generating graceful trees. International Journal of Engineering and Technology. 2018;7(4):570–2. Available from: https://doi.org/10.14419/ijet.v7i4.10.21283
  7. Ragukumar P, Sethuraman G. Binomial trees are graceful. AKCE International Journal of Graphs and Combinatorics. 2020;17(1):632–6. Available from: https://doi.org/10.1016/j.akcej.2018.06.005
  8. Thakare NK, Pawar MM, Waphare BN. A structure theorem for dismantlable lattices and enumeration. Periodica Mathematica Hungarica. 2002;45(1-2):147-60. Available from: https://doi.org/10.1023/a:1022314517291
  9. Kelly D, Rival I. Crowns, fences, and dismantlable lattices. Can J Math. 1974;27:1257-71.
  10. Grätzer G. General Lattice Theory. 2nd ed. Birkhäuser Verlag; 1998. Available from: http://dx.doi.org/10.1007/978-3-0348-7633-9
  11. Bhawale AN, Waphare BN. Posets dismantlable by doubly irreducibles. Journal of the Indian Math. Soc. 2021;88(1-2):46-59. Available from: https://doi.org/10.18311/jims/2021/26053
  12. West DB. Introduction to Graph Theory. 2nd ed. Pearson Education. 2015.
 

Help ?