Simpson Type Estimations for Convex Functions via Quantum Calculus

Main Article Content

Samet Erden*
Necmettin Alp
Sabah Iftikhar

Abstract

We first establish a new identity including quantum integrals and quantum numbers via q -differentiable functions. After that, with the help of this equality, a Simpson-type inequality for functions whose quantum derivatives in modulus are convex is derived, and some new inequalities for powers of quantum derivatives in absolute value are provided. It is also discussed how results come out in the case when q approaches 1.
Mathematics Subject Classification: 26D15, 26D10, 26A51, 34A08.

Downloads

Download data is not yet available.

Article Details

Erden, S., Alp, N., & Iftikhar, S. (2024). Simpson Type Estimations for Convex Functions via Quantum Calculus. Annals of Mathematics and Physics, 7(3), 284–291. https://doi.org/10.17352/amp.000134
Research Articles

Copyright (c) 2024 Erden S, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Alomari MW, Darus M, Dragomir SS. New inequalities of Simpson's type for s-convex functions with applications. RGMIA Res Rep Coll. 2009;12(4)9. https://rgmia.org/papers/v12n4/Simpson.pdf

Dragomir SS, Agarwal RP, Cerone P. On Simpson's inequality and applications. J Inequal Appl. 2000;5:533-579. https://rgmia.org/papers/v2n3/Simpsurv.pdf

Sarikaya MZ, Set E, Özdemir ME. On new inequalities of Simpson's type for convex functions. RGMIA Res Rep Coll. 2010;13(2)2. https://doi.org/10.1016/j.camwa.2010.07.033

Sarikaya MZ, Budak H, Erden S. On new inequalities of Simpson's type for generalized convex functions. Korean J Math. 2019;27(2):279-295. http://dx.doi.org/10.11568/kjm.2019.27.2.279

Liu Z. An inequality of Simpson type. Proc Royal Soc A Math Phys Eng Sci. 2005;461(2059):2155-2158. https://www.sciepub.com/reference/162832

Erden S, Iftikhar S, Delavar RM, Kumam P, Thounthong P, Kumam W. On generalizations of some inequalities for convex functions via quantum integrals. Rev Real Acad Cienc Exactas Fisicas Naturales. 2020;114(3):1–15. doi:10.1007/s13398-020-00841-3. https://link.springer.com/article/10.1007/s13398-020-00841-3

Ernst T. A comprehensive treatment of -calculus. Basel: Springer; 2016.

Ernst T. A method for -calculus. J Nonlinear Math Phys. 2003;10(4):487-525.

Ernst T. The history of -calculus and new method. Uppsala: Department of Mathematics, Uppsala University; 2000.

Gauchman H. Integral inequalities in -calculus. Comput Math Appl. 2004;47:281-300.

Jackson FH. On a -definite integrals. Quart J Pure Appl Math. 1910;41:193-203.

Kac V, Cheung P. Quantum calculus. New York: Springer; 2002.

Agarwal R. A propos d'une note de M. Pierre Humbert. Reports from the Academy of Sciences. 1953;236(21):2031-2032.

Al-Salam W. Some fractional q-integrals and q-derivatives. Proc Edinburgh Math Soc. 1966/1967;15(2):135–40. https://doi.org/10.1017/S0013091500011469

Tariboon J, Ntouyas SK. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv Difference Equ. 2013;2013:282:19. http://dx.doi.org/10.1186/1687-1847-2013-282

Alp N, Sarikaya MZ, Kunt M, Iscan I. Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J King Saud Univ Sci. 2018;30:193-203.

Noor MA, Noor KI, Awan MU. Some quantum estimates for Hermite-Hadamard inequalities. Appl Math Comput. 2015;251:675-679. http://dx.doi.org/10.1016/j.amc.2014.11.090

Noor MA, Noor KI, Awan MU. Some quantum integral inequalities via preinvex functions. Appl Math Comput. 2015;269:242-251. http://dx.doi.org/10.1016/j.amc.2015.07.078

Noor MA, Noor KI, Awan MU. Quantum Ostrowski inequalities for -differentiable convex functions. J Math Inequal. 2016;10:1013-1018.

Budak H, Erden S, Ali MA. Simpson and Newton-type inequalities for convex functions via newly defined quantum integrals. Math Methods Appl Sci. 2021;44(1):378-390. https://doi.org/10.1002/mma.6742

Tunç M, Göv E, Balgeçti S. Simpson type quantum integral inequalities for convex functions. Miskolc Math Notes. 2018;19:649-664. http://dx.doi.org/10.18514/MMN.2018.1661

Tariboon J, Ntouyas SK. Quantum integral inequalities on finite intervals. J Inequal Appl. 2014;2014:121:13. https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/1029-242X-2014-121

Jackson FH. -Difference equations. Amer J Math. 1910;32(4):305-314.