Coefficient estimates for a subclass of bi-univalent functions associated with the Salagean differential operator

Main Article Content

Mohammad Mehdi Shabani
Maryam Yazdi
Saeed Hashemi Sababe*

Abstract



In this paper, we present and examine a novel subset of the function class ∑, which consists of analytic and bi-univalent functions defined in the open unit disk U and connected to the Salagean differential operator. Additionally, we determine estimates for the Taylor-Maclaurin coefficients |a2| and |a3| functions within this new subclass and enhance some recent findings.
2010 Mathematics Subject Classification. 30C45; 30C50.



Downloads

Download data is not yet available.

Article Details

Shabani, M. M., Yazdi, M., & Sababe, S. H. (2024). Coefficient estimates for a subclass of bi-univalent functions associated with the Salagean differential operator. Annals of Mathematics and Physics, 7(1), 091–095. https://doi.org/10.17352/amp.000112
Research Articles

Copyright (c) 2024 Shabani MM, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Brannan DA, Taha TS. On some classes of bi-univalent functions. In: SM. Mazhar, A Hamoui, NS. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in KFAS Proceedings Series. Pergamon Press (Elsevier Science Limited), Oxford, 1988; 3:53-60.

Bulut S. Coefficient estimates for initial Taylor-Maclaurin coefficients for a subclass of analytic and bi-univalent functions defined by Al-Oboudi differential operator. ScientificWorldJournal. 2013 Dec 29;2013:171039. doi: 10.1155/2013/171039. PMID: 24487954; PMCID: PMC3893868.

Duren PL. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

Frasin BA. Coefficient bounds for certain classes of bi-univalent functions. Hacettepe Journal of Mathematics and Statistics. 2014; 43(3): 383-389.

Magesh N, Rosy T, Varma S. Coefficient estimate problem for a new subclass of biunivalent functions. J Complex Anal. 2013; 474231.

Jothibasu J. Certain Subclasses OF Bi-univalent Functions Defined By Salagean Operator. EJMAA. 2015; 3(1): 150-157.

Porwal S, Darus M. On a new subclass of bi-univalent functions. J Egyptian Math Soc. 2013; 21:190-193.

Orhan H, Magesh N, Balaji VK. Initial coefficient bounds for certain classes of meromorphic bi-univalent functions. Asian European J Math. 2014; 7(1):

Shabani MM, Hashemi Sababe S. On Some Classes of Spiral-like Functions Defined by the Salagean Operator. Korean J Math. 2020; 28: 137–147.

Shabani MM, Yazdi M, Hashemi Sababe S. Coefficient Bounds for a Subclass of Harmonic Mappings Convex in one direction. Kyungpook Math J. 2021; 61: 269-278.

Shabani MM, Yazdi M, Hashemi Sababe S. Some distortion theorems for new subclass of harmonic univalent functions. Honam Mathematical J. 2020; 42(4): 701–717.

Shabani MM, Hashemi Sababe S. Coefficient bounds for a subclass of bi-univalent functions associated with Dziok-Srivastava operator. Korean J Math. 2022; 30(1): 73–80.

Salagean GS. Subclasses of univalent functions, Lecture Notes in Math., Springer, Berlin. 1983; 1013: 362-372.

Srivastava HM, Murugusundaramoorthy G, Magesh N. On certain subclasses of biunivalent functions associated with hohlov operator. Global J Math Anal. 2013; 67–73.