Peertechz

1 Annals of

ANNALS OF . .
Mathematics and Physics 2

a
Za
<>
»n ©
O x
=@
< ¥
=Q
w »n
T >
E I
< a
=

ISSN: | 2689-7636 DOI:  https://dx.doi.org/10.17352/amp

Received: 05 January, 2024

Research Article Accepted: 05 February, 2024
Published: 06 February, 2024

Energy metrics and thEir RiCCi *Corresponding author: Sergio Benenti, Professor

Emeritus of Mathematics, Department of Mathematics,
University of Turin, Academy of Sciences of Turin, Via

flOWS Maria Vittoria 3, 1-10123 Turin, Italy,

E-mail: sergio.benenti@unito.it

Sergio Benenti' and Fabio Cardone? Keywords: Lorentz invariance; Ricci flow; Metric

. . : . . . interactions; Nuclear metamorphosis
'Professor Emeritus of Mathematics, Department of Mathematics, University of Turin, Academy of P

Sciences of Turin, Via Maria Vittoria 3, [-10123 Turin, Italy Copyright License: © 2024 Benenti S, et al. This is an
open-access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

2Former Professor of Physics (Retired), Member of CNR (National Research Council), Piazzale Aldo
Moro 7, 1-00185, Roma, Italy

https://www.peertechzpublications.org

'.) Check for updates

Abstract

The framework of the Deformed Space-Time theory has been extended in the past from four to five dimensions, where the fifth coordinate is the energy exchanged by
the interaction. In this theory, each fundamental interaction is described by an energy-dependent metric.

This picture has been exploited in order to take care of the interaction behaviour both when Lorentz invariance holds and the spacetime is Minkowskian and when
Lorentz is violated and must be recovered in a non-minkowskian spacetime.

It has been successfully attempted to complete the pentadimensional metric of the four fundamental interactions calculating the fifth element of the metric
corresponding to the fifth coordinate energy.

The mathematical tool exploited is the method of the Ricci flow which gave the complete explicit form of the fifth element of the metric, answering in this way the
question of "how the energy measure the energy" for each interaction, setting the electromagnetic interaction as the reference for the energy measure. In this sense it has
been given meaning to the problem of the energy gauge for interaction, identifying the gauge with the fifth metric element.

The consequences of the nuclear metamorphosis have been also examined for reaching the technological goal of a device stably producing this metamorphosis
under the hadronic metric. The most valuable consequence is that in this pentadimensional picture, the old Einsteinian dream of a complete geometrization of the

interactions is reached.

The results achieved in the present work have allowed to design, build, and test of devices capable of exploiting the behavior of the fifth element of the metrics to
obtain the production of electric charges directly from the nuclear metamorphosis of the matter.
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1. Introduction

In order to progress beyond the results presented in [1]
in the present work we want to explicitly determine the fifth
element of the pentadimensional metrics associated with
the fundamental interactions — dependent on the energy
coordinate — by means of the technique of the Ricci flow.

The pentadimensional metrics studied so far in [1] derive
their origin from four-dimensional metrics on a space-time of
Cartesian coordinates (x, x, X, X,), where energy E plays the role
of parameter, not of coordinate.

Turning to the 5D representation, energy E also takes on
the role of coordination. Energy E is an additional measurable
and extended real physical dimension, thus endowed with
measurable physical dimensions.

The four pentadimensional metrics associated with the four
fundamental interactions

strong (hadronic)
gravitational
)

electromagnetic

weak (leptonic)

Are defined in a space-time-energy manifold endowed with
global length-dimensional coordinates (x,, x,, X,, X,,X,), so that the
g, components of the metric tensor turn out to be dimensionless.

The first coordinate x, represents time t through the
product x =ut , that is, the product of time by the velocity u
which is the maximum relativistically invariant causal velocity
corresponding to each interaction, see [1].

The fifth coordinate x,e[o,+>) represents the energy E
through the product
x, =kE (2)

4

where k is a positive constant having the dimensions L x
energy™, so that the coordinate x, has the dimensions of a
length.

The intermediate spatial coordinates (x,, x,, x3) have the
dimension of a length.

2. Classification of the pentadimensional
metrics

The components of the four pentadimensional metrics we
are going to examine are taken from [1], §19.3. For all of them,
the metric tensor is diagonalized: g =o for i#j. A careful comparison
of these metrics reveals that they can be classified into two

types:
gy~ G(x 4) positive dimensionless function,

g = @ positive dimensionless constant,

ppel: 1875 =~ B, P positive dimensionless constant,

8337 _G(x4)a

844~ +F(x 4), F(x 4) positive dimensionless function.

(3)
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8oo =1 dimensionless.

type2: 8178 =833~ -G(x 4 ), G(x 4) positive dimensionless function,

(4)

844 = +F(x 4), F(x 4) positive dimensionless function.

In both types appear two dimensionless positive functions
F(x,) and G(x,) of the one coordinate x, on which the metric
depends; the other coordinates are called ignorable. We call
G(x,) the characteristic function of the metric. The function F(x,)
that defines the fifth component g, ,, that is, the *fifth element'
mentioned at the beginning, is preceded by the double sign =.
So each type splits into two subtypes. The choice of the sign +
is equivalent to the choice of the genus of the energy axis x,:

upper sign + < the x 4~ axis is timelike

(5)

lower sign —<> the x 4~ axis is spacelike

The distinction of the metrics into these two types (four sub-
types) allows us to highlight some of their peculiar properties valid
for any characteristic function G(x,). As will be seen, this results
in a valuable simplification of the calculations as well as efficient
checking of their correctness.

Each of these metrics has a discontinuity at a particular

value x,;, of the x, -coordinate, which is called threshold energy.

We will use the symbol int to label any of the four
interactions:

int = (em,grav,weak, strong) = (electromagnetic, gravitational,
weak, strong)

Or, more simply,
int = (e, g, w, s).

Each threshold divides the axis x, = 0 into two separate
intervals. In one of these (before or after the threshold) the
geometry is flat with a signature (+---1) depending on the
sign + of g,,. On the other hand, in the complementary interval,
the geometry undergoes deformation and may therefore also
exhibit curvature. This discontinuity is represented by means
of the Heaviside step function.

Before proceeding further we want to note here that the
Heaviside step function can also be considered as a limit of
continuous functions or even a series of functions. We leave
this topic as further study to be developed in later work.

2.1 Definition of the unitary Heaviside step function
For the unitary Heaviside step function we adopt the definition

0 forx<0

H()= {1 for x>0

whose graph is shown in Figure 1.

From this, we derive two other types of steps that we will
make use of in what follows (Figures 2,3).

In a physical context, we can also adopt this definition: the
Heaviside step function can represent a signal activated in a physical
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Figure 1: Unitary Heaviside step function.
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Figure 2: Translated Heaviside step (right).

I — H[x — xq]

Figure 3: Translated and inverted Heaviside step.

system for a given value of the variable x that remains constant for
successive values, without regard to the order of variability (increasing
or decreasing). Given this definition of a Heaviside step in a
physical context, we do not wish to go into the reversibility of
the physical system described by this function here.

2.2 Hadronic (strong) metric (Figure 4)

The components of the metric are:

:1+H[x4—x4s] 5
X
4s

g=-a «@ > ( dimensionless constant,

£00

8y =— S, > 0dimensionless constant

€337 7800
844= iF(x4), F(x4) >0, F(x4) dimensionless function.

(6)

e Before the threshold we have H[X,- X ]=0 and metric
(6) becomes

I

g = | )
117_ 844 =EF(xy)

&2

| .-'
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Comparison with (3) shows that this metric is type 1 with
characteristic function G, = 1. Thus this metric is flat with a
signature (+---1), Figure 5.

¢ After the threshold we have H[X,- X,;]=1 and the metric

becomes

x2

g =4
00 x2 2
ds | -4
_ 33 2
&-“ Y45

(8)
8 =P (84 =y

Comparison with (3) shows that this metric is type 1 with a
characteristic function

G [ X, J 9)
s X45

and signature (+---+). As will be seen later (Theorem 6.1) its
Ricci tensor cannot cancel after the threshold: after the threshold
the metric is deformed.

2.3 Gravitational metric
The situation is quite similar to that of hadronic interaction:

The metric components are:

_ _ 101474 2
800 =1+ Hlxy =41 [ T !
&g
g =" «a > () dimensionless constant
€5y =" B, P >0dimensionless constant

€337 7800
844~ iF(x4), F(x4) >0, F(x4) dimensionless function

(10)

H[HT4 — .”!,‘45]
1 T4 2 Tds
T4 < Tgg Tas
hadronic threshold

Hadronic (strong) metric

Figure 4: Hadronic Heaviside step of axis x4 with threshold x4s.

.”[.r'| - .|'|,]

Ty < Ty Fds

s o 3 z
flat metric hadronic deformed metric 4

t ll]‘l'."l ll]ll]

Hadronie (strong) metrie.

Figure 5: Once the threshold is reached, we move from a flat metric to a deformed

one.

(1719)
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* Before the threshold we have H[X, - Xl.g]:o and the
metric becomes

8o =1

g =-a a> 0 dimensionless constant

Xy < x4g 8= —p, [ >0dimensionless constant
833780 !
844 = iF(x4), F(x4) >0, F(x4) dimensionless function

(12)

Comparison with (3) shows that this metric is type 1 with
characteristic function G,m1L Since F(xA) >0 we can transform
the coordinate x, into a new coordinate for which the new
component g,, of the metric is constant. Thus this metric is flat
with a signature (+---2), Figure 6.

ee After the threshold we have H[X X 49]:1 and the metric

becomes
—1( 144 2
800 4( 1+ X )
4g
g=—a a> 0 dimensionless constant
>
4 x4g 8y =~ B, [ >0dimensionless constant
£33 7800
844 = iF(x4), F(x4) >0, F(x4) dimensionless function

(12)

Comparison with (3) shows that this metric is type 1 with a
characteristic function

2 2
+
G. =1 1+x_4 :M
g 4Ty 4x2 (13)
4g 4g

and signature (+---%). As will be seen later (Theorem 6.2)
its Ricci tensor cannot cancel after the threshold: after the
threshold, the metric is deformed.

2.4 Electromagnetic metric
The metric components are

o0~ !

1/3
x
= = =_ _ 4 0 _ e
811782 =833 1+H[x4e x4] [x4 ] 1 spatial isotropy
e

g44:iF(x4), F(x4)>0. (14)

¢ Before the threshold we have H[X,,- X,]=1 and the metric

becomes
oo ~!
1/3
Xy < X4e 1811~ 822 8337 [x—4J spatial isotropy
e (15)
g44 = iF(x“_), F(x4) > 0.
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Comparison with (4) shows that this metric is type 2 with a
characteristic function

. 1/3
G- [_4J (16)

Y4e

and signature (+---+), Figure 7.

** After the threshold we have H[X, - X,]=0 and the metric

becomes
800 =1
Xp2Xy, 1811789 =833~ -1, spatial isotropy (17)
844 =iF(x4), F(x4)>0.

Comparison with (4) shows that this metric is type 2 with
characteristic function G, =1. It is flat with a signature (+---%)
(see the previous footnote).

2.5 Leptonic (weak) metric

The metric components are

goozla

X4 \1/3 L1
811=8n =83~ —{1 +H[x4w —xﬂ[(#) —1]} spatial isotropy,
w

g44=iF(x4), F>0.

(18)

* Before the threshold we have H[X, - X,]=1 and the metric
becomes

Hlzy — 4]

Ty 2 Ty

Ty < Tyy Tag

flat metric deformed metric T4
gravitational
threshold

Gravitational metric

Figure 6: Once the threshold is reached, we move from a flat metric to a deformed
one.

" Hlrge —x4]

TR 8 |y =y

deformed metrric r flat metric &y
4

electromagnetic
threshold
Electromagnetic metric

Figure 7: Electromagnetic Heaviside step over x4-axis with threshold x4e.

Citation: Benenti S, Cardone F (2024) Energy metrics and their Ricci flows. Ann Math Phys 7(1): 024-053. DOI: https://dx.doi.org/10.17352/amp.000105



P PeertechzPublications

800 ~!
IR
Ty S 1811 =g22=g33=‘($) (19)
w
844 = *F(xy)

Comparison with (4) shows that this metric is type 2 with a
characteristic function

L
Gy = [4] (20)

Y44y

and signature (+---+), Figure 8.

¢ After the threshold we have H[X, - X,]=0 and the metric

becomes
oo ~!
8118y =833="1

xy2, 11 822 833 (21)
844 =2F(xy)

Comparison with (4) shows that this metric is type 2 with
characteristic function G =1. It is flat with a signature (+---+)
(Figure 8).

Note that the leptonic Heaviside step is similar to the
electromagnetic step, except that the leptonic threshold is
2.10% times the electromagnetic threshold (see [1], Cap. 4,
8§ 4.2, p. 61, Figure 4.2).

2.6 Summary table of characteristic functions

X
©9) G,= _4}
3 [x4s
_1 X4
(13)G, =~ | 1+4
¢ 4{ x4g]
X
(16)G, = —4}
¢ {x4e

1/3
(20) Gy = [;—4]

4w

2
hadronic, after the threshold x 4s

2
gravitational, after the threshold x 4g

electromagnetic, before the threshold x 4o

1/3
leptonic, before the threshold x A

(22)

g — 4]

Py = g | T4 = g

deformes metric flat metric Ty

T
leptonic
threshold

Leptonic metric

Figure 8: Leptonic Heaviside step over x4-axis with threshold x4w.
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2.7 Summary table of Heaviside's steps

We give here the graphical translation of what is expressed
in equations (22) from a qualitative point of view consistent
with the definition of the Heaviside step and its variants that
we adopted at §2.1.

fat T eformed
hadronic metric
flat T deformed
gravitazional metric
deformed
electromagnetic flat
deformed
leptonic flat

(23)
3. Metric flows and volume conservation

From here up to Section 8, with the addition of an Appendix
concerning the calculation of the Ricci tensor, purely mathematical
topics focused on the notion of Ricci flow will be covered.

We work on an n-dimensional manifold M, with generic
coordinates (x)=(x,x,,....,x,) and on this manifold, we consider a
coordinateddomain DcM_,i.e., adeformed hyperparallelepipedon
whose edges are segments of coordinate lines. To such a domain
we can apply the derivation theorem under the integral sign.
In fact, the results obtained below are also valid in the more
general case in which the domain D can be covered by several
coordinate domains.

We call metric flow a family of metric tensors g,(x,t) defined
over D, depending on an evolution parameter t such that it
satisfies flow equations of the type

1 —
8tgij(x,t) = _Sz']'(x’t)+; S(t)gl.j(x,t) (24)

where S; (x,t) is a symmetric tensor defined on D and

_def
S =

S pSav = pS.[glds (25)
D D

Is the mean value over D of the scalar

Sdif Js..
879 (26)

In (25) the volume V, of the domain D is defined by

Citation: Benenti S, Cardone F (2024) Energy metrics and their Ricci flows. Ann Math Phys 7(1): 024-053. DOI: https://dx.doi.org/10.17352/amp.000105
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def
g = detg; ]

def (27)
dx = dxg Ay Andy,

Vp= deV= IDJ@dx

where the n-differential form afV:\/Igl,dxl/\a’x2 Aw.ndxy is
the volume form associated with the metric g; (x,t).

Remark 3.1

The equations of the normalized Ricci flow, which we will
discuss later, are of the type (24)

8,83 (61) = ~Ry; () + L Ri0) g5 (28)

Where R,.}.(x,t). is the Ricci tensor of the metric g; (xt).and R
is the mean value of the Ricci scalar R in the domain D:

Sdef 1
R = V—J‘DRdV:V— IDRJ@dx (29)
D D

def ..
R = gURl.j (30)

However, equations (24) differ conceptually from (28)
because, unlike the latter, in equations (24) no functional link
is specified between the tensors g; (x,t). and S; (x,t). For this
very reason, we need the following theorem.

Theorem 3.1: If in a metric flow (24) the meanvalue S remains
constant with respect to t then the volume V,, also remains constant.

Proof: By multiplying both members of (24) by g’ and
summing we get the equation

gijatgij =-S+38.

by virtue of Jacobi's formula

.
g/ 08,7 =0;log| g| (1)

this equation becomes

0,log|gl=—-S+38 (32)

We then proceed to calculate the derivative with respect to t of
the volume (27):

dv
D_d -4 \pfig]
i@ ,[DdV Ul ,[D | g |dx.

as mentioned above, for a coordinated domain D the theorem of
differentiation under the sign of integral applies, so that

D ’ a\/‘g‘
L= —_Nloel =

,dV it follows that

. 1
Since dx=——
Jigl

https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics 8

= IpdEl L gy [pdloedigl g [pdloelely, _
d gl dt 2 dt
Finally, by virtue of (32), we find

...=% fD(E—S)dV =%§J-DdV—%J.DSdV

because S is a constant (it is a number). We have then shown
that

dividing both members by the volume V= [pay» and
multiplying by 2, we find

v, _
ViTD:S—VLIDSdV:S—S:O.
p “ D

dv
Thus —L-=0-
dt

Remark 3.2

We will see later (Theorem 7.1) that the existence of a
normalized Ricci flow necessarily implies R=0. So in this
case we can definitely apply Theorem 3.1 with that additional
assumption.

4. Dimensional homogeneity

Any equation of the type (24) must satisfy the dimensional
homogeneity principle according to which both members of an
equality must have the same physical dimension. If this is not
the case, the equation is meaningless. Especially in a physical-
mathematical context, but not only, this principle should also
be given due consideration because it constitutes a check on
the correctness of calculations.

In our case, in which the components of the metric tensor g;
are dimensionless, the flow equations (24) are dimensionally
homogeneous if and only if the parameter t obeys the
dimensional equality

. _ 1
Dlm[l‘]*iDim[Sij] (33)

Then with regard to the first member of (24), we have

1 1

Dim[0.g..]= Dim|-|= .
im[0r8] ’mM Dim[1]

On the other hand, as far as the second member is concerned,

from sdif o s it follows that ~Dim{S]= Dim[S;]. This

means that the second member is homogeneous. Therefore,
the dimensional equation to be taken into account is (33):

5. Ricci tensors

S.M. Carroll, [2], p.75: ... there is a convention that needs to
be chosen for the ordering of the indices. There is no agreement
at all on what this convention should be, so be careful.

Citation: Benenti S, Cardone F (2024) Energy metrics and their Ricci flows. Ann Math Phys 7(1): 024-053. DOI: https://dx.doi.org/10.17352/amp.000105
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In the aim to analyze the Ricci flow properties of the metrics
associated with the four fundamental interactions, it should be
preliminarily noted that:

(i) There are properties of the Ricci flows that change
seriously if we change the sign of the Ricci tensor.

(ii) As Carroll warns, although in the literature the
definitions of Riemann and Ricci tensors may vary
from author to author, the Ricci tensor may at the most
change in sign.

(iii) It is therefore necessary to conduct a comparative
study of the definitions or conventions adopted by a
sufficiently significant number of authors. A small
number of them are examined in Appendix 15.1,
sufficient, however, to highlight the fact that:

Regardless of the conventions adopted for Riemann and
Ricci tensors, all the Ricci tensors have the opposite sign to
that adopted by L.P. Eisenhart®. Thus, the definitions according
to Eisenhart of Ricci tensors come to assume an important
comparative role.

“In his time professor of differential geometry at Princeton.
(34)

On the other hand, to ensure the maximum reliability of
the results we are going to achieve, it is a must to adopt for
Riemann and Ricci the conventions of R. Hamilton or Cao-Zhu
(as we shall see below they turn out to be equivalent) because on
them these authors built their fundamental approach to Ricci's flow
theory. Given the property (34) we conclude that:

The components of the Ricci tensors on which to base the study of
Ricci flows of type 1 and 2 metrics are those of Eisenhart with opposite
sign.

(35)

In Appendices 15.3 and 15.4 it is shown that the Ricci-
Eisenhart components are

E US "Bl nll
B _L2G"F-G'F
00 4F2
typel E B B E B E
metrics =i R117R2270’ R337_R00
B _ 2G"FG-G'F'G—(G)F (36)
44 2G2F
E —
R o=0
2 E E E " N2
bpe 7| R~k R 20"FG+(G)F-FGG
metrics 11 22 33 4F2 G
E _2FG'G—(G)2F-F'G'G
44 4G2F

- (37)

So, according to these guidelines, the components of the
Ricci tensors whose flow we have to analyze turn out to be:

https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics 8

R —g2G"F-G'F
T 00 a2
pe
TF|| R, =Ry, =0, Ryy=-R
metrics EF| R =Ry, 33~ 00 .
R _ 2GNFG_G7F7G_(G!)2F (3 )
44~ 2
| 2G2F
Ry =0
2 " r2 _ all
ope. v RII:R22:R33212G FG+(G)2F-FGG
metrics 4F2G
R44:JzFG”G—(ngF—F'G'G
. AGTF (39)

The following properties apply to both types of metrics.
(i) The Ricci tensor is diagonalized.

(ii) The component R " does not change sign in the transition

from sign + to sign -.
(iii) The constants o and p disappear.
(iv) F'is present but not F' .
(v) Both G' and G' derivatives of G are present.

6. Peculiar properties of hadronic and gravi-
tational metrics

Theorem 6.1: After the threshold x,, the Ricci tensor of the
hadronic metric cannot cancel.

Proof: After the threshold, x,, this metric is of type 1 with a

characteristic function G, =x; /x;,. Suppose R, = 0. From the

first of (38), we derive the equivalence

ROO=0<:2G F=G'F'.

Furthermore, we have

2
G- G'_ 2 1 2 F_dF1 %y _dr
xﬁ’G’ 2x4 x4’x4 F x4F’ X F

S

dlogx; =dlogF, logx; =cost+logF, x; =e " F
Therefore:
Ry

_ _ 2
0—0<:F—Csx4

where C, is an arbitrary positive constant with dimension L-2
(40)

Now suppose also R, =0:

Citation: Benenti S, Cardone F (2024) Energy metrics and their Ricci flows. Ann Math Phys 7(1): 024-053. DOI: https://dx.doi.org/10.17352/amp.000105
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" n2 '
2FG"G—(G)?F-F'G'G

5 =0 ©2FG"G— (G F-F'G'G=0
4G2F

Ryy=

26"G-(G2 - 6G=0e2%25x2 —(2x )2 =2 #2x %22 =0
F A

o x—(x,) —x=0: absurd. =
The same property also holds for the gravitational metric:

Theorem 6.2: After the threshold x,, the Ricci tensor of the
gravitational metric cannot cancel.

Proof: After the threshold, this metric is type 1 with a
characteristic function

2 2
G =1 1+i -1 Xyt Xig
974 X 4y :
49 4g

Also in this case we start by assuming R, = 0 and therefore
again from the equivalence

R00=0<:>2G F=G'F'

1 1
2.2
1Mt Ng L 1 G Mag 1
sz 2 ’G722’?7x+x 7x+x
2 2
4g

' 2dx
VG F G e 2 _F _dF 1 4 _dF
X, +x

4 T4g

od log(x4 + x4g)2 =dlogF < log(x4 +x4g)2 =cost.+1og F

2 _ cost.
@(x4+x4g) =e F

Therefore:

_ _ 2
ROO—OQF—Cg(x4+x4g)

where C, is an arbitrary positive constant with dimension L(’2 )
41

Now suppose also R,, = 0:

Ry, =0 2FG'G—(G)F-F'G'G=0e2G"G-(G)> —%G’G =0

2
@2% 21 }‘(x4+x4g] £x4+2x4g ) x4+2x4g4(x4+x4g Y
Y4g L Yag Yag Y4y Yag L 4g

2 2
1 x4+x4g x4+x4g 1 x4+x4g 3
& —— =0
x2 ¥ x2 x2 ¥
4g 4g 4g 4g 4g

https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics 8

©Xy+%4,=0: absurd.

Remark 6.1: For the other two metrics, leptonic and
electromagnetic, one can repeat the calculation on the Ricci
tensor before the threshold, concluding that before the
thresholds x,, and x,, the Ricci tensor does not cancel.

7. Normalized Ricci flows

The definition of normalized Ricci flow has already been
introduced in Remark 3.1 of § 3: it is a family of metrics g,(x,t)
parametrized by an independent evolution variable t and defined
over a domain D of a Riemannian manifold M, such as to satisfy
the normalized flow equations

8,870t = ~Ry; (1) + %R(z) Ene) (42)

Where R,.}.(x,t) is the Ricci tensor of the metric gi].(x,t) and R
is the mean value of the Ricci scalar R in the domain D:

_def 1 1

R = GJDRdV—@J‘DRJ@dx (43)
def .

R = gljRij (44)

Remark 7.1: In the literature equations (42) also appear in
the form

0,8 = —2R.(x,1)+2Rg;.

y y n Y

However, the presence of factor 2 is inessential because it can be
deleted by changing parameters. Let us remember that n is the
number of dimensions that we have set equal to 5 following the
physical indication of the hadronic metric where the anisotropy
is linked to the coordinates that have parameters of the metric
o and B which are constant fractions having the number 5 in
the denominator, and are the result of the phenomenological
study of the hadronic metric (see [1], Chap. 19, § 19.1, p. 280,
and related footnote).

Remark 7.2: We are working in L -dimensional x;
coordinates with dimensionless metric components. It follows
that the Ricci components have the inverse dimension of a
squared length:

. e e L
Dzm[Rl.j]— Dim[R]= Dim[R] o
Theorem 3.1 and formula (33) regarding metric flows are
valid mutatis mutandis for a Ricci flow. So for dimensional
homogeneity of the flow equations (42) must be

N )
Dzm[t]—W[Rij]—L . (45)

Theorem 7.1: The existence of a normalized Ricci flow for type 1
or 2 metrics necessarily implies R=0 .

Proof. Type 1. By virtue of equations (3)
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800 = Glxg)
type 1 metric g =@ a> 0

{g33 = G(xy)
g22 = _ﬁa ﬁ>0

844~ iF(x4),

The Ricci flow equations (42) for n=5

—p ilR
[00] 0,800 =Ry +5 Rgyy

[11] 6,8, =—Ry +§Rgy
8

=—R..+l1$gl.j: [22] 0,g,,=-R

-

187 =R +3 180 =Ry +5R8y
—p_ +1%

[33] 04833 =—Ry3+5Re33

[44] 0

—_r +lR
1844 = Ryy t5REYy

become, also taking into account (38) R,=R ,=0 and R_=-R

00!

[00] 0,G=-R
[11] 0:% o
221 o=1Rp (46)

1
5
F=-R

e
[44] +0 g PERE

From [11] and [22] it follows that R=0 .

Type 2. By virtue of equations (4)

00 = !
type l metric 817 8» =83~ —G(x4)
844~ iF(x4):

the Ricci flow equations (42) pern =5

- 1R
[00] 0=-Ry,++R
_8.G=-p 17
[11] -8,G || LRG
—.G=—p. 1R
[22] -8,G )~ RG
- | = (47)
[33] ~9,G=-Ry3~LRG
- 1R
[44] +o,F iy TLRF

become, also taking into account that R ;=0and R =R , =R, the
system (47) reduces to

=

[00]

[11]
[44]

wj—
=
Q

(48)
RF

I+
&)
I+

Ui

From [00] it follows that R=0. =

We must underline that Theorem 7.1 puts us in front of a
rather paradoxical situation:
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From the hypothesis that the metrics of type 1 and 2 admit a
normalized Ricci flow it necessarily follows R=o0, i.e. that the Ricci
flow is in fact not normalized.

In the next section, we therefore move on to the study
of non-normalized Ricci flows in order to establish their
conditions of existence.

8. Non-normalized Ricci flows

With R=0 the equations of the normalized flow (42)
reduced to those of a non-normalized Ricci flow

atgij :_Rij (49)

It is known that the existence of a normalized Ricci flow
is a sufficient condition for the conservation of the volume of
the definition domain D, but it is not necessarily a necessary
condition.

However, we observe that the conservation of the volume V, is
still guaranteed by Theorem 3.1 according to which if in a flow of
metrics (24) the mean value S does not vary when t varies then the
volume V, also remains constant. In the present case it is R=0, S0
this condition is satisfied.

From (46) and (48) it follows that, for the metrics of the
two types, the system of equations (49) reduces respectively to:
[00] 8,G=-Ry,

[44] +0,F=-R

non-normalized Ricci flow of typel {
44

[11] 8,G=R,

[44] +0,F=-R

non-normalized Ricci flow of type 2 {
44

Since the components of the metric are dimensionless
and the components of the Ricci tensors have dimension L2,
then in equations (49) the evolution parameter t must have
dimension L2, see (45).

If in equations (49) we replace the parameter t with the
coordinate x, thought of as a function of ¢ then they take the
form:

[00] G)'c4:—ROO [11] G)'c4=R11
type 1 D type 2 tFe =
[44] £F x4——R44 [44] £ F x4f—R44
Since
. . 1L _ 1 . . 1L _ 1 . 1
Dim(G'x,)=——=—, Dim(F'x,)=——==—, DIm(R..) = —-
4 L2 12 4 112 {2 yroq2

these equations are dimensionally homogeneous.

Now, recalling the expressions of the components of the
Ricci tensors (38) and (39) we obtain the two pairs of equations

. _ 2G"F-G'F'
[00] G Xy = —R00 = iT
typel )
re o _ _2G"FG-G'F'G-(G)*F
[44] in4——R44—

2G2F
(50)
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(1] 't =R _.2G"FG+(GY*F~F'G'G

4 11 4F2G
type 2

" /2 ’ ’
. 2FG"G—(GY*F-F'G'G
+ =_ =3
[44] +F5,=-R,, o (s1)

Theorem 8.1: A type 1 metric admits a non-normalized Ricci
flow if its characteristic function G satisfies the equation

2G"F-G'F' _2G"FG-G'F'G—(G)*F (52)
2FG' G2F

which is equivalent to

G'_F_2G"F G _(G)PF (53)
G 2F GF G G F 53

Proof. Equations (50) are equivalent to

. _,2G"F-G'F'
Y
4F2 G
+i _2G"FG-GFG—(GYF
4 2G2FF'

whose combination produces (52). B

Theorem 8.2: A type 2 metric admits a non-normalized Ricci
flow if its characteristic function G satisfies the equation

2G"FG+(G)2F-F'G'G _2FG"G—(G)>F-F'G'G

FG' GF'
(54)
Which is equivalent to
’ r 2 "
FGi3 26O | F (GG ) (55)
F G |F G

Proof: Equations (51) are equivalent to

. _,2G"FG+(GY*F-F'G'G
4 4F2GG'

_2FG'G—(GY?F-F'G'G
4G FF

i)'c4

L 2G"FG+(GYF-F'GG
4 4F2GG
_2FG'G-(G)*F-F'G'G
X, =23
4 4GFF'

Upper sign :

2G"FG+(G)2F—F'G'G _,2FG"G—(G)*F-F'G'G
4F2GG AG2FF'

=

Multiplying by 4 FG we get equation (54).
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2G"FG+(G)Y F-F' GG
4F2GG

Lower sign:
. _32FG'G-(G)*F-FGG
4G2FF'

Simplifying, we still find equation (54). Development of
equation (54):

" r 2 ’ U " r
- . 12G"FG (GY>F F'G'G_2G"G .. F'G
Left —hand side G + el s Ied +G 2
2FG'G—(GYF-F'G'G
. , GF'
Right —hand side
_32FG'G _L(GYF _FGG_ (FG' (GYF ..,
GF' GF ~GF " F ~ GF
Equation:
" ’ " r 2
2G"G , F'G_ _FG (GYF '
G - =6 -3 -3G
¢ "VTF °F U GF
" ’ r 2
2G6"G .., F , LG F
4G' -G = -3, L []
DG,+GFG(6G3GJF,3
(55)

9. The “fifth element’

By inserting into equation (53) or into equation (55) the
expressions of the characteristic function G, and its derivatives
G}, and G}, , we obtain a first-order differential equation in the
unknown function F, (x,) whose integration provides the " fifth
element' i.e. the fifth component of the metric g,,. Furthermore,
once the functions G,, and F,, are known, we can write the
components and the eigenvalues of the Ricci tensor Rﬁj"t of
each interaction in an explicit form. These will be functions
of the coordinate x, dependent on the corresponding threshold
X, and on a positive constant K, .

In the coordinates (x,x,x,,X,X,) to which we refer, the
metric tensor and the Ricci tensor are both diagonalized. Then
the main directions of curvature are identified by the coordinate
axes. Consequently, the eigenvalues (principal curvatures) are

defined by p,=¢"R, and have dimension L2
9.1 Hadronic metric after the threshold

Recall that before the threshold x, the hadronic metric is
flat (§82.2) and therefore admits the trivial flow g,.constant.

Theorem 9.1: After the threshold X, the hadronic interaction

A
| fat deformed
I metric |

Lyg Ly
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metric admits a non-normalized Ricci flow as long as the function F
satisfies the differential equation

59

whose complete integral is

Fy=Kgx8

4 K >0 constant

(57)

where k_ is an arbitrary positive constant. The components of
the hadronic Ricci tensor are:

Ry =Ryp=0, Ry=—R (58)

s 6
Ry~
4

=

Its eigenvalues are:

2
Pp=% > p =0, p,=0,
0 sti 1 2
. 2 _ _, 6 _ (59)
P3TE R TP PaTE L 573
s%g s%g

Remark 9.1: (i) The hadronic F, function does not explicitly
depend on the value of the threshold X, (ii) The constant k has
dimension L-¢. ®

Proof: Starting from (9) for the hadronic metric we have

2
X 2x
G=—§ :>G'=—24:>G”=—§ ,
X X X
4s 4s 4s

We have to insert these expressions into equation (53):

GH F! _ 2GH F B Gl B (G')z F

G 2F G F G g2 F”

, 452 ,
L F_4F 2 "yF_ 3 F
Xy 2F xﬁ F Xy x‘%s F Xy 2F

=0= (56)

we get equation (57) with k, > 0 since the function F is assumed
to be positive. In the components (38) of the Ricci tensors of

type 1,

R —g2G'F-GF
0"t 2

R =Ry =0, Ry3 =Ry
P 2G"FG-G'F'G—(G)F
44 SG2F ;
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we substitute the expressions

2
X , 2X
2 2 2
X4S

-9 G=

and
_ 6 " 5
(57) F=Kgxy=F'=6Kx).
We obtain:
2 6 X4 5 1 6 3 6
2o Kexy= 5 6Ky s 5y
Xy Xy xy Xy 2
R . S S =F S S =+
00 4K§x}‘2 st‘l‘2 stg)c‘%Y
22 6% Mg s 4G 6 2g o o 4
2 sta 2 T 20T 0T 4 BTy 22 22 A
R 4s 4s  T4s 4s  “4s _ 4s "4s  T4s T4s  T4s
44 7} A4
2T4stg 24
4s 45
41121 4
22 22 4
:7X4s Y45 x4§ Y4 N4 — %
2xj "4
L Y45

2
RS =+
00 62
Ksxg Xy i
S _pS _ S __pS | 74
R = Ryp =0, Ry3=—Ryy. Gy [x4]
A
RS, =0
44”2
4
It follows that
0, _1 ) P
Py=8 Ryy=GRoo~t 3 62 "t 3
G x4 st4x4s st4
11, 0.
=8 R =0, py=g" Ry, =0
_ 33 _ 1 1
Py =8 Ryz =Ry = =Ry = Py
_ . 44 _, 16 _ 1 6 _ 6 _
Py=8 Ry~ Tt et g 0 ™
s Kexgxy Ky

9.2 Gravitational metric after the threshold

Recall that before the threshold X, the metric of the

gravitational interaction is flat (82.3) and therefore admits the
trivial flow g; = constant .

A

fat deformed

| metric

T4g T4
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Theorem 9.2: After the threshold x, the gravitational
interaction metric admits a non-normalized Ricci flow as long as F
satisfies the differential equation

(x4g+x4)F'—6F=0 (60)

whose complete integral is

_ 6
Fg 7Kg(x4g+x4) (61)

where K is an arbitrary positive constant. The components of
the gravitational Ricci tensor are:

g
00 — 6 2
4Kg(x4g+x4) x4g
g g g g
Ry mRpp=0 R33=-Ry (62)
4 6
R =—" )
44 2
(x4g+x4)
Its eigenvalues are:
1
Po~F - g
Kg(x4g+x4)
pl:p2:0’ P3Py (63)
6
Pyt g0
Kg(x4g+x4)

Remark 9.2: (i) The gravitational function FG explicitly
depends on the value of the threshold X0 (ii) The constant kg
has dimension L.

Proof. Starting from (13) for the gravitational metric we
have

(x, +x,) X, +x
G= 4g24 =G 4g2 4 6= 12
4x4g 2x4g 2x4g
2 2
g:x4g+x4 4x4g _ 2 Gu: 1 2x4g _ 1
G 2x4%g (x4g+x4)2 Xy, tx, G Qﬁg Xgo Xy Xy, HXy
2
Glr: 1 . 4X4g _ 2
G 2 2
2x4g (x4g+x4) (x4 +x4)

We have to insert these expressions into equation (53):

1 _F 4 r 2 _ 4 F
x4g+x4 2F (x4g+x4)2F x4g+x4 (x4g+x4)2F
3 F' _ 6  F'_ '_GF =
o om0 0= (60) (g 3, F'—6F =0
g 4 4g 74

In the complete integral (61) the constant kg must be
positive since F is a positive function. In the components (38)
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of type 1 Ricci tensors we replace the expressions

)2

(x, +x X, +x
13) 6= Sg-28 Ao 1
4x4g 2x4g 2x4g
and
' F' 6
(61) F=Kg(x4g+x4)6:>F =6Kg(x4g+x4)5:7=ﬁ.
4g 74
We obtain:
i | gt s
22 5 Kg(x4g+x4) 5 6Kg(x4 +x4)
Xy 2x4
oo = £ 2 b
4K G (xy, +3,)
+x
1 6 T4g T4 5 1 6
2 (x4g+x4) 5 3(x4g+x4) 2 (x4g+x4)
_- 4g 4g _o_4g
4Kg(x4 +x4) 4Kg(x4 +x4)
=|+ 1
4Kg(x4g+x4) x4g
I 2
5 12 (x4g-;x4) _x4g;-x4 6 (x4gzx4) B x4g;—x4
B 2x4g 4x4g 2x4g x4g+x4 4x4g 2x4g
R, =—
44
5 (x4g+x4)
2
4x4g
1 gty
2 2
_e4g Mg [ 6
8 1(x4 +x4) (x4g+x4)
3 4
L Y4g
Recall equations (62)
g
00 — 6.2
4Kg(x4g+x4) x4g
R = -0, k=%
11 7227 3377700
g 6
R =
44 3
(x4g+x4)
and (13)
2
+
G _1 s x4 =(x4g x4)
& 4 X4 4x2 .
54 4g

It follows that
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g 18 4"% 1 1
EpO:gOOROO:(TROO:JL(X o Ky, r0l, Kgny, vyl
; g 4g %4 gFag Y Yyg gW4g ™y
| _ 1% _ _.202% _

|P1=8 Rym0 =gt R0

[ _ 33 1 & 18

(P3=87 Ry [FREEN R0~ Po

VY-S 6 _ 6

E,047g R44fiF =+ ]

l

9.3 Electromagnetic metric before the threshold

The metric of the electromagnetic interaction is of type 2.
Starting from zero energy up to the threshold energy the metric

is deformed and becomes flat after the threshold x,, (§2.4) -

deformed flat
metric
. ]
Lie €Ty

Theorem 9.3: The pre-threshold electromagnetic interaction
metric admits a non-normalized Ricci flux as long as F is constant:

| F=K,, K, > 0dimensionless constant ‘ (64)

Proof. Let us consider a characteristic function that is a

power of X, /X, :

P o p—2

G=—% :>G’=p4T:>G” p(p— 1)— (65)
X
4e Y4 4e

Insert these expressions into equation (55) which characterizes
the existence of a non-normalized Ricci flow

r /2 "
F . (GY\F _.(G'G .
—FG+3[2G e ]—F, 2( = +2GJ

and develop the terms A and B in parentheses:

def G def n2
4=9G 18- 2G”——(GG)
7 P2
p(p-D—"p—75 -1 2 1
G'G 5 TR T T S T TR
A= +2G = = +2p—p= (-5 — G+ 20
pr Y4e Y4e Y4e xf Y4e
D
Y4e
P2 .p Pl p-l p-1 p-1
= (-t 2t = (=)t 20 = (0D +20)
de Xy Yde 4e 4e
p-1
X
—(3p—1) 4
Gr-0-7
4e
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From here we see that A=0 if and only if . In this case,

the characteristic function (16) and its derivatives become

x1/3 X22/3 25/3
r—1 "_ 66
G= 1/3:>G EINTE =G"=-§ N (66)
Y4e Y4e Y4e

As A vanishes the equation (55) reduces to

F' G" G’

Taking into account equations (66) we find

: v —5/3 3 2313
6> =2 GG )y 274 _ 5 Yde +2] T4 Mde
F ¢ @G 5713 72/3 NIERNIE
4o M4 e %4
g2t 21y
3x4 3x4

so that F' =0. »

Alternative proof.:

Starting from its characteristic
function(16)

and substituting p for 3 we find the equalities

X! Xt X7
G:_p’ G’_p P G"'= p(p 1)
X4e XAB 4e

By inserting these expressions into equation (55) which
characterizes the existence of a non-normalized Ricci flow

’ 2 "
%G+3[2G” @}_—2(G G +2G’J

G |F' G’

we find that the term in brackets on the left-hand side vanishes

for P=3. As a result, this equation simplifies in order to allow
its integration by separation of variables:

£ 2(6 +2Q].

F G G
Since
p2 p I o B
G G _ 4 -1 4 e
F"‘zg p(p-1) 7 p = 1+2P PP
4e X4 Y10 a4

_ -1 —-1_ -1_ _1
=(p—=1 =3p-1 =0 =_
(p )xI +2pxl QGp )xI for p 3

we getF' =0. =

Theorem 9.4 The components of the electromagnetic Ricci

tensor are
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e J—
Ry~ 0
_5/3
e e e 1 X
e e __1 1%
R R R3™ oy, 13
4e
e !
51
Ram122
4 (68)

Its eigenvalues are

p():()

(69)

Proof: We combine (39), which provide the general form of
the Ricci components for a type 2 metric

R00:0
t 2 " 12 N nlrall
ype. TFlR =R :R5 =i2G FG+(GYF-F'G'G
metrics 11 22 3 4 F2 G

R _ 2FG"'G—(G)*F-F'G'G

| 44 4G2F

and (66) which provide the electromagnetic characteristic
function and its derivatives:

13 213 -5/3
X X X
=4 =174 n=_274
7 S I T R
4e 4e de

Taking into account that F=k, (constant) we find

" /2 ’ U " 72 V2
r _22GFGH(GPF-FGG_ 2G'G+(@)? _, 1 (500, (@)
11 4F2G 4FG 4K, G
[ 2
-5/3 23\ 13 53 43 173
-t ‘9‘)%1/3*[5)641/3] e 3%*5%‘%}
T 4K, T 4K,
€ Y4e de ) M4 € Y4e e M4
ST
4K 12K,
L e_ Y4e Y4e € Y4
r _ 32FG'G—(GPF-FGG_ 32G'G-(G)*
44 4G F a2
53 13 43 23
=—i(2G”~G_1—(G')2~G_2)=—i _4¥4  M4e 1%a 4
7 479713 39 253 23
4e 4 4e 4
~3(_4,2_1,2\-35-2_|51
4( 9%4 ~9¥ ) 49”* 122
4

Calculation of the eigenvalues. From (15) we obtain the
contravariant components of the metric
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X
X<y, g11g22g33—[4€

173
] spatial isotropy
%4

_,00% _
Po =8 Rpp=0
13 53
B § S Y 78 S T S R R
=8 Ry —[x Dk, 3 12K, 2
4e 4
_4p 5 11
Py=8 Ryt 5= B
eX4

9.4 Leptonic metric before the threshold

Recall that as the energy increases the type 2 leptonic
metric becomes flat after the threshold (see § 2.5 and Figure
8) and that before the threshold its characteristic function is
the same as that of the electromagnetic metric

X
T4
so that Theorem 9.3 also holds for the leptonic metric.

Consequently, for the leptonic metric the results obtained in
the previous section for the electromagnetic metric hold true.

1/3

10. The fifth element of the metric according
to the Pessa convention

10.1 Pessa's constant and convention

So far we have considered and used the characteristic functions

G dependent on the dimensionless variable given by the ratio
%4

Yint

between the energy coordinate x, and the energy threshold x,,,
characteristic for each interaction. Recall that the symbol int

(interaction) stands for (em, grav,weak, strong) =(e, g,w, s).

Now we redefine the variable x,, which is our energy
coordinate, introducing the Pessa constant ¢, which has the

dimension of a length, preserving the dimension of a length for
x, as we have already introduced in (2). At the same time, we
introduce the new variable

def X
¥, =0 4

Fdint (70)

so that the old dimensionless variable is expressed by

037
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We solve what has been said for equation (2) with the
following definition — Pessa convention:

4

Yaint

k=

where k has the dimensions of the inverse of a linear energy
density. Its importance consists in explicitly making the fifth
energy coordinate x, dimensionally homogeneous to the others
through the introduction of the Pessa constant ¢, whose
meaning, physical identification, and numerical value are
reported below.

The value of ¢ is in the range 4 - 8 um as it was originally
calculated theoretically and reported in [1], § 16.3, page 250.
This ¢ is the characteristic linear dimension for all interactions
and whose volume ¢3 allows us to calculate the critical energy
density D, which gives rise to the metamorphosis of matter.
For each interaction, this critical energy density is given by
_ Maint (71)

D..
Cint £3

where x,;  has the dimension of an energy.

From the phenomenology of experiments concerning
both space-time deformation emissions [1,3-5] and DST
transformations, nuclear metamorphoses, [6-11], we can set
¢=10um which corresponds to the characteristic diameter
measured for the so-called Ridolfi cavities [5].

The Pessa convention definitively replaces the convention
and the related Kostro constant [12], already used in [1], p. 282.

It is not necessary to define different ¢ for different

interactions since the distinction is already inherent in X, for
each metric of each interaction. This can be seen from the (70)

def  «x
= .4
where on the right-hand side the interaction dependence is in

We must strongly underline that the Pessa constant
¢=10um is not a universal constant but a phenomenological
constant useful for defining the critical energy density for each
interaction, via (71), when it acts on matter in condition of
space-time deformation, as we have already said above.

10.2 Leptonic metric

As an example, we deal with the leptonic metric according
to the Pessa convention using the coordinate x, and the Pessa

constant. What we do here for the leptonic metric can be
retrospectively repeated for all metrics of other interactions.
We wanted to follow this path so as not to make the whole
discussion too heavy.

As already said at the end of § 2.5, the leptonic Heaviside
step is similar to the electromagnetic one, with the difference
that the leptonic threshold is 2.10* times the electromagnetic
threshold.

Figure 9 is obtained from Figure 8 by replacing x, with its
expression according to the Pessa convention, i.e.

https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics 8

H[f — #4]

Ty < | Fg =k

deformed metric flat metric Ty

leptonic
L |ll('.‘-:] Il?ll]

Figure 9: Leptonic Heaviside step of axis with threshold ¢ .

X difg,x_4
4 x
4w

or its inverse definition:

Faw

x4=x4'7.

The leptonic metric is

800 !
g g = H— 5 A1 spatial isotro
8117 8227833 ) spatiat isotropy
844 = EF(5,). F>0.
(72)
 Before the threshold we have H[/-X,]=1 and the metric
becomes
800 ~!

1/3
;?4 </ 81178 =833~ —[74] spatial isotropy

=+F(¥,), F(%,)>0.

844 Xy

(73)

The comparison with (4) shows that this metric is type 2 with
a characteristic function

= 1/3
G= [74J (74)

(the same as the electromagnetic metric) and signature

(+——-2).

** After the threshold we have H[/-X,]=0 and the metric
becomes

800 !
374 >/ 8178y =833~ -1, spatial isotropy (75)
g44=iF()_c4), F()_c4)>0.

The comparison with (4) shows that this metric is type 2 with
G=1 G=1. It is flat with a signature (+---1).

10.3 Remarks on Metrics

It is worth highlighting the analogy between the strong
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and gravitational metrics. In both cases, a deformation of the
temporal coordinate occurs. Furthermore, one of the spatial
parameters (which we have conventionally assumed as the
third parameter) varies with energy like the temporal one in a
over—Minkowskian way, that is, it approaches the Minkowskian
limit for energy values greater than the energy of interaction
threshold. The other two spatial parameters are constant but of
different values for the hadronic case (i.e., the three-space is
anisotropic for the hadronic interaction even in derived forms,
see its behavior inside the atomic nucleus).

The threshold energy, generally indicated by E, or x,int,
so that E  _ x,int, is the energy value at which the metric
parameters of the interactions reach a constant value, i.e. the
metric becomes Minkowskian.

Note that for both electromagnetic and leptonic interactions
the metric is isochronous, i.e. the time parameter does not
change as the energy varies, furthermore it is spatially isotropic
and sub—Minkowskian, i.e. it approaches the Minkowski limit for
values increasing in energy but less than the threshold energy.

10.4 Physical-phenomenological identification of the
conserved volume

Keep in mind that the proof of Theorem 3.1 has a general
character, is independent of the normalized Ricci flow, and does
not depend on the metrics of the interactions but is applied
to them to verify that the interaction conserves the volume.
Remember what has already been said in 8§88 (non-normalized
Ricci flows): for type 1 and 2 metrics the conservation of
volumes is in any case guaranteed by Theorem 3.1 which does
not involve the Ricci tensor.

In particular, its application to the hadronic metric allows us
to establish that it conserves volume. Likewise, the interaction
represented by this metric conserves the volume, therefore
one of the main characteristics of the nuclear interaction
(hadronic interaction in the nucleus), which is the constancy
of the density in the nucleus, is respected even if the nucleus
is subjected to deformation beyond of those already known
for ellipsoidal nuclei. In fact, the conservation of the volume,
regardless of the deformation, allows the nuclear density to be
constant.

In order to identify the conserved volume we evaluate the
physical volume of the deformed hyperparallelepiped referred
to in equation (27). In general, we estimate V, at the energy
thresholds E; counting on making a useful estimate not only
for the metric and the hadronic interaction but also for the
other interactions and related metrics.

Let us now present our proposals regarding the physical
volume of the deformed hyperparallelepiped whose edges,
remember, are segments of coordinated lines.

Firstthree-dimensional proposal: Setting ¢ equaltoPessa's
constant, already introduced in §10.1, we evaluate the volume
of this hyperparallelepiped through the following identification
with the critical volume of nuclear metamorphosis.
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Let us remember that this identification is valid in a
three-dimensional Euclidean space with only three spatial
coordinates, i.e. for the spatial part of the Minkowskian metric
representation of an interaction: V,=V,=/*, where V, is the
volume of the domain D, V, is the critical volume and / is the
aforementioned Pessa constant. It is clear that this estimate,
based on this identification, can be valid for any interaction
metric around the threshold energy E  which, remember, is a
point of discontinuity in the representation by the Heaviside
function.

Second four-dimensional proposal: Remember that

X =u(E)t, [xo]:L .

* First chance. Setting E-E , let's set x coc(h/E,), i.e. for
E~E, x, _ u(E)t>c(h/E)). Therefore we estimate that
VDE£3c(h/EO), ¢ Pessa constant, c= u(E)), Plank
constant h, from which [V ]=[¢*c(h/E,)]=L*. This

estimate is based on the fact that Plank's constant can
be identified with the constant of the first integral of
the geodesic motion referred to as the coordinates time
and energy. See (1], Chap. 24, § 24.4, p. 377, eq. 24.91.

** Second chance. Setting E-E, let's set x co(e?/E),
i.e. for E>E, x, tends to (e*/E)), so we estimate that

V,=0*(e*/E,), ( Pessa constant, e square of the
elementary electric charge (again remember that e is
constant and relativistically invariant in Minkowskian

space) from which [V,]=[#*(e*/E,)]=L*. This estimate

is based on the fact that the square of the elementary
electric charge could be identifiable with a constant of
the first integral of the geodesic motion referred to as
the space and energy coordinates.

Third five-dimensional proposal: Remember that

X0 =u(E)t, [xo]:L, Xy :Z(E/EO), [x4]:L

o First chance. Setting E~E , let's set x ococ(h/E), i.e. for

E~E, x,_u(E)t tends to c(h/E ), furthermore for E which
tends to E, we have x, =/(E/E)) tends to [, where

h is Planck constant, / is Pessa constant, ¢ _ u(E).
Therefore we estimate that V,=¢3c(h/E))=¢*c(h/E,)).
Dimensions: [V,]=[*c(h/E,)]=[¢*c(h/E,)]=L1’.

Also, this estimate is based on the fact that the Plank
constant can be identified with the constant of the first integral
of the geodesic motion referred to as the time and energy
coordinates.

** Second chance. Setting E~E , let's set x co(e?/E ), i.e. for
E~E, x, tends to(e?/E ). Furthermore for E which tends
to E, we have x, =¢(E/E,) tends to ¢, Pessa constant,
e2squared of the elementary electric charge (remember
that e is constant and relativistically invariant in
Minkowskian space). Therefore we estimate that

V,=¢*(e*/E,) , from which [V, ]=[¢*(e* /E,)]=L".
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Also, this estimate is based on the fact that the square of the
elementary electric charge could be identifiable with a constant
of the first integral of the geodesic motion referred to as the
space and energy coordinates.

It should be noted that all these three-dimensional, four-
dimensional, and five-dimensional estimates were carried out
using the dimensional analysis method as proposed by P. Dirac.
In this sense we can also interpret the presence of (“=K_ in
equation (57) as the inverse of the square of a volume; similarly
for kg in equation (61).

10.5 Physical meaning of Ricci eigenvalues

With the eigenvalues of the Ricci tensor for the interaction
metrics, interpreted as principal curvatures, we can describe the
deformation not only in space but also in time and, novelty,
in energy. In fact, the eigenvalue of the energy p, in each
interaction explains how the interaction itself measures the
energy it has. In this sense, we have further information on
the calibration (gauge) of the energy for each interaction.
The union of the information coming for each interaction,
both from the eigenvalue and from the metric element
corresponding to the energy coordinate, gives us the complete
picture of the calibration, thus overcoming the arbitrariness
and ambiguities that can arise in other physical-mathematical
forms of representation of interactions.

Since these eigenvalues have the dimension of an area, they
give us the area of comparison within which the deformation
of a surface occurs. In other words, they identify the minimum
area where the deformation is effective and generates
phenomena unrelated to a flat and Minkowskian area. In this
sense, the Fermi-Walker theorem cannot be applied in general
in this area identified by these eigenvalues.

11 Pentadimensional metrics

Here we summarize the 5D metrics where (i) the fifth
element is reported explicitly and where (ii) for each interaction the
natural unit of measurement of energy is its own threshold energy.

Adronic metric § 2.2. Formulas (7) and (8) are reported,
where F(xA) takes on the value Fs(x4) calculated in (57):

o Before the threshold (7): 827 d

833~ "800~
) ) def
844~ +Fg(x 4) =dimensionless constant = +1
g
00~ 2
4s
-

e After the threshold (8):185y =B
.1
€337 %0 "2

4s

844 = tFs (x4)’FS (x4) >0,Fg (x4) dimensionless.
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e o o Fifth clement (57) :

F, =K, x{, K,>0 constant, dimension L-°

s

In this way, we realize both g,, being dimensionless and
k, being a positive constant, but we also measure the energy
in natural units with the basic unit of reference being the
threshold energy, as mentioned above (beginning of this
section). We specify that this method of energy measurement is
proposed here as a general paradigm valid for every interaction
where this is necessary (Figure 10).

Gravitazional metric § 2.3. Formulas (11) and (12) are
reported, where F(x 4) takes on the value Fg(xA) calculated in
(61):

800 !
g = «a > () dimensionless constant
e Before the threshold 8=~ B, [>0dimensionless constant
8337780 =1
844= iFg (x4), Fg (x4) >0, Fg (x4) dimensionless constant

X
-1 4 2
800 4( 1+ X )
4g
g =-a a> 0 dimensionless constant

o« After the threshold (12) 8= —pB, B> 0dimensionless constant

8337800
844 = J_ng (x4), Fg(x4) >0, Fg(x4) dimensionless.

o o o Fifth element(61) F, = K, (x,, +x,)°, K, >0 constant, dimension
L—6

The measurement of energy in natural units via its threshold
energy also applies to gravity. The situation is therefore similar
to that of hadronic interaction (Figure 11).

Elettromagnetic metric. Formulas (15) and (17) are
reported, where F(x,) takes the value F (x,) calculated in (64):

oo ~!

1/3
X
e Before the threshold(15) 811782833~ —{x—4} spatial isotropy
4e

8aa= TF,(x 4), Fe(x4) > (0 dimesionless constant.

800 !
o o After the threshold (17) 8178y =833~ -1, spatial isotropy

844 = iFe(x4), Fe(x4) > (0 dimensionless constant.

e e o Fifth clement (64):F, = K,, K, >0
which we set = +1 (Figure 12).

dimensionless constant,

Leptonic metric. The situation is similar to that of the
electromagnetic interaction (x,, should be replaced by x
(Figure 13).

)
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Hizy — 24,

< T

deformed metric T4

after the threshold

flat metrie
before the threshold
Ty
adronie threshold

in units @y

Figure 10:Hadronic Heaviside step of axis x4 in threshold units x4s.

Hlwy — 24y)

Xy < @y,

£y
in units ry,

deformed metric
after threshold

flat metric
before the threshold
Tag
gravitazional threshold

Figure 11: Gravitational Heaviside step of axis x4 in threshold units x4g.

Hlxy — 4]

T < Ty &Iy = Xy

flat metric Ty
after the threshold in units g,

deformed metrie
before the threshold

Ty
electromagnetic
threshold

Figure 12: Electromagnetic Heaviside step of axis x4 in threshold units x4e.

b Hey — 4]

g << T R

flat metric T4
after the threshold in units 4.

deformed metric
before the threshold

T
leptonic
threshold

Figure 13: Leptonic Heaviside step of axis x4 in threshold units x4w.

As seen from their five-dimensional expressions, for the
metrics of the four interactions the fifth element of the metric
is as follows:

(i) For hadronic and gravitational interactions is a power of
energy measured in units of its threshold energy E ,  and does
not respect any type of threshold, so this element of the metric
acts even when the metric is flat.

(ii) For leptonic and electromagnetic interactions is a
constant and therefore indifferent to whether the metric is flat
or not flat (deformed).

Here we can hazard the hypothesis that the fifth parameter
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of the metric g,, for each interaction is the calibration of the
energy for that interaction, in fact, it describes for the energy
coordinate how it is modified in the metric of the interaction
itself, i.e.,, in simple words, how in each interaction energy
measures energy. In conclusion, we remind that the reference
energy for each phenomenon is measured with instruments
that use electromagnetic interaction in conditions of flat
space-time and the validity of Hamilton's theorem for the
conservation of total energy. In fact, we can ignore the g,, of

the electromagnetic interaction ([1] Chap. 1) by setting K =1.
Therefore:

The electromagnetic metric and the electromagnetic interaction
constitute the fixed point of reference in all measurements of
phenomena also governed by other interactions with their relative
metrics.

Theresult that the fifth element of the metric, corresponding
to the ordinate energy has a functional dependence on a power
of the energy, had already been hypothesized previously as we
will summarize at the beginning of § 13.

12. Over- and sub-Minkowskian metrics

As already mentioned at § 10.3 a pentadimensional metric
is called:

over-Minkowskian if the deformed metric becomes flat while
x, decreases,

sub-Minkowskian if the deformed metric becomes flat while
X, increases.

fat [deformed

over-Minkoskian metric metric T4

deformed | .

e . . metric
sub-Minkoskian metric Ty

Ultimately we can say that over-Minkoskian metric
interactions, such as hadronic and gravitational, have a
variable energy calibration with the energy itself, regardless of
whether the metric is flat or deformed. On the other hand, sub-
Minkowskian metric interactions, such as electromagnetic and
leptonic, always have the same energy calibration regardless
of the value of the energy itself. We have conventionally set
this calibration equal to 1, i.e. K, = 1 for the electromagnetic
interaction as a convention and for convenience. Despite our
choice to set K, = K, = 1 in the next section, it is clear that
we can leave the value for the leptonic interaction, i.e. the
value of K, undefined for an appropriate phenomenological,
experimental, and theoretical verification. In simple words, we
want to maintain the possibility of checking whether K, = K, or
whether K, # K Figure 14.

The results achieved in the present work have allowed
to design, build, and test devices capable of exploiting the

Citation: Benenti S, Cardone F (2024) Energy metrics and their Ricci flows. Ann Math Phys 7(1): 024-053. DOI: https://dx.doi.org/10.17352/amp.000105



P PeertechzPublications

behavior of the fifth element g,, of the metrics, in particular
hadronic and leptonic, to obtain the production of electric
charges directly from the nuclear metamorphosis of the matter
(Ref. [3-11]). One of these devices is being designed and built
in the laboratories of High Sonic Technology (HST) in Rome
as a reactor-generator which exploits in particular the results
obtained here relating to the F function in order to determine
the dimensions and operating conditions of its components.?

*Private communication from the HST owner regarding
patents pending.

13. Summary of the five-dimensional metrics

As announced at the end of § 11 we underline that the
results relating to the fifth element of the metric can be
summarized for all interactions with the following expression
of the functional dependence on energy:

b52(E):E’, reQ+{0}.

This expression, which provides the functional dependency
form from energy, had already been hypothesized previously
in the context of the 12 classes of solutions of Einstein's field
equations in vacuum for five-dimensional metrics in deformed
space-time. The result was also presented in 2004 as an
assumption in [13] Chap. 15, § 15.3, p. 135-135, eq. (15.11). It is
therefore a further result to have verified with the Ricci Flow
method that this previous hypothesis is correct.

Finally, for the convenience of the reader, we summarize
in tabs the results already exposed for each interaction where,
however, the metrics are written with the convention and
symbols used in [13] Chap. 11, p. 93-95 and [1] Chap. 4, p. 53—
60. In practice, we replace the elements of the diagonal metric
expressed with the symbols 9i used in this work with the
symbols b?(E) used in the cited references, in order to obtain
a graphical representation of their evolution (in function of E)
before and after the relevant threshold E . This is a purely
nominalistic and conventional fact that we wish to do in order
to reconnect with the fundamental works from which this one
derives and constitutes further progress.

Below, for each interaction, the forms filled out during the
experiments are reported. These forms contain data and sketchy
graphs of the various b>(E). However, knowing the values of the
thresholds E , , it is possible to reprocess these data in order to display
the trend of b*(E) in numerically reliable graphs.

13.1 Electromagnetic interaction (Figure 15)

Transcription of the electromagnetic lab form:

[0] Threshold energy =45ueV

EOem
20—
[1] bo (E)=1

E Oem

1/3
18 =B =B E)=| | . E<E
Oem

222
(3] bf =by =b3(E)=1. E>E,,,

[4] bS2 (E)=Kgpy, Ko > 0 constant

[5] b52 (E)= bg(E) =1 per K,,, =1constant self — calibrated energy

(76)
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Figure 14: An experimental sample of the core of a reactor-generator (courtesy of
Eng. D. Bassani).

Isotropa Subminkowski Energia Autocalibrata

ELETTROMAGNETICA e b? Costante

byE)=1
[ E \r3
bi=bi=bi(£)=| | E<E,, =45ueV
| Eqen |
bi=bi=b3(E)=1 E>E,,
bi(E =K, K., >0 Costante

Bi(E J=by El=1 per  K,,=1 Energia Autocalibrata Costante

bE)

rl:n,i:h,‘ ;

¥ 13
F h,};hwi[ﬁ_|
Esen

04'_>z

Figure 15: Electromagnetic lab-form.

For convention and convenience, we have chosen k, to
coincide with 1 since the electromagnetic interaction is the
paradigm of all our phenomenological and experimental
measurements as all the instruments at our disposal to date
work with it. So it is in this sense that energy is considered
self-calibrated for electromagnetic interaction.

From Table (76) we get the values of b*(E) before the
threshold, on the threshold, and after the threshold:

2
BR(E)=1

1/3

212 12| E
b1 (E)sz(E)fb3 (E)= 7
Oem

E< EOem

b2(E)=Kem
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2 -
bS (Eg ) =1 By |
- 5 ., ., B S
E=Egom o Eoem) =03 Boem) =03 (Eg ) =1
2 = =1
bZ(E)=K .
5 Kem i A=R=Rm -1
B(E)=1
|
E>E()em blz(E):bg(E):bg(E)zl ~0.6 . (E)m
o3 - [
2 — 45
b3 (E)=Kep,
. . . . ' i=— threshold line
Figure 16 provides a graphical representation of these e R .
results. R | .
0 ! Eoem = 4.5 peV 9

13.2 Leptonic interaction (Figure 17)

L . Figure 16: Electromagnetic interaction around the threshold.
Transcription of the leptonic lab form:

[0]Threshold energy EOZep =80.4 GelV
Is a Subminkowski Energia Calibrata

2 LEELONIEA lsoc:g;fsﬁa EI:L:(;rnn;:gnelica b3 Costante

[11by(E)=1
113 BolE)=1

20y =120y = 12 (F) —

[2152(E) = b2 (E) = 1] (E)—[E/EOZep) . E<Ey,
- [ E |7

2 _.2 _.2 _ bi=bi=bl(E|= | E<E,, =80.4GeV
[3]b1 (E) b2 (E) b3 (E)=1, E>E0[ep (.Eo,q,.

2(E) = >
[4] b5 (E) Klep 0 constant I - E>E,,
[5] 1752 (E)= bg (E)=1valid for K lep =1constant calibrated energy

as for the electromagnetic metric. b:(E = Kuyp 120 costanike
(77)
Graphic representation, Figu]_‘e 18. From (2] and [3] we biE)=by El=1 per K, =1 Energia Calibrata Costante come per la metrica e.m.
observe that b;(E)=b;(E)=b(E) follow the bold curve. The e

remaining conditions [1], [4], and [5] in the case Klep =1 give

b?(E)=b(E)=1: the area where this condition is valid is the

y i
entire energy axis. -

13.3 Gravitational interaction (Figure 19) wzb[ii]

Transcription of the gravitational lab form: (Figures 20,21)

[0] [0mm]0mm6mm Energia di soglia EOgrav =202 uelV

[1] bg (E)=1, EZ< EOgrav Figure 17: Leptonic lab-form.

20 12 - 12
[2) b (E)=by (E)=b3 (E)=1.  E<Ey,..

2 =
[3] b5 (E)= Kgrav >0 costante, E< EOgrav (E)

before the threshold after the threshold

[4] b52(E) = bg (E)=1, per Kgrav =1energia calibrata costante () — B(E) = 1

come per la metrica elettromagnetica. Y, B B
[3] B3(E) = b3(E) = b3(E) = 1

2

20y =120 = E

[5] b3 (E)= bO (E)= [1 + E ] , E= Eograv r=— threshold line
Ograv 2] B(E) = B3(E) = 13(&)
[61 b2(E)=b3(F)=1 = (/B
0 E
6 ¥

2 - E 80.4GeV

[7] b5 (E) —[1+ 7 J R EZEOgrav (78)
Ograv Figure 18: Leptonic interaction around the threshold.

043
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13.4 Adronic interaction (Figure 22)

Transcription of the hadronic lab form:

2 2
2] bf(E):(% = 0.08, b%(E):(%) =0.16  anisotropy

20—
31 b3(E)=1, E< EOstrong

[4] b52 (E)=K >0 constant

strong

[5] b52 (F)= bg (E)=1 for K =1 constant calibrated energy

[0] Threshold energy EOstrong =367.5GeV [0mm]0mmbébmm . /
[ BB =1 E<Eyg.. S p——

strong
. . P(E) ;
as for the elettromagnetic metric (o) — 64 -
5 (Eogran) =64 + o 6
5 | [T B(E) = (1+ &)
E i
[6] b(% (B)= E K - EOstron
Ostrong g threshold line —=
2 2
[7] b2 ()= A2 b2 (E)= 2 anisotropy
1 5)” 5 2K
b2 = Kyrgp >0 constant
5] B(E) = B(E) = (1+ £
4 7 =
[8] b3 (E) = b () =| ——— E, T+
0str0ng strong ; b2 =12 = B3 K [6] B2=bi=1
10 Epgrav = 20.2 peV 30 40
9 b2 E)= E >E . A . .
[9] 5 ( ) - Ei 5 = Ostrong Figure 21: Gravitational interaction around the threshold.
Ostrong
(79)
ADRONICA Anismm!;a ?‘ovraminkuwski En‘erg-,ia
E— nisocrona Eterocalibrata
GRAVITAZIONALE Anisotropa Sovraminkowski Energia bo(E)=1 E=Eqsray=367.5GeV
= Anisocrona Eterocalibrata
=2
By E)=1 E<E,,,=202ueV bf(E]:(%‘
bi{E)=Costante=1 : Anisotropa
Con questa scelta Isotropia per bz (E)= (£|
2 E<Egpa 5
b3 E)=Costante=1 “
2 E)= E<E
by(E)=1 E<E,,. b;(E)=1 -
bE(E]:Kg,m, E<Epy K >0 Costante BAE )= Ko Kpy®0  Costante
3 2 2 ia Cali o i
b5 E)=by El=1 per K., =1 Energia Calibrata Costante come per la metrica e.m. bi(E)=by El=1 per K.,,=1 Energia Calibrata Costante come per la metrica e.m.
BE)= (1+ E>E,,,=202 eV ,
Eq g bi(E)= ( E2Eqgy, =367.5GeV
::sumg
bi(E)=1 ‘
B(E)=1 B(E)=|
i " Anisotropa
bz(m:b‘(slz(n E_V bile)=| 2y
( 16 2 h
B2 (E)=|1+—E b‘tEJ:iﬁEl:(i E>E,q,
( Emm.l E;E’hﬂm '3 (8 | E(L‘nwg} 0Srang . ,
v . . eT
; , BE)= E2E,q, b= l / 2
2, e Eos.w i Eom,,, E
6 !’ ’ 3 hnl = h]! =
E s . Ostrong
b = HEOT " |
I" bg? = by? ='1+—]
| b
1 | bt
1=br=b7 |
|
& IEm £ 0 [Eostons d
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e E = Eograv = 20.2pieV

Figure 20: Graphic of the gravitational interaction.

Figure 19: Gravitational lab-form. Figure 22: Hadronic lab-form.
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Graphic representation Figure 23.
Due to [1] and [6] it is equal to 1 up to the threshold
where it continues with (E/E,,,,)".

b?(E). b3 (E)| Their constant values are given by [2] and [7],
regardless of the threshold and therefore for every value of the
energy E.

Due to [3] it is equal to 1 before the threshold. By
[8] it is equal to 1 at the threshold and (E/E after the
threshold. Ultimately it is b;(E)=b;(E) .

0strong )2

Due to [8] it is equal to (E/E,,,,,,)° on the threshold
and for energy values greater than the threshold. For energy
values lower than the threshold we assumed a value equal to 1,
in accordance with [4] and [5].

K (E)
(E/E Ostrong)é/
2
threshold-ine-  — (E/E ostrong )
. R(E) = K(E) R(E) = R(E)
before the threshold after the threshold
//
,,,-//
B(E) -
5(5 ) - - i A00
—— = ; : :

}
100 200 300 Eostrong 500
367.5GeV

Figure 23: Hadronic interaction around the threshold.

14. Hadronics, astrophysics, and asymmetry

We wish here to make some interpretative remarks on the
fifth element of hadronic and gravitational metrics. We then
want to add an observation on the asymmetry that occurs in
various electromagnetic and nuclear phenomena studied by the
method of energy-dependent deformed metrics.

14.1 Confinement and asymptotic freedom

The phenomenon of confinement and asymptotic freedom
in a composite hadronic system has already been interpreted for
hadronic metrics with considerations of the proper (hadronic)
time and of the observer's coordinated (electromagnetic)
time (see [1] § 4.1.3, p. 57, eq. 4.15—4.16. For a more detailed
discussion see [13] § 10.4-10.5, p. 89-92).

In summary, we have that as energy varies the time element
for hadronic and electromagnetic metrics is different. Thus as
energy increases the reaction time interval of the hadronic
system is much less than that of the electromagnetic action
by which the hadronic system is energized and observed and
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appears to be bound. Conversely, as the energy decreases the
hadronic and electromagnetic time intervals tend to equalize
and the hadronic system appears pseudo—free.

We now wish to make some interpretive remarks here
regarding the fifth element of hadronic and electromagnetic
metrics with reference to the same phenomenon.

Again we have that as the energy changes, the element of
the energy coordinate for the hadronic and electromagnetic
metrics is different. The hadronic metric calibrates the energy
differently from the electromagnetic metric also the scales of
the energies are different.

In summary, if the energy varies by one-tenth on the
hadronic scale it is calibrated as one-millionth relative to
the electromagnetic scale, that is, it is depotentiated and the
system appears to the observer as weakly bound. Conversely, if
the energy varies ten times on the hadronic scale it is calibrated
as one-millionth relative to the electromagnetic scale, that is,
it is amplified and the hadronic system appears to the observer
as strongly bound.

We do not want to push the level of interpretation further,
we only observe that the two elements of hadronic metrics
referring to time and energy as coordinates give consistent
and coincident conclusions regarding the phenomenon of
confinement and asymptotic freedom in a hadronic system.

We leave the reader the freedom and opportunity to
consider the proper and coordinated interval also for the
energy coordinate in analogy to what is commonly proposed in
the literature for the time coordinate.

14.2 Dark energy and superluminal galaxies

Dark energy, like its precursor dark matter, was introduced
into astrophysics and cosmology as ill-defined and delineated
concepts in an uncertain attempt to search for a way that could
absolve them from the condemnation of having to consider
seemingly paradoxical phenomena, such as an expanding
universe with positive acceleration and visible galaxies with a
seemingly superluminal Doppler effect.

In Chap. 5 Signal Transmission and Visibility of the Memoir
[14] it is shown that within an isotropic model of the Universe,
the phenomenon of superluminal velocity is closely related
to the recession velocity of galaxies, i.e., Hubble's law. It is
shown, for example, that paradoxically, if the current distance of
two galaxies A and B is greater than the Hubble radius, d,;(t,)>T,
, then A and B have superluminal recessional velocity even though
they are mutually visible ( § 5.5).

The problem of superluminality, which in gravitational
systems is related to dark energy understood as a kind of extra
energy, is further examined in the next section.

14.3 Interpretation of the fifth element of gravitational
and electromagnetic metrics

We now wish to make some interpretative remarks about
the fifth element of the gravitational and electromagnetic
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metrics. Regarding the existence of both luminal and
superluminal velocities in gravitation, we refer the reader to
Chap. 15 of [1] where the problem is extensively examined both
experimentally and mathematically, as well as historically;
see the fifth volume of Laplace's Celestial Mechanics, translated
into English and annotated by N. Bowditch (1829) [15], how
the evaluation of the speed of gravitational action in the
Sun-Earth-Moon system is inferred from the study of lunar
libration motions.

We note that as the energy varies, the element of the energy
coordinate for the gravitational and electromagnetic metrics
is different. Let us also remember that all measurements,
whether astronomical observational with various and different
telescopes or experimental with various devices either in
the laboratory or in orbit, still occur with electromagnetic
interaction. Thus one observes gravitational phenomena with
the fatally distorted view of ~electromagnetic glasses''. In fact,
gravitational phenomena occur with a calibration of energy that
exponentially expands energy to the sixth power. No surprise
thattoan “electromagnetic observer'' the gravitational systems
appear to behave “as if'' there is an “additional energy'' that
accelerates them in a paradoxical way while they remain visible
and thus measurable electromagnetically at any frequency of
electromagnetic energy itself.

Here again, we do not want to push the level of
interpretation any further, except to mention that even the
balance for weighing objects and even the Cavendish balance
are instruments that use electromagnetic interaction to have
the measurement of gravitational phenomena. The balance
uses coulombic electric repulsion between the atoms of matter
on its plate and those of weight. The Cavendish balance likewise
uses the coulombic electric repulsion between the atoms of the
cable holding the dumbbell when that cable twists according to
its torsion constant while the dumbbell twisting undergoes a
gravitational action

14.4 Asymmetry and Heaviside Function

It has been found (see [16-21]) that everything goes as
if there is a fundamental asymmetry underlying all physical
phenomena and conditioning all interactions governing them.
It has been proposed and verified that the preferred direction
with which to compare asymmetric phenomena is the cold spot
of the cosmic background radiation. Finally, it was necessary
to recognize from the comparison of several electromagnetic
experiments with nuclear experiments that the Lorentz
violation is not kinematic in nature but appears to be
geometric in nature, depending on the angles of the direction
of the phenomenon but also on the angles of torsion of the
phenomenon. In fact, it was found in the experiments that
the coincidence of the privileged direction of the phenomenon
with the projection of the direction of the cold spot of cosmic
radiation referred to the geographical position on Earth and the
astronomical position of the Earth in space, where and when
the measurements were made.

The proposal for future work is as follows: modulate the
pentadimensional metric by introducing an angle-dependent
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Heaviside function in each element of the metric to account for
asymmetry. For this purpose, we use the direction of the cold
spot of the background radiation as the reference direction for
calculating the angle (as in [16-21]).

15. Appendix 1: calculation of the Ricci tensor
15.1 Conventions on Riemann and Ricci tensors

To demonstrate what has already been stated in Box (34), p-
14, we review the conventions concerning Riemann and Ricci's
tensors adopted by eminent authors (Hamilton, Cao and Zhu,
Carroll, Wald, Misner, Thorne, and Wheeler) and then compare
them with those of Eisenhart.

L.P. Eisenhart, see [22] (8.3), (8.5), (8.12), (8.14) and also

(23], p. 55, formula (211) Bi =g, -0 +I' I} -T" T}

E def

R =0 1—*1 -9 rl +r‘;;ml—":n 7r;<nr’/(m (80)

m~ /n n- /m

—ort 4+ri Tk _ri* (81)

m /1 i /m km*© i ki~ /m

Ricci is defined by summing the upper index and the last
one at the bottom.

R. S. Hamilton, [24] p. 258.

i, def
RN h _ h h P h +p
]k ark a]rk+rlpr]k Tl (82)
H def H,
Rike = &ni Rije (83)
H def ., H H
= oJt Jt
Ry =¢ szké g’ gy R (84)
Comparison of R with R :
df
= h _ h h P h rp
Uk 611"Jk ajrlk+r r]k rprzk
E ef
h h h _prm h m h
R ik 8 F akr +rkrm]_r1] ka

_o,rh yrm rh -, rfn

k™ Jji o jk o omi k

E
. . .. h _ h
Exchangeiwithj: R ik air
Y P h o rmch _pmoh
Exchange k with j: R ;=0 =0 Ui * T Ui =T Uy

Put ,,— . R’ =orh o rh srPrh 1P rh

kij ko) ki Tk opi ki
From H, 49 oh h o vhep h op Weget
Rijk = al jk—a]l“k+l“ I"Jk—l“jpl"l.k
H E
h _ph
Rt K i (85)

According to Eisenhart, the Ricci tensor is obtained by
summing the top index with the last index at the bottom:

E def E
Ry = Ry
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It follows that

* - J _ J P ] _tvPtJ
[ Ry=0;0f, =0 T4 +Tp T),~Th T
Recall
H, def

h"Zarh _grh srhrp _rh rp

Rijk i jk Tj ik CipT jk o jpik

and sum over h=j:

H . . . . .
J = J _ J JrP _rJ P
R iik 8iij ajrik +Fiprjk Fjprik'
We find equation (82) again. From here it can be deduced
that according to Hamilton the definition of the Ricci tensor
could be

Rik = Rl'jk'

In fact, Hamilton goes from Riemann to Ricci in a somewhat
tortuous manner. He lowers the upper Riemann index by posing

H def  H,
Riike = Epi Rije
He then defines Ricci by posing
H df m
[
Rie = & Ry
Recalling (85) we find 4 L ¢ B o Fh &
ecalling (85) we fin Rijkf = ghkRijZ_ghkR fij_Rkéij
. Therefore,

0od L ok v . E defE .

R,=g"R,~g"R,,~-g"R,~-R’, Since R =R/ we
. i i i i i ki kl]
find

H E 6

R~ R (86)

The Ricci tensors of Hamilton and Eisenhart are opposite in sign.
Cao, Zhu, [25] p. 152.

The definition of the Riemann tensor is

C, def
Rk "2 ork _o.rk srk P _rk 1P,
I S A A A [ A

Let us recall the Hamilton definition (82) with a change of
indices:
H, def

RE =

P k _ k k0 _rk P
it 61-1“].[ ajrié+riprjf r~r

Jp it

The comparison of these two expressions shows that

C H
k _pk
RW RW

Then the Riemann tensors are the same. Furthermore, we
have ([25] p. 173)

C dff Cp C dff e C

Riko = SipRyjy and Ry = &7 Ry
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By virtue of the identities ke = R jikr = Rijon = Rigij
from (80) we get

ki dffa ri —p,ri 4ri pk _pi ok
tmn =m0 o T e ™ e im
ie.

E def

k i k k k P _vk rp
Rfmn 6mr€n a”rfererr(n Fpnrfm

Comparison with

E, def
h h h m -h m h
83) R ik = ajrl.k—akr..+r . 1T

ok mj T mk
i.e.
E, def
h h h P tvh _vPth
Rijk ajrik akrij+rikrpj Fl.].Fpk.

C, def
k2 k _» 1k 7k P _vk P pa52
Rijﬂ al.rjf 8jFiZ+Fiij€ rjprM p.15

S.M. Carroll,[2] Formulas (3.67), (3.76), (3.90).

Cl def
RFP_ . =0

ouv )7
Cl def I
R =g ,RP
POV pA ouyv
Cl  def
R, = R
HV HAV

yl yl
M =0T e + FZ e T T

Check: for a 2-sphere 442 = az(dez +sin29d¢2) we have

Rop

R

=1

06~ Rsp =0 |R=

— 2
R, = (4
¢¢ s

Gauss > 0. a = radius, correct.

2
2

Cl def v A
(.67 Ry = 0T 0,1 +er | —rfl /.
Comparison with Eisenhart : .
s3 B Yot s
®3) Ry =0Ty~

£l m 0 m -l
krij+r r .-rr

ik~ mj i mk

%[ u def

_ a a a A a A
bed = 0Ty =0, 0% +T4 T4 —T% T

cb T cAdb T dAch

E

def
a 2 a a m a m a
RS =8¢ 0 T4 +T7 T T/ T

bd bc” md

Symmetry of I'= Riemann is the same:

ga —Ra (87)

047
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but Ricci is the opposite in sign: Riemann is the same
¢l defcr, E def E, ¢ E
GIOR 4y = R” ) B14) Ry = RUy =R =Ry = E, M,
R% =R (91)
bed bed
cl E (88)
R =R, but Ricci Changes the sign:
R.M. Wald, [26] . 48. E ALy ModfM, =
, [26]p. 4 B14) Ry = R (0:343) R 4= R,
w Udef lo} o} (04 o} a O
R yyp® = 0T =0,T5,+ T8, TSy ~T3 T, 7 7 (
R =-R 92)
ab ab
woodefwo
Rup = Rpvp ™ . . . .
In conclusion, what is stated in the box (34) on page 14 is
W def confirmed, i.e. that the Ricci tensor according to Eisenhart has
Rpq® = 0, =0,T0 +T5 TG -T2 Te, the opposite sign to all the other conventions examined:
By the comparison with Eisenhart
ka ffa r¢ -9,r4 +rm r4, —rmn ra
deb = % ab O det db me T de mb ; B 11%
j_ i
it follows that ., . . .
15.2 Lagrangian' algorithm for calculating Christoffel
symbols
VIIQ/ azga . (89) To prove formulas (36) and (37), which provide the
bed dcb components of the Ricci-Eisenhart tensors of type 1 and type 2
metrics, respectively, we begin by computing their Christoffel
symbols. For this purpose we can make use of the quick and
Hence, V}g - Vg azga :_1}% - _g Ricci changes y. . P p‘ . . d
the sign: bad dab db bd reliable algorithm consisting of the following three steps:
1. Given a metric tensor with components gi].(x) in
W E (90) coordinates x=(x') we write the kinetic energy
R ,=-R 9
ab ab | i
T= 7gl.jv

Misner, Thorne, Wheeler,[27] pp. 340 e 343.

as a second-degree homogeneous polynomial in the Lagrangian

velocities V. By setting
def

M
uo oz K _5 TH oTH 1P _TH P ~
RE o5 = 0allp=0500a +Tpa T =T 5Ty @l
dt
M def M where t is a generic evolution parameter, we calculate the
R,y = R a,uav Lagrangian binomials
L aor or
Check: sphere of radius a, 452 = 42 (462 +5in20d¢4?) L digy gy
0_ b 1 P b 2. We calculate the contravariant components gi(x) of the
Ry =Ry = 2 Ry=0. R= 7> comect metric and raise the indices of the Lagrangian binomials
.d .
I if gl] L.
(340) Azg/‘ e<d 4, -0 Tt +TH TP, _TH TP ’
=0, - + - .
Comparison with Eisenhart . :“fﬁ aygTlp va T patyp T pp Ve Each L turns out to have the form
€)
(8.3) R’;jk = ajrlf'kfakrg +r r”;lj -y rf’nk. o -
it i
L 7 +I h kv % (93)
M def ]_
R abc i 6CFZ ;0 dl“gc +Fapcl"l/; g’ —FZ J 1"[/;0 Where the three-index quantities T, , which are functions
P dof of the coordinates x alone, are precisely the Christoffel symbols
€
R ab od = 6CFZd — adrg + FZZ' ré. .- Flranc l—z 4 that we want to calculate.
048
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3. From the expressions (93) we extract the quadratic forms

def . i .
o = Ll—dL=Flhkvhvk (94)

from which the expressions of the Christoffel symbols D
can be derived.

15.3 Ricci-Eisenhart tensor of a type 1 metric

gy~ G(x 4) dimensionless positive function

g = «a dimensionless positive constan?
Typelmetric {85y == B, [ dimensionless positive constant

833=-G(xy)

84a= +F(x 4), F(x 4) dimensionless positive function

Step 1

T=4g,"v =4[ 6002 —a(h? - p022 G0 1P (42 |

=%[G((v0)2 ~(PP) - - 022 iF(V“ﬂ

0
d oT 4 0 dv
or _ . 0 ———=GVv'vV'+G—
BT*GV dt 3\/0 dt
1
or ___ 1 |dor__ dv
Y aigh Car
2
O g2 doT_ pa?
ov dt 5,2 dt
0_7; =-Gv3 d or _ g3 Gﬁ
ov dr 5,3 dt
or 4
——=+Fy 4
6v4 daor_ iF'(v4)2 + FdL
dr 5,4 dt

Single non-ignorable coordinate x,:

6—2=%|:G'(V0)2—G,(V3)2iF'(V4)2:|
ox
de;
Lagrangian binomials 7. =fdia_7;,6_7; :
Lot ox
0 3
_ 4.0 dv _ 43 dv
LOva v +G7, L37—Gv v _GW’
1 2
L dv L - dv

e

4
L= o2 e PO L G002 -G 03P ey |

Step 2 Lagrangian binomials with raised indices ' = g" L;

(orthogonal metric)
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g00—_33_G-1
gl g1
g2 g1
g g

0 3
10 =dL+G'G_lv4vo, 3 =dL+G'G_1v4v3.

dt dt
god o a?
dt’ dt

4
4 :dst+F—1F,(V4)2 $%F—l[(;,(vo)z —G0R)2 iF,(V4)2}

Antisymmetry with respect to v° and v3 in L only.
Step 3 From the above expressions of Li we extract the

def .
quadratic forms ¢* =f Flh k ik

=60, =LA, ol=0, 020,
Q4 _ F*IF/(V4)2 i%Fﬁl[Gl(VO)z —G'(V3)2 iF’(V4)2:|

—LFlp oty i%FqG/[(Vo)z _(v3)2} o

and from these, we derive the non-identically null
Christoffel symbols:

4 -1 —1
0 1 1 1"44 ZF F
Iy, =~G'G
04 2 4 _ _ 11w
. =52F "G
34 2 4 :+1F_IGV
I337%3

Note that symbols with at least one lower index equal to 1
or 2 are null and that the following equalities hold:

(i 0 Ll L2 3 L
T0i =Too tTo1 102 o3+ s =0

P03 L rd
=Tt + 4 =0

P 0 L3 L4
15 =103+, =0

r"l.:ro I RS )

3 3077337734
i _0 3 4 _ =11 p—1p
_F4i F40+F43+F44 G'G +2F F

End of the algorithm.

Now we recall the definition of the Ricci tensor according
to Eisenhart (81)

7 dffa ri —ori 4ri rk _rirk
om = Om i O i k0T ki e
Where the terms 6ml“’él. cancel for mz4 because x, is the

only coordinate that cannot be ignored.
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o

00

£
i i i k i -k _ 4 i k l k
R 00~ % 0i = %% 00 * ko 0i ~TkiT00 =24 00 *|Fko T oi|

i ok i 10 i 3 ,pi 4 _rd 0 0 14 _rrd 0
TokTi0 = TooTi0 "oz i0 *Toali0 =Foo 40 *ToaT 00 =2 00" 40

- ;2%G'G‘1 %F‘l G'= $%(G')2 lealianl

i +k i 4
Tt 00|7 T4t 00 =

(G'G‘1 +%F‘1F')(¢%F_1 G')

o0 0480 o |- Tl

A e (e R (e ol £ Vel
Flerhe?e (o Jrr)(iFl )
{( To)-@Pe (oo e ()|

%{( —1(;’) G)ZG_IF_1+GG_1(F_1G)+1F_1F(F_1G)}
~h{r

_IG')+ 1p=2p G’}

, e " ' g ' G'F-lg'F'
=+1 £+1FG :ilGF7GF+1FG =+ 2 =
21\ F ) 2 FZ 2 F2 2 F2 2F2

E " ot
E _2G'F-GF
00 4F2

£
i i i -k i 7k _
Ryp= o0y =0y + U T~ T T =0
£
R

_ i i i -k i —k
207015 =0y + T 10 =TT =0

33

m vk _p+m 0 3 m 4
rskr =30 3 T35 s T34 s

Coard 3 13 4 _ord 3 Ll 2 ol
| =0+ T33 T3+ 13 33 = 203313 =25 (G)°C

k k m -k m -k 4 m -k 4 -k
R33= 0303 =0 3y + T U3~ T3 T =04 33 + Ty 13 =T33 Ty
(F‘lc)'ilF‘l(G')2 G! ;lF—lc’(G'G—l +%F_1F’)

1,
2
S GG ES Vel

E "ot
% $2GF G'F

https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics 8

#
44
i i i k i vk i _10 3 4 _ —1 1 —1
470 g O gy D T T T g Tay =T go 143t gy = GG+ F
% =(G’G*‘+lF*1F')—l(F*‘F’)’+(r0 rk +r3 rk o.r4 ok ) ri r4
44 2 k4t a0 U kat a3 T palaa) T4l 4
1), (10 0 . 3 4 4\ i 4
( ‘G ) (r04r40+r34 43+r44r44) Failsq
1\ (11 1l i—lyiy—ll—lll—l,
(GG )+(2GG ) (ZGG )+(2F F) (RN Vo) Y Vo
2
:(G’G_1)+%(G’G_l) -loc e

E , N2 1 a2 N2
R44:(9j+i(9] _1FG :M%(Q) _FG

G) 20G) 2FG G2 G) 2FG
" n2
_G'G-3G)Y PG _2G'G-(G)} FG _2FG'G-F(G) FGG
G2 2FG 262 2FG 2FG? 2FG?
E _ 2G"FG-G'F'G—(G)F
44 YG2F

Thus all formulas (36) are proved.

15.4 Ricci-Eisenhart tensor of a type 2 metric

800 !
Type 2 metric 8178 =833~ 7G(x4), G(x4) dimensionless positive function

84a= +F(x 4), F(x 4) dimensionless positive function

Step 1
r=bg v =4 002 -6(012 + 022 + (3P| Foh? |
0
A
0 v
ov
1
-Gl Lo T=—gvhl -2
ov vl
oT 2
72:—Gv2 d 6T _ohvA2 Gd
ov dt o2 dt
‘3—T3=—Gv3 doT _ 43 od7°
ov
oT 4 dt v dt
—=xFvy 4
v 4T _ e p
dt 51}4 dt

Single non-ignorable coordinate x,:

a—T=%[—G'((vl)2 <0207 )£ 0h? |
ox
def
Lagrangian binomials L. = i&_T_a_T .
oodtgt o
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Lo’
0 ar
1
_ w41 ady
Ll—vavfGW
2
_ A2 Ldv
L27_GVV_G7
L oAl
3 Vv Vv 7

4
L, =P h F%—l[—c'((vl)z +(2)2 +(v3)2)iF’(v4)2}

2

Step 2 Lagrangian binomials with raised indices L'=¢"L,

(orthogonal metric):

o_d?
dt
00 e e N
g =1 dt
1__ -1 2
g G 12 =G—1G,v4v2+%
2= :
—1 dv
g33:,G*1 rP=¢"l¢ v4v3+7
44_ g1 4
g == Ao lpph2 e
dt
$%F—l[_Gr((vl)2+(V2)2+(V3)2)iFr(v4)2}

Step 3 From the above expressions of Li we extract the
def .
quadratic forms Q' = F’hkvh Vo
0"=0
ol =glgn!
02 = G-lgvh2
03 =c-lgvh3
Q4 :F_lF’(v4)2i%F_l[fG'((vl)z +(‘}2)2 +(v3)2)iF'(v4)2}

=P eh? e ()2 <012 +07)?)
(97)

and from these, we derive the non-identically null
Christoffel symbols:

1 _ 1,1~
rl -lc7lc
2 1ol 14472
42 2 4 _rd 4 1l
B 1g-le Tl
53772
(98)

Note that symbols with at least one lower index equal to 0
are null.

End of the algorithm.
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Once more we recall the definition of the Ricci tensor
according to Eisenhart (81)

o i _ari Lpi ok _piopk
oyl -0, +T! TF-T,.T%

R 0i "0 i

Im

j i
where the terms 6mrlgi and airgm cancel for mz4 and iz4

because x, is the only coordinate that cannot be ignored.

E
Roo

e ST S S
R0=%F0i %00 *TxoT0i ~TxiToo - Since all symbols

involved have at least one lower index equal to 0, we find

E —
R 0g=0

it

11

_ i i i 1k i vk _ 4 i 1k i 4
Ry oy =0 T T~ U T = =04+ U T T Ty

R S L S S S R
= T T s~ T T = =0T+ D T I g~ T T

o (el Ll i
"a4r11+r11(r41+r14‘r4i)

P O O R B S S
"‘34F11*Fn(rm*F14*F4O*F41*F42*r43’r44)
[P A N S 1 _2
——64F11+F11(F41—F42—F43—F44)...,maF41—F42
4 434
=041, l-11(1"43“"44)

—=1rloyv=1lprlo(la g o L1
slFleysiF G(zG G'+iF F)

Fley=-F2pc+Flg"
E S VRS (S S (S
R =T [Z(F GY+F G(G G'+F F)}

_2FG"+FGL(G)2 -GF
+ 2 .
4F

- x%[z(rlc” - F_2F’G’) +Fle L2 + F_2G’F’}

271674 PG (62 _F—zG,F,} _

By virtue of the spatial isotropy of a type 2 metric we have

E_E E  orgiFGIGY-GF
11~ 227337 4F2
ie.
E E E  2G"FG+(G)F-FGG
R, =Ron=R,\=
1" %733 1F2G
E
Ry4
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544: 04Ty =0Tl T Th, T Tk,

= 0,70+ 04Tl + 04T 4 +04 03 +0,T 44 0,04y + Ty Ty~ T4 Tly
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Thus all the formulas (36) and (37) are proved.
Conclusion

With this work, it was shown that Ricci's flow method
provided the complete explicit mathematical form of the fifth
element for energy-dependent metrics having energy itself as
the fifth coordinate for each of the four known fundamental
interactions. This verified the functional form of energy
dependence for the fifth element of the metric previously found
with the pentadimensional field equations (Einstein equations,
see [1], Chap. 23-24 and Appendix A1).

It was thus also shown that Killing's equations had not
given this result in the past (see [1], Chap. 21, pp. 308-310).

Likewise, we can say that the energy-dependent metric in
five dimensions for gravitational interaction puts us in front of
a new Astrophysics and a new Cosmology.

At last, it is worth stressing that any phenomenon ruled
by an energy gauge like those expressed by the fifth metric
element depending on the sixth power of energy, say hadronic
(nuclear) metrics, has a very peculiar behavior. In fact, if
the energy displacement has a value of ten higher or lower
with respect to the energy threshold of the interaction, the
phenomenon in connection is lowered or amplified by a factor
of one million.

This situation has two relevant consequences.

First, regarding any process or device exploiting nuclear
metamorphosis under hadronic metric, for example, a reactor
say that one sketched in Figure 14, it has to be tuned in a very
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delicate way in order to keep metamorphosis running well
under good control [6,7].

Second, the so-called 'mew kind' of nuclear reactions
investigated for decades, starting from the last decade of the
XX century, can find in this way a natural explanation of their
great hurdles experienced both in ruling them by well-known
parameters and in setting well-grounded conditions to repeat
as well to reproduce them.

In conclusion, it is possible to state that the energy-
dependent hadronic metric in five dimensions, with energy as
the fifth dimension, set now a new Nuclear Science.
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