Numerical simulations in a generalized Liénard's type system

Main Article Content

Juan E Nápoles Valdés*
Paula Macarena Roa*

Abstract

In this note we present some numerical simulations of the asymptotic behavior of a Generalized Liénard Equation, taking into account a recently defined differential operator. We must point out that these numerical variations have not been obtained as usual: by varying the functions of the right member of the system considered, but, on the contrary, by varying the kernels and the order of the generalized operator used. The above provides breadth and generality to the results obtained, which complement some known in the literature.

Downloads

Download data is not yet available.

Article Details

Valdés, J. E. N., & Roa, P. M. (2023). Numerical simulations in a generalized Liénard’s type system. Annals of Mathematics and Physics, 6(2), 187–195. https://doi.org/10.17352/amp.000101
Review Articles

Copyright (c) 2023 Nápoles Valdés JE, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Liapounov AM. Problème général de la stabilité du mouvement, in Annals of Math. Studies No.17, Princeton Univ. Press, Princeton, NJ. 1949.

H. A. A survey of Lyapunov's second method contributions to the theory of nonlinear oscillations IV in Annals of Math. Studies No.44, Princeton Univ. Press, Princeton, NJ. 1958.

Barbashin EA. Liapunov's Functions, Science Publishers, Moscow. 1970 (Russian).

Cesari L. Asymptotic behavior and stability problems in ordinary differential equations, Springer-Verlag, Berlin. 1959.

Demidovich BP. Lectures on the Mathematical Theory of the Stability, Science Publishers, Moscow. 1967. (Russian).

Hahn W. Theory and Application of Liapunov's Direct Method, Prentice-Hall, Englewood Cliffs. New Jersey. 1963.

Yoshizawa T. Stability theory by Liapunov's second method. The Mathematical Society of Japan. 1966.

Nápoles JEV. A continuation result for a bi-dimensional system of differential equation. Revista Integración. 1995; 13(2): 49-54.

Hale K, Hara T, Yoneyama T, Sugie J. Necessary and Sufficient Conditions for the Continuability of Solutions of the System x'=y-F(x), y'=-g(x), Applicable Analysis: An International Journal. 1985; 19: 169-180.

Hasan YQ, Zhu LM. The bounded solutions of Liénard equation, J. of Applied Sciences. 2007; 7(8): 1239-1240.

Helms LL. Introduction To Potential Theory (New York: Wiley-Interscience. 1969.

LaSalle JP. Some extensions of Liapunov's second method. IRE Transaction on Circuit Theory. 1960; 520-527.

Lugo LM, Nápoles JEV, Noya SI. On the construction of regions of stability. Pure and Applied Mathematics Journal. 2014; 3(4): 87-91.

Nápoles JEV. On the continuability of solutions of bidimensional systems. Extracta Mathematicae. 1996; 11(2): 366-368.

Nápoles JEV. On the boundedness and asymptotic stability in the whole of Liénard equation with restoring term. Revista de la Unión Matemática Argentina. 2000; 41(4): 47-59. (Spanish).

Peng L, Huang L. On global asymptotic stability of the zero solution of a generalized Lienard's system. Appl. Math-JCU. 1994; 9B: 359-363.

Liénard A. Étude des oscillations entretenues.

Van BDP. On oscillation hysteresis in a triode generator with two degrees of freedom. Phil. Mag. 1922; (6) 43: 700–719.

Van BDP. On `relaxation-oscillations'. Philosophical Magazine. 1926; 2(11):978-992.

Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011; 16: 1140-1153.

Nápoles JEV. The non-integer local order calculus. Phys Astron Int J. 2023; 7(3):163-168. DOI: 10.15406/paij.2023.07.00304

Guzmán PM, Lugo LM, Nápoles VJE, Vivas M. On a New Generalized Integral Operator and Certain Operating Properties. Axioms. 2020; 9: 69. doi:10.3390/axioms9020069.

Nápoles JE, Guzmán PM, Lugo LM, Kashuri A. The local nonconformable derivative, and Mittag Leffler function. Sigma J Eng & Nat Sci. 2020; 38 (2): 1007-1017.

Zhao D, Luo M. General conformable fractional derivative and its physical interpretation. Calcolo. 2017; 54: 903-917. DOI 10.1007/s10092-017-0213-8.

Fleitas A, Nápoles VJE, Rodr JM. guez JM. Sigarreta, NOTE ON THE GENERALIZED CONFORMABLE DERIVATIVE, Revista de la UMA. 2021; 62: 2; 443-457. https://doi.org/10.33044/revuma.1930

Guzmán PM, Langton G, Lugo LM, Medina J, Nápoles VJE. A new definition of a fractional derivative of local type, J. Math. Anal. 2018; 9:2; 88-98.

Nápoles JEV, Guzmán PM, Lugo LM. Some New Results on Nonconformable Fractional Calculus, Advances in Dynamical Systems and Applications ISSN 0973-5321. 2018; 13: 2; 167-175.

Fleitas A,Méndez JA, Nápoles JE, Sigarreta JM. On the some classical systems of Liénard in general context, Revista Mexicana de Física. 2019; 65 (6): 618-625.

Khalil R, Horani MAl, Yousef A, Sababheh M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014; 264: 65-70.

Nápoles JEV, Rodr JM, guez JM. Sigarreta, On Hermite-Hadamard type inequalities for non-conformable integral operators, Symmetry 2019; 11: 1108. doi:10.3390/sym11091108.

Martínez F, Mohammed PO, Nápoles JEV. Non Conformable Fractional Laplace Transform, Kragujevac. Journal of Mathematics. 2022; 46(3): 341-354.

George EC, Juan E. Nápoles Valdés, Continuability of Liénard's Type System with Generalized Local Derivative, Discontinuity, Nonlinearity, and Complexity. 2023; 12(1): 1-11. DOI:10.5890/DNC.2023.03.001

Huang Lih, Bin-Xiang Dai, Si-hu Hu. Continuability of Solutions for a Generalized Liénard System. J. of Hunan University. 1999; 26(6): 1-9.

Nápoles JEV. On the global stability of non-autonomous systems. Revista Colombiana de Matemáticas. 1999; 33: 1-8.

Nápoles JEV, Repilado JAR. On the boundedness and stability in global sense of the solutions of a two-dimensional system of differential equations, Revista Ciencias Matemáticas. 1997; XVI: 71-74.

Odani K. The limit cycle of the Vanderpol equation is not algebraic. Journal of Differential Equations. 1995; 115: 146-152.

Hricisákova D. Continuability and (non-)oscillatory properties of solutions of generalized Liénard equation. Hiroshima Math. J. 1990; 20: 11-22.

Hricisákova D. Negative solutions of the generalized Lienard equation. Hiroshima Mathematical Journal. 1992; 23: 155-160.

Yu SX, Zhang JZ. On the center of the Li´enard equation. Journal of Differential Equations. 1993; 102: 53-61.

Kooij RE, Jianhua S. A note on uniqueness of limit cycles in Liénard type systems, J. Math. Anal. Appl. 1997; 208: 260-276.

Yu SX, Zhang JZ. On the center of the Li´enard equation. Journal of Differential Equations. 1993; 102: 53-61.

Aghajani A, Moradifam A. The Generalised Lienard Equations. Glasgow Math. J. 2009; 51: 605-617. doi:10.1017/S0017089509990036

Hayashi M, Villari G, Zanolin F. On the uniqueness of limit cycle for certain Liénardsystems without symmetry, Electronic. Journal of Qualitative Theory of Differential Equations. 2018; 1-10. https://doi.org/10.14232/ejqtde.2018.1.XX

Guzmán PM, Luciano M. Lugo Motta Bittencurt, Juan E. Nápoles Valdes, A Note on Stability of Certain Liénard Fractional Equation, International Journal of Mathematics and Computer Science. 2019; 14: 2; 301-315.