Unique factorization theorem for pure quantum states

Main Article Content

Dhananjay P Mehendale*

Abstract



In this paper we establish a unique factorization theorem for pure quantum states expressed in computational basis. We show that there always exists unique factorization for any given N-qubit pure quantum state in terms of the tensor product of non-factorable or ``prime'' pure quantum states. This result is based on a simple criterion: Given N-qubit pure quantum state in computational basis can be factorized as the tensor product of an m-qubit pure quantum state and an n-qubit pure quantum state, where (m + n) = N, if and only if the rank of the certain associated matrix is equal to one. This simple criterion leads to a factorization algorithm which when applied to an N-qubit pure quantum state factorizes that state into the tensor product of non-factorable or ``prime'' pure quantum states. This paper shows that for any given N-qubit pure quantum state the said factorization always ``exists'' and is ``unique''. We demonstrated our work here on a computational basis.
PACS Number: 03.67.Mn, 03.65.Ca, 03.65.Ud



Downloads

Download data is not yet available.

Article Details

Mehendale, D. P. (2023). Unique factorization theorem for pure quantum states. Annals of Mathematics and Physics, 6(2), 149–153. https://doi.org/10.17352/amp.000094
Research Articles

Copyright (c) 2023 Mehendale DP.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Niven H. Zuckerman H. Montgomery. An introduction to the theory of numbers, John Wiley and Sons, Pvt. Ltd. 1991.

Mehendale D. Separable quantum states are easier to synthesize, Quant. Phys. Lett. 2017; 6: 2; 111-116.

Schrodinger E. Die gegenwartige Situation in der Quantenmechanik, Naturwissenschaften. 1935; 23, 807, 823, 844.

Peres A. Phys. Rev. Lett. 1997;76: 1413.

Horodecki M, Horodecki P, Horodecki R. Phys. Rev. Lett. 1997;78: 574.

Horodecki P. Phys.Lett. A. 1997; 232-233.

Horodecki R, Horodecki P, Horodecki M, Horodecki K. arXiv:quant-ph/0702225v2. 2007.

Werner R. Phys.Rev.A. 1989; 40: 4277.

Alber G, Beth T, Horodecki M, Horodecki P, Horodecki R, Rotteler M, Weinfurter H, Werner R, Zeilinger A. Quantum information, an introduction to basic theoretical concepts and experiments. Berlin: Springer. 2001.

Bouwmeester D, Ekert A, Zeilinger A. The physics of quantum information. Berlin: Springer. 2000.

Mehendale D, Joag P. A simple algorithm for complete factorization of an N-partite pure quantum state. Quant. Phys. Lett. 2017;6: 73-77.

Mehendale D. A new simple algorithm to determine the entanglement status of multipartite pure quantum states. Bulg. J. Phys. 2019;46: 174-188.

Einstein A, Podolsky B, Rosen N. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 1935; 47: 777.

Bell JH. On the Einstein-Podolsky-Rosen paradox, Physics. 1964; 1:195.

Bell JH. Speakable and unspeakable in quantum mechanics. Cambridge University Press. 1987.

Bertlmann RA, Zeilinger A. Quantum [un]speakables, from Bell to quantum information, Springer. Berlin Heidelberg New York. 2002.

Bennett C, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993; 70.

Hensen B. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature. 2015; 526 (7575): 682-686. arXiv: 1508.05949.

Werner RF. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A. 1989; 40:4277-4281.

Ekert AK. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991; 67: 661-663.

Mattle K, Weinfurter H, Kwiat PG, Zeilinger A. Dense coding in experimental quantum communication. Phys Rev Lett. 1996; 76: 4656-4659.

Kempe J. Quantum Decoherence. Springer, Berlin. 2007.

Steane A. Quantum computing. Reports on Progress in Physics. 1998;61: 117-173.

Ekert A, Jozsa R. Quantum computation and Shor’s factoring algorithm. Reviews of Modern Physics. 1996;68: 733-753.

Grover LK. Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett. 1997; 79: 325-328.

Schrodinger E. Die gegenw¨artige Situation in der Quantenmechanik, Naturwissenschaften. 1935; 23: 807-812.

Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935; 47: 777-780.

Bell J. On the Einstein-Podolsky-Rosen paradox. Physics. 1964; 1: 195-200.

Beig S, Shor PW. Approximating the set of separable states using the positive partial transpose test. Journal of Mathematical Physics. 2010; 51: 042202-042213.

Choi J, Kiem YH, Kye SH. Entangled edge states of corank one with positive partial transposes. Journal of Mathematical Physics. 2020; 61: 062202-062216.

Zhang CJ, Zhang YS, Zhang S, Guo GC. Entanglement detection beyond the computable cross-norm or realignment criterion, Phys. Rev. A. 2008; 77: 060301-060305.

Guo Y, Hou JC. Realignment operation and CCNR criterion of separability for states in infinite-dimensional quantum systems. Reports on Mathematical Physics. 2013; 72: 25-40.

Horodecki M, Horodecki P, Horodecki R. Separability of Mixed Quantum States: Linear Contractions and Permutation Criteria. Open Syst. Inf. Dyn. 2006; 13: 103-111.

Wocjan P, Horodecki M. Characterization of Combinatorially Independent Permutation Separability Criteria. Open Syst. Inf. Dyn. 2005;12: 331-345.

Clarisse L, Wocjan P. On independent permutation separability criteria. Quantum Inf. Comput. 2006; 6: 277-288.

Li M, Wang Z, Wang J, Shen S, Fei S. Improved lower bounds of concurrence and convex roof extended negativity based on Bloch representations, Quantum Inf. Process. 2020; 19: 1-11.

Hofmann H, Takeuchi S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A. 2003; 68: 032103-032109.

Guhne O, Mechler M, Toth G, Adam P. Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion. Phys. Rev. A. 2006; 74: 010301-010305.

Zhao Y, Xiang G, Hu X, Liu B, Li C, Guo G, Schwonnek R, Wolf R. Entanglement Detection by Violations of Noisy Uncertainty Relations: A Proof of Principle. Phys. Rev. Lett. 2019; 122: 220401-220407.

Zhang C, Nha H, Zhang Y , Guo G. Entanglement detection via tighter local uncertainty relations, Phys. Rev. A. 2010; 81:012324-012329.

Gittsovich O, Giihne O, Hyllus P, Eisert J. Covariance matrix criterion for separability. AIP Conference Proceedings. 2009; 1110: 63-66.

Zhang C, Zhang Y, Zhang S, Guo G. Optimal entanglement witness based on local orthogonal observables. Phys. Rew. A. 2007; 76: 012334-012340.

Ha K, Kye S. Optimality for indecomposable entanglement witnesses. Phys. Rew. A. 2012; 86: 034301-034305.

Rutkowski A, Horodecki R. Tensor product extension of entanglement witnesses and their connection with measurement-device-independent entanglement witnesses. Phys. Lett. A. 2014; 378: 2043-2047.

Shen S, Xu T, Fei S, Li M. Optimization of ultrafine entanglement witnesses. Phys. Rew. A . 2018; 97: 032343-032347.

Werner R, Wolf M. Bell inequalities and entanglement. Quantum Information Computation. 2001; 1: 1-25.

Zhang C, Zhang Y, Guo G. Genuine entanglement of generalized Bell diagonal states, Phys. Lett. A. 2007; 363: 57-56.

Li M, Fei SM, Li-Jost X, Bell inequality, separability and entanglement distillation, Chinese Science Bulletin. 2011; 56:945-954.

Lee H,Oh S, Ahn D . The entanglement criterion of multiqubits, arXiv:quant-ph. 2005; 0506127-0506135.

Alheverio, Fei SSM, Goswami D. Separability of rank two quantum states, Phys. Lett. A. 2001; 286:91-96.