Analyzing Riemann's hypothesis

Main Article Content

Mercedes Orús–Lacort
Román Orús
Christophe Jouis*

Abstract

In this paper we perform a detailed analysis of Riemann's hypothesis, dealing with the zeros of the analytically-extended zeta function. We use the functional equation ζ(s)=2sπs−1sin(πs/2)Γ(1−s)ζ(1−s) for complex numbers s such that 0< Re(s)< 1, and the reduction to the absurd method, where we use an analytical study based on a complex function and its modulus as a real function of two real variables, in combination with a deep numerical analysis, to show that the real part of the non-trivial zeros of the Riemann zeta function is equal to ½, to the best of our resources. This is done in two steps. First, we show what would happen if we assumed that the real part of s has a value between 0 and 1 but different from 1/2, arriving at a possible contradiction for the zeros. Second, assuming that there is no real value y such that ζ(1/2+yi)=0, by applying the rules of logic to negate a quantifier and the corresponding Morgan's law we also arrive at a plausible contradiction. Finally, we analyze what conditions should be satisfied by y∈ℝ such that ζ(1/2+yi)=0. While these results are valid to the best of our numerical calculations, we do not observe and foresee any tendency for a change. Our findings open the way towards assessing the validity of Riemman's hypothesis from a fresh and new mathematical perspective.

Downloads

Download data is not yet available.

Article Details

Orús–Lacort, M., Orús, R., & Jouis, C. (2023). Analyzing Riemann’s hypothesis. Annals of Mathematics and Physics, 6(1), 075–082. https://doi.org/10.17352/amp.000083
Research Articles

Copyright (c) 2023 Orús-Lacort M, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Bertrand R. Ueber die Anzahl der Primzahlen unter einer gegebenen Groesse, Monatsberichte der Berliner Akademie. 1859.

Enrico B. The Riemann Hypothesis - official problem description (PDF), Clay Mathematics Institute. 2000; retrieved February 21, 2011. Reprinted in (Borwein, et al. 2008).

Guillermo LS. El problema cuya solución quizás conozcan en el cielo, Naukas. 2014. https://naukas.com/2014/05/26/el-problema-cuya-solucion-quizas-la-conozcan-en-el-cielo/https://naukas.com/2014/05/26/el-problema-cuya-solucion-quizas-la-conozcan-en-el-cielo/

See, for instance. https://en.wikipedia.org/wiki/Millennium_Prize_Problemshttps://en.wikipedia.org/wiki/MillenniumPrizeProblems

Lawrence WC, Ambrose Y. Analogues of the Robin-Lagarias Criteria for the Riemann Hypothesis, International Journal of Number Theory. 2021; 17:04; 843-870.

Fabrizio T, Ignazio L. Majorana quanta, string scattering, curved spacetimes and the Riemann Hypothesis, Physica Scripta. 2021; 96: 125276.

Giuseppe M, Andre L. Randomness of Mobius coefficients and Brownian motion: growth of the Mertens function and the Riemann Hypothesis, J. Stat. Mech. 2021; 113106.

Andrés C, Quesada-Herrera E. The second moment of Sn(t) on the Riemann hypothesis, International Journal of Number Theory. 2022; 18:06; 1203-1226.

Gaugry V, Louis J, Radhakrishnan N, Michel W. On good universality and the Riemann hypothesis, Advances in Mathematics. 2021; 385:107762.

Panos B, Nava G, Olga P. Black holes, quantum chaos and the Riemann hypothesis, SciPost Phys. Core. 2021; 4:032.

André L. Riemann Hypothesis and Random Walks: the Zeta case, Symmetry. 2014; 2021:13.

Atul D, Shivajee G, Akshaa V. A modular relation involving non-trivial zeros of the Dedekind zeta function, and the Generalized Riemann Hypothesis, Journal of Mathematical Analysis and Applications. 2022; 515: 2; 15.

Norio K. An analogue of the Riemann Hypothesis via quantum walks, Quantum Studies: Mathematics and Foundations. 2022; 9:367-379.

Archit A, Meghali G, Bibekananda M. Proc. Amer. Math. Soc. 2022.

André V. Discretized Keiper/Li approach to the Riemann Hypothesis, Exp. Math. 2020; 29(4):452-469.

Hugues B, Yves L, Thomas R. a positivity conjecture related to the Riemann zeta function, American Mathematical Monthly. 2019; 126:891-904.

Goran R. Quasiperiodic sets at infinity and meromorphic extensions of their fractal zeta functions, Bull. Malays. Math. Sci. Soc. 2023; 46:107.

Kathrin B, Ben K. Generalized L-functions for meromorphic modular forms and their relation to the Riemann zeta function. arXiv:2112.12943.

Brian CJ. The Riemann Hypothesis, Notice of the AMS. 2003; 50(3):341-353.

Chengyan L. Riemann Hypothesis, arXiv:math/9909153.

Yaqing L, Deng-Shan W. Exotic wave patterns in Riemann problem of the high-order Jaulent-Miodek equation: Whitham modulation theory, Studies in Applied Mathematics. 2022; 149(3):588-630.

Michel B. An arithmetical function related to Báez-Duarte's criterion for the Riemann hypothesis, In: Rassias, M.T. (eds) Harmonic Analysis and Applications. Springer Optimization and Its Applications. Springer. 2021; 168.

André L, x Giuseppe L. Generalized Riemann Hypothesis, Time Series and Normal Distributions, J. Stat. Mech. 2019; 023203.

Matt V. Variants on Andrica's conjecture with and without the Riemann hypothesis, Mathematics. 2018; 6:12; 289.

Giuseppe M, André L. Generalized Riemann Hypothesis and Stochastic Time Series, J. Stat. Mech. 2018; 063205.

Ivan C. Riemann Hypothesis for DAHA superpolynomials and plane curve singularities, Communications in Number Theory and Physics. 2018; 12:3; 409-490.

Emanuel C, Andrés C. Bounding Sn(t) on the Riemann hypothesis, Mathematical Proceedings of the Cambridge Philosophical Society. 2018; 164:259-283.

Sandro B, Steven GM. The conjecture implies the Riemann hypothesis, Mathematika. 2017; 63:01; 29-33.

Tomoki K. The Riemann hypothesis and holomorphic index in complex dynamics, Exp. Math. 2018; 27:37-46.

Ade SI. Two estimates on the distribution of zeros of the first derivative of Dirichlet L-functions under the generalized Riemann hypothesis, J. Théor. Nombres Bordeaux. 2017; 29:2; 471-502.

Takashi N. A complete Riemann zeta distribution and the Riemann hypothesis, Bernoulli. 2015; 21:1; 604-617.

Eugene B. Riemann zeta function and quantum chaos, Progress of theoretical physics supplement. 2007; 166:19-44.

German S. A physics pathway to the Riemann hypothesis, Julio Abad "in Memoriam", edited by Manuel Asorey Carballeira, José Vicente García Esteve, Manuel F Ranada, J Sesma, 2009. ISBN 978-84-92774-04-3.

Remmen GN. Amplitudes and the Riemann Zeta Function. Phys Rev Lett. 2021 Dec 10;127(24):241602. doi: 10.1103/PhysRevLett.127.241602. PMID: 34951795.

Román O, Samuel M, Enrique L. Quantum computing for finance: overview and prospects, Reviews in Physics. 2019; 4:100028.

Andrew G. Harals Cramér and the distribution of prime numbers, Scandinavian Actuarial Journal. 2011; 1995:1; 12-28.

See, for instance, https://en.wikipedia.org/wiki/RSA_(cryptosystem)https://en.wikipedia.org/wiki/RSA(cryptosystem)

Peter SW. Algorithms for quantum computation: discrete logarithms and factoring, Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 1994; 124-134.

Paul D, Alexander A. Random matrix theory in statistics: A review, Journal of Statistical Planning and Inference. 2014; 150:1-29.

Xin WZ. A Survey of Large Language Models, arXiv:2303.18223.

Christophe J, Mercedes OL. How to extract knowledge of Qualitative Data from Big Textual Data, SCIREA Journal of Computer. 2021; 6:1; 18-53.