On Λ-fractional variational calculus

Main Article Content

KA Lazopoulos
AK Lazopoulos*

Abstract

Pointing out that Λ-fractional analysis is the unique fractional calculus theory including mathematically acceptable fractional derivatives, variational calculus for Λ-fractional analysis is established. Since Λ-fractional analysis is a non-local procedure, global extremals are only accepted. That means the extremals should satisfy not only the Euler–Lagrange equation but also the additional Weierstrass-Erdmann corner conditions. Hence non-local stability criteria are introduced. The proposed variational procedure is applied to any branch of physics, mechanics, biomechanics, etc. The present analysis is applied to the Λ-fractional refraction of light.

Downloads

Download data is not yet available.

Article Details

Lazopoulos, K., & Lazopoulos, A. (2023). On Λ-fractional variational calculus. Annals of Mathematics and Physics, 6(1), 036–040. https://doi.org/10.17352/amp.000074
Research Articles

Copyright (c) 2023 Lazopoulos KA, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Leibniz GW. Letter to GA L’Hospital, Leibnitzen Mathematishe Schriften. 1849; 2:301-302.

Liouville J. On the calculation of differentials with any indices. J. Ec. Polytech. 1832; 13:71-162.

Riemann B. Versuch einer allgemeinen Auffassung der Integration and Differentiation. In: Gesammelte Werke. 1876; 62.

Samko SG, Kilbas AA, and Marichev OI. Fractional integrals and derivatives: theory and applications. Gordon and Breach, Amsterdam. 1993.

Podlubny I. Fractional Differential Equations (An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications), Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto. 1999.

Oldham KB, Spanier J. The fractional calculus, Academic Press, New York and London. 1974.

Miller K, Ross B. An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York, etc. 1993.

Bagley RL, Torvik PJ. On the fractional calculus model of viscoelastic behavior, Journal of Rheology. 1986; 30:133-155.

Bagley RL, Torvik PJ. A Theoretical for the application of fractional calculus to viscoelasticity, Journal of Rheology. 1983; 27:201-210.

Atanackovic TM, Stankovic B. Dynamics of a viscoelastic rod of fractional derivative type. ZAMM. 2002; 82(6):377-386.

Mainardi F. Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London. 2010.

Kamran IM, Alotaibi FM, Haque S, Mlaiki N, Shah K. RBF-Based Local Meshless Method for Fractional Diffusion Equations. Fractal and Fractional. 2023; 7(2):143. https://doi.org/10.3390/fractalfract7020143

Shah K, Abdalla B, Abdeljawad T. Analysis of multipoint impulsive problem of fractional-order differential equations. Bound Value Probl. 2023; 1(2023). https://doi.org/10.1186/s13661-022-01688-w

Saifullah S, Ali A, Khan A, Shah K, Abdeljawad T. A Novel Tempered Fractional Transform: Theory, Properties and Applications to Differential Equations. Fractals. 2023.

Koyunbakan H, Shah K, Abdeljawad T. Well-Posedness of Inverse Sturm–Liouville Problem with Fractional Derivative. Qual. Theory Dyn. Syst. 2023; 22:23. https://doi.org/10.1007/s12346-022-00727-2

Lazopoulos KA. Nonlocal continuum mechanics and fractional calculus: Mechanics Research Communications. 2006; 33:753-757.

Truesdell C, Noll W. The non-linear field theories of mechanics. In: Handbuch der Physik,Vol. III/3. Springer-Verlag, Berlin, S: Fluegge Ed. 1965.

Eringen AC. Nonlocal continuum field theories. Springer, New York. NY. 2002.

Chillingworth DRJ. Differential Topology with a view to applications, Pitman, London, San Francisco. 1976.

Lazopoulos KA, Lazopoulos AK. On the Mathematical Formulation of Fractional Derivatives.Prog. Fract. Diff. Appl. 2019; 5(4):261-267.

Lazopoulos KA. Lazopoulos AK. On fractional bending of beams with Λ-fractional derivative. Arch.App.Mech. 2020; 90:573-584.

Lazopoulos KA, Lazopoulos AK. On plane Λ-fractional linear elasticity theory, Theoretical & Applied Mechanics Letters. 2020; 10:270-275.

Lazopoulos KA, Lazopoulos AK. On the fractional deformation of a linearly elastic bar, Jnl. of the Mech. Behav. of Materials. 2019; 28:1-10.

Lazopoulos KA, Lazopoulos AK. On Λ-fractional Elastic Solid Mechanics, Meccanica, online. doi.org/10.1007/s11012-021-01370-y(0.12345. 2021.

Gelfand IH, Fomin SV. Calculus of Variations, Prentice Hall, Englewood Cliffs. 1963.

Krasnov ML, Makarenko GI, Kiselev AI. Problems and exercises in the calculus of variations, Mir Publishers, Moscow. 1975.

Lazopoulos K. Stability criteria and Λ-fractional mechanics, Fractals & Fractionals. 2023.