Peertechz

ANNALS OF . .
Mathematics and Physics 2

a
Z o
< >
»n ©
O x
=@
< ¥
=9
w n
I >
I
<a
=

ISSN: | 2689-7636 DOI:  https://dx.doi.org/10.17352/amp

mathematic

Received: 20 January, 2023

Research Article Accepted: 06 February, 2023
Published: 07 February, 2023

3 - *Corresponding author: Snizhana Vovchuk, Spectral
Spectral analysis of the Sturm
University, Ukraine, Tel: +380984734995, E-mail:

Liouville operator given on a resmamsovehkQgmasom

ORCID: https://orcid.org/0000-0001-6187-0059

Syste m Of Segme nts Keywords: The Sturm-Liouville operator; The spectral

function; The potentiallntroduction

Copyright License: © 2023 Vovchuk S. This is an
open-access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Snizhana Vovchuk*

Spectral theory Department, VN Karazin Kharkiv National University, Ukraine

https://www.peertechzpublications.com

'.) Check for updates

The spectral analysis of the Sturm-Liouville operator defined on a finite segment is the subject of an extensive literature [1,2].
Sturm-Liouville operators on a finite segment are well studied and have numerous applications [1-6]. The study of such operators
already given on the system segments (graphs) was received in the works [7,8]. This work is devoted to the study of operators

(L,)(x) = col[=y," (x) + q,(x), (%), = y1(x) + ¢, (x) 3, (D)1,
where y(x) = col[y,(x), y,(x)] € I’ (-a,0) ® L*(0,b) = H, q,(x),q,(x) — real function g, € I’(-a,0),q, € L*(0,b). Domain of definition L, has the form
(L) =y =, 1) € Hy y €W} (=a,0), y, €W (0,b), ¥ (=a) = 0, y3(b) = 05 ¥,(0) + py,'(0) = 0; ,(0) + py, (0) = 0

(peR, p=0). Such an operator is self-adjoint in H. The work uses the methods described in work [9,10]. The main result is as
follows: if the g, q, are small (the degree of their smallness is determined by the parameters of the boundary conditions and the

numbers a,b), ), then the eigenvalues {2 (0)} of the unperturbed operator L, are simple, and the eigenvalues {2 (q)} of the perturbed
operator L, are also simple and located small in the vicinity of the points {4, (0)} .

Introduction

The operator L describes the oscillatory processes of a system located on two intervals. In other words, the vibrations of connected
rods are connected with the spectral analysis of the operator L , - The purpose of this work is to establish at what smallness of the
potentials the spectrum of the problem differs slightly from the spectrum of the unperturbed problem.

Unperturbed operator

Consider the Hilbert space H =1*(-a,0)®L?*(0,b), (a,b>0) byvector functions y(x) = colly,(x),y,(x)], where y, € I’(a,0), , € *(0,b).
Define in H a linear operator

(£,2)(0) = col =310+ 4, (Dm0~ (1) + (10 | (11)
Where q,, q, - real function and ¢,(x) € L*(-4,0), ¢, € L*(0,b).

The domain of definition of the operator L has the form,

8L, = 1y = colly1, y2) € H 3y WP (=a,0), v, € W2(0.0), /(=) = 0,3, (6)= 0, 1,(0)+ pr,(0) =, (12)

¥ (0)+ py, (0)= 0}
012

Citation: Vovchuk S (2023) Spectral analysis of the Sturm-Liouville operator given on a system of segments. Ann Math Phys 6(1): 012-020.
DOI: https://dx.doi.org/10.17352/amp.000070



g’ PeertechzPublications https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics 8

(peR, p=0). The operator L, (1.1),(1.2) is symmetric because

" —y,(08,(0), +y,(0,' ()] =

<Ly,g>-<y,Lg>=-y;(x)g,(x)[, +,(x)7, (x)

=py;(0)g,(0)-pg,'(0)y, (0)-pg,(0)y;(0)+py,(0)g,'(0) =0.

It is easy to show that L, (1.1),(1.2) is self-adjoint.

Primary study the unperturbed operator L, (q,=q,=0). Respectively, the function of operator L, is a solution to the equations

-0 =2y, =" =2y, (AeC) (1.3)
and satisfies the boundary conditions (1.2). From the first two boundary conditions we find that

y, =Acosi(x+a),y, =Bcosi(x-b), (1.4)
where A,B,Ce C. Second and third boundary {y, v} (1.4) give a system of equations for A and B,

Apcosia+Bcosib=0,
~AJsina+Bpisinib=o0. (1.5)

This system has non-trivial solution A and B, if only its determinant A(o,1)=0, where
A(0,4) = Ap® cos Aasin Ab + A cos Absin Aa. (1.6)

If 2 = 0, then y,=A,y,=B and from y,(0)+py,(0)=0 follows that B=-pA. So y= Acol[1,-p](4C) operator's own function L,
responding to its own value A=0 With 1z0 from A(0,1)=0 follows

p* cos Aasin ib+cos Absin ia=o0, (1.7)

Remark 1

If p=41, that from (1.7) follow sin A(a+b)=0 and hence the own numbers have the form

4,="2 (nel),a+b=0 (1.8)
a+b

Consider the general case, not assuming, that p+1 and write equality (1.7) in form

(p* +1)sinA(a+b)-(1-p*)sini(b-a)=0

or
: _a-p*) -
sini(a+b) (1+p2)smﬂ(b a)=o0 (1.9)
Let be
_y, 1-p* _, b-a_
Mb+a)=w, o _k,m—q, (1.10)

then it is obvious that |kl<1,lgl<1, and the equation (1.9) has form
def
f(w)=0; f(w) = sinw —ksinqw (111)

The function f(w) is odd, therefore it is enough to find its zeros f(w) on the ray R,.

Show that the zeros of f(w) are simple. Assuming the opposite, suppose that w - repeated root, then from f(w) and f'(w)=0,
follows, that

sinw =ksinqw
cosw =kqcosqw

That means
k?sin’qw +k*q’ cos’qw =1

that's why
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1

sin’qw + ¢’ cos’qw " (1.12)
Since |k |<1 (k =1 which p=0,isimpossiblebyassumption) and |q|<1, then from (1.12) follows that the left side sin’qW +q*cos’qw <1,

and right side k_lz >1. That's why roots f(w) are simple.

Theorem 1

Roots {2.(0)} of the characteristic function A(0,2) (1.6) are simple except 1 (0)=0 which is duble multiple and they have the form,

w . .
A,=10,2(0)=1% p +Sb ,w,>0;sinw, =ksinqw }, (1.13)
where ki g-have of form (1.10), and the numbers W,eR, are numbered in ascending order.

Remark 2

T VA VA
it ; - i ioc i ; —<w, <7 ———<2,(0)<——.
Greatest positive root w, equation f(w)=o obviously lies in the interval 5 W and that mean 2(a+b) ,(0) a+b

Eigenfunctions 9(0,2,(0)) of operator L, responding 4(0)eA, (1.13) are equal
9(0,2,(0)) = Acol[ cos A,(0)bcos 4,(0)(x +a), - pcos A (0)acos A, (0)(x-b)], (1.14)

which is an obvious consequence (1.4), (1.5)
Perturbed operator

Let's move on to the perturbed operator L, The equation for the eigenfunction Y = colly,,y,] of operator L, has the form

VA, =AY, Y+ 4,Y, =AY, (2.1)
Consider the integral equations

sin /l(x t)

y,(x)=Acosi(x+a)+ q,(t)y,()dt;

=5
v,(x)=Bcos A(x-b) - }SIM(X t) (2.2)

q,(0)y, (t)dt.
Then {y, (x)}- ) solution (2.2) satisfy the equations (2.1), and the first boundary conditions (1.2) correspond to y,, y..

Solvability of the integral equation (2.2) for y,. Definition of Volterra operator in L*(-a,0),

(K, f)(x)= le(x,t)ql(t).f (0dt (f € L’(-a,0)), (2.3)
where
sin A(x —t)
(K, f)(x )—7 (2.4)

Then the first of the equations in (2.2) will take the form
(I-K,)y, =AcosA(x-t), (2.5)

And that means

:inAcos/i(x+a) (2.6)
where
K200 = [K,, (6D, (0f 0, 2.7)

For cores K, (x,t) the recurrence relations are valid
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K, (x,0)= Ixxx,s)Kl,n(s,t)ql(s)dr (n>1) (2.8)
where Ki(x,t) have from (2.4)

We need kernel estimates K, (x,t) to prove the solvability of the integral equations.
Lemma 1

The kernels K, (x,t) (2.8) satisfy the inequalities

(x-t)" o' (x)

IK,, () |<chp(x—t) N CERIE (2.9)
where
B=Ima, ol(x)zjlql(t)ldt. (2.10)

The proof of the estimates (2.9) is carried out by induction From (2.6) it follows, that

Y,(4,x)= Acos A(x +a)+ AIZQC:KI’H(X,t)q1 (t)cos A(t +a)dt= AcosA(x +a)+ A J'Nl(x,t,i)ql(t) cos At +a)dt,

Zan=1

where
N, (x,t,2)= iKm(x,t).
it follows from the estimates (2.9) that this series converges and
IN,(x,t,2) < cosh g(x —t)(x —t)exp[ (x 1), (X)]
Similar reasoning is valid for the second equation (2.2).

Theorem 2

Integral equations (2.2) are resolved and,-

y,(4,x)= A[cos Mx+a)+ I‘Nl(x,t,ﬂ)ql(t) cos A(t + a)dt];

-a

b (2.11)
y,(4,x)= B(cos A(b-x)- _[N2 (x,t,2)q, (t)cos A(b— t)dt},
In this case, the kernels {N,(x,t,,)} ) satisfy the estimates
IN,(x,t,2)|< cosh p(x -t)-(x -t)-exp{(x - t)o, (t)} (k =1,2), (2.12)
where
X b
p=Ima, o,(x)= j lq,(Oldt, o,(x)= j' lq,(t)ldt. (2.13)

To find a characteristic function A(g,2) the operator L , L uses the last boundary conditions (1.2) for the {y,(2,x)}, ), as a result, we
obtain a one-row system of equations for A and B,-

[ b
pA[cos aa+ J'Nl(o, t,2)q, (t)cos A(t + a)dtj + B(cos ab- J'Nz(o,t,ﬂ)qz(t)cos A(b- t)dtj =0,

-a

[} b
A[—/lsin/la+ _[N'l(o,t,i)ql(t)cosﬂ(t+a)dt]+pB[ﬂsin/lb—IN;(O,t,A)qz(t)cosﬂ(b—t)dt] =0 (2.14)

-a

System (2.14) at this value g,= q,= o coincides with the system (1.5) and it has a nontrivial solution 4, B, if its determinant A(q,1)=0,
where

4] b
» p[cos/la+ le(o,t,/I)ql(t)cosi(t+a)dt] cos/lb—INZ(O,t,i)qz(t)cosi(b—t)dt
AGA) = N "
—-Asinia+ [N,(0,t,2)q,(t) cos A(t +a)dt p[/lsin/lb—jN’z(o,t,/l)qz(t)cosz(b—t)dt]
-a 0 (2.15)
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It follows that,
A(q,ﬂ):A(O,ﬂ.)+CD(l), (2.16)
whereA(o,)) ) have form (1.6), and ®(1) is equal

] b
®(2) = p>{4sin b [N, (0,t,2)q, (t)cos A(t + a)dt - cos 2a[N, (0,1, 2)q, (t) cos A(b—t)dt -

-a

—TNl(o,t,/i)ql(t)cosﬂ(t+a)dtxj'N'z(o,t,/l)qz(t)cos/l(b—t)dt} -

b 0
—asin /laJ'Nz(O,t,/l)q2 (t)cos A(b -t)dt —cos ib J'N;(O,t,/l)ql(t) cosA(t +a)dt + (2.17)

-a

b 0

+IN2(0,t,i)q2(t)cosi(b—t)dt- jN'l(o,t,/l)ql(t)cosA(t+a)dt

Let us formulate a theorem that shows how strongly the characteristic functions of the perturbed and unperturbed operators
differ.
Theorem 3

Operator characteristic function A(q,4) (2.15) is expressed in terms of the operator L, (1.1),(1.2) characteristic function A(0,2) (1.6) L,
(q,7q,70) ) by the formula (2.16), where ®(2.) has the fo (2.17) and is an entire function of exponential type while it satisfies the estimate

|o(2)|<chpa-chpb-(5,121+5,), (2.18)

where

5 dff oa b o,b 5 dff oa o,b b o,a+0,b
. =oc,ae’t +o,be™ 5, =" +0,e”> +0,0,(a+b)e

(2.19)
and Bg=Imi,0,=0,(0),0,=0,(0).
Proof The estimates are similarly (2.12) valid

‘%Nm,t,z) < chp(x —Dexplo, () (x -} (k=1,2),

therefore, it follows from (2.17) that
|o(4)l< p*{| 21 chpb-cos pa-e™"c,a+chpa-chpb-e™’c, +a-chpa-chpb-e™ e 0.} +
+1 41 chpachpbe’ s.b+chpb-chpa-e’s, + bchpa-chpb-e™ -e™c.o,.
Thus,
|o(2) |< chpb-chpafo, -e™ (1+| A1 p*a) + o, - e (bl A1 +p*) + 0,0, " (b + p*a)}
And since p? <1, ) then
|o(2) |< chpa-chpb{l 1(c,ae™ +bo,e™ )+ 0,6 +0,e™ + 0,067 " (b+a)}

which proves (2.18). u

Basic assessments

Characteristic function A(o,) (1.6) taking into account these (1.7),(1.8) is equal to,-
def
A(0,4)=A(p*> +1)Q(A); Q(1) = sin A(a+b)—ksingi(a+b), (3.1)

where g,k has form (1.10) and |kl<1,lql<1. Let us expand Q(1)by the Taylor formula in a real neighborhood of the point 4,(0)(z0)

(1.13),
| 016
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(-4)

Q(/l)=(/1/ls)Q'(/1;)+2Q”(si)=(/1ﬁS)Q'(/ls)(HW-Q(é)j,

2 Q)
where AeR i &=4+0(A-4)(101<1) for all & satisfy the condition

Q'(4)
Q'(s,

|i—/15|<‘ (3:2)

the inequality is true

o> Aoy (33)

2
Because
Q'(2)=(a+b)lcosil(a+b)-kqcosqi(a+b)]

Q"(1)=—(a+b)*[sinA(a+b)-kq*sin iq(a+b)] (3.4)

then
[Q" (1) I (a+b)*(1+1kq* ) < (a+b)*(1+1kl) (3.5)
To get a lower estimate for the 1Q'(4)] we use the (3.4), then we get
(Q'(w))* =(a+b)* {cos’w —2kqcosw - cosqw + k>q* coszqw} =(a+b)-
'{1 —sin’W +k*>q¢*(1-sin’qw) - 2kq cosqw cos w} ,

Where w=A(a+b) and sin w=ksinqw. This implies that

(Qw))’ 2 (@+b) {1+k*q* ~sin*w(1+q*)~2Ikql [1-sinw){1-sin’qw) =
>(a+b)* {1+k°q” ~sin'w(1+q*) - 21 kql (1-K*sin’qw )| > (a+b)* {1-1kq* ~sin'w(1-Iq P)} >

(3.6)
>(a+b) (Iql(1-1k1))(2-1q1-1qk1)>2(a+b)* I ql (1-Iq1)(a-1k]).

Then

Q'(4,(0))|>2(a+b)Iql (1-1kD(-1q1) >

>(a+b)lql(a-1gD(a-1k)=(a+b)Iqlr, o7

where

(1 B _, min(a,b)min(1,p*)
r—(l |q|)(1 |k|)—4 (a+b)(p2+1) <1) (38)

Based on (1.10) therefore, according to (3.7), (3.8) the inequality (3.2) is certainly satisfied if
lqlr
A-AI<——F——
-2l @ en
Lemma 2

For all real A, from the neighborhood

lqlr B
IA—ASI<m_R (3.9)

of the zero (0) of the function A(o,1) (1.6), the inequality is valid

[2-2.(0)]

[2-2.(0)]
|A(Oyﬂ)|>f

[21(1+p*)Q (4(0))> [Al(1+p*)(a+b)Iqlr, (3.10)
Where r,q has form (1.10), (3.8)

017
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It follows from the (2.16) that
[A(g,A)1>1A(0,2) |- D(2)].

We choose A e R from the neighborhood (3.9) 12-4(0)I<R of the zero 2 (0)(=0) of the function A(o,)), then using (2.18) (8 =0)

and (3.10) we obtain that

[2-2.(0)]

[2-2.(0)]
IA((M)bf >

[21(1+p*)Q (4(0) -5, 1215, =|/1I( (1+p*)Q (4,(0)) -5, _Ii_zlj’

where numbers &, - has form (2.19). Therefore [2-2I<R (3.9), then

- — T lqlr 1 (7
AR TR 2 ) (a+b)<1+|k|)>—a+b[z r]”’
based on remark 2 , and that mean

|A(q)ﬂ)|>|/‘” M_ii)l(lerz)Q'(ls(o))—&l—M

.
2

if the first part of this inequality is greater than zero, then

28 +452(a+b)

_ ' g-2r
2= 40> 50 G

then for such A e R function |A(g,4)| does not turn to zero. So, if

5, 4d,(a+b)

R ) ST
(1+p*)Q'(4,(0)) <12-2(0)I<R, (3.11)

2

then |A(g,4) |z 0 multiplicity (3.11)isn’t empty, if

25, + 4@+ D)
T —=2r

— ==L <R,
(1+p*)Q (4,(0))
and using (3.7) i (3.9), we find that this inequality will certainly be satisfied if

45,(a+b) 2 @1’
251+77r—2r <(1+p )1+|k|

(3.12)

So if the 5, and §, (2.19) are such that holds (3.12), then the function A(g,1) on the multiplicity (3.11) does not turn to 0. The signs
A(q,)) and A(o,1) on the left and right sides of multiplicity (3.11) coincide, and given that the signs of the function A(o,A) on these
parts are different, it follows that A(q,A) it has at least one root on the multiplicity.

26+ 45,(a+b)

_ ' mg-2r
R S (D))

Lemma 3

If numbers 5, and 5, (2.19) satisfy inequality (3.12), where p,q,r has form (1.10) and (3.8), then in the surrounding area

2514,7452((12;1)) (3.13)
_ T— .
I /15(0)|<(1+P2)(a+b)|Q|r

the zeros A (0) of the function A(o,A) (1.6) contains at least one root % (q), of the perturbed characteristic function A(q,») (2.19).
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Main result
To prove that the characteristic function A(q,%.) has no other zeros, except i (q) we use Rousche's theorem. Let us denote by y, the
contour in the C, formed by the straight lines that connect the points 7—-— as (1+l)y ( 1+l), ( 1-i),7 (1 i),([eN). We

need a lower estimate for the function A(o,1) ) on the contour v, or, taking into account (3.1) a lower estimate for the function Q(1).

For A=a+ifeC(c=a+b) have
O(A) =sin(a +if)c — ksin g(a +i)c = sin acc cosh fe +i cos acsinh e — k(sin ge cosh Bqc +i cos agesinh qc),

then
[Q(2) P=sin®accoshBc + k> sin*eqccosh?Aqc — 2k sin ac sin aqc cosh Bqc cosh Sc + cos’acsinh®8¢ +
+k? cos’aqcsinh®Aqc - 2k cos ac cos aqc sinh pesinh gqc = cosh?Bc — cos’ac + k*(cosh®Aq¢ — cos’aqc) —
—2ksin acsinaqccosh gqc cosh fc -2k cos ac cos aqcsinh gesinh Bqc > (cosh pc—| k| cosh pqc)? -
~(cos’ac +k*cos’aqc)(1+|sinh gc || sinh Bqcl) > (cosh gc—| k| cosh gqc)? — (1 +k*)(1+|sinh gc| | sinh gqcl).

It follows that

- B oy (1+Isinh gc||sinh gqcl)
[Q(2) > (cosh gc Iklcoshﬂqc)\/l (1+k )(coshﬂc—lklcoshﬂqc)l

Hence follows the statement

Lemma 4

At A=a+iBeC for function A(o,1) (3.1) the inequality is true

[AC0,2)|>1 21(p+1)cosh gq(a+b)V1+k>-

5 1/2
-[1— [sina(a+b)sinaq(a+b)| —(cosza(a +b)+k?cos’aq(a+ b)) CO:JZ’CBZS(B f;;la Ij)kz)} (4.1)

Through y, we denote the contour in C formed by the square with the vertices at the points

(1+1) 7[—( 1+i), ;z—( 1-i), 7z—(1 i),(l e N). On the vertical section (4.1) /1_ (1+ﬁ1)( 1< p<1) it follow that
a

> 1+ cosh’pla+b))"”
[ Ao, 1)|> \/1+ﬂ [p+1lv1+k COShﬂq(aer)[l+7oshzﬂq(d+b)J ,

and from theorem 3 it follows that for such 4 we have

| (1)< cosh Bacosh gb(s, | 11+5,),
then at [>1 for v/1=”le(1+ﬁi)ﬁe[—1,1] we have
a

[AC0,2) > o(2)] (4.2)
It is proved in a similar way that on the sides of the square y, at 1> 1 the inequality is true (4.2).

The following theorem can be formulated from the above.
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Theorem 4

Suppose that the functions q,(x) and q,(x) in (1.1) are such that inequality (3.12) holds, where p,q,T are of the form (1.10) and (3.8). Then in
each neighborhood (3.13) of the zero 1. (o) of the characteristic function A(o,%) (1.6) of the unperturbed operator L, there is only one zero _(q) of
the perturbed characteristic functionA(q,) (2.19) of the operator L .

Therefore, when the potentials are small g (x) and q,(x) which are expressed only in terms of the parameters of the boundary
conditions (1.2) each corresponding value of the operator L, is located in a small neighborhood of the corresponding value of the
unperturbed value of the operator L,

Concluding remarks

Thus, we have shown that if the potentials are small, (3.12) holds, then the spectrum of the perturbed problem |¢,(x)[+|g,(x)[#0
differs little from the unperturbed problem. Consequently, the perturbed oscillations will be close to the unperturbed ones.
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