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The spectral analysis of the Sturm-Liouville operator defi ned on a fi nite segment is the subject of an extensive literature [1,2]. 
Sturm-Liouville operators on a fi nite segment are well studied and have numerous applications [1-6]. The study of such operators 
already given on the system segments (graphs) was received in the works [7,8]. This work is devoted to the study of operators 

1 1 1 2 2 2( )( ) = [ ( ) ( ) ( ), ( ) ( ) ( )],qL y x col y x q x y x y x q x y x    

where 2 2
1 2 1 2( ) = [ ( ), ( )] ( ,0) (0, ) = , ( ), ( )y x col y x y x L a L b H q x q x     real function 2 2

1 2( ,0), (0, ).q L a q L b    Domain of defi nition Lq has the form 

2 2
1 2 1 1 2 2 1 2 2 1 1 2( ) = = ( , ) ; ( ,0), (0, ), ( ) = 0, ( ) = 0; (0) (0) = 0; (0) (0) = 0qL y y y H y W a y W b y a y b y py y py         

( , 0).p p   Such an operator is self-adjoint in H. The work uses the methods described in work [9,10]. The main result is as 

follows: if the q1, q2 are small (the degree of their smallness is determined by the parameters of the boundary conditions and the 

numbers a,b), ), then the eigenvalues { (0)}k  of the unperturbed operator Lo are simple, and the eigenvalues { ( )}k q  of the perturbed 
operator Lq are also simple and located small in the vicinity of the points { (0)}k .

Introduction

The operator Lq describes the oscillatory processes of a system located on two intervals. In other words, the vibrations of connected 
rods are connected with the spectral analysis of the operator Lq . The purpose of this work is to establish at what smallness of the 
potentials the spectrum of the problem differs slightly from the spectrum of the unperturbed problem. 

Unpertu rbed operator 

Consider the Hilbert space 2 2= ( ,0) (0, )H L a L b  , ( , 0)a b   by vector functions 1 2( )= [ ( ), ( )],y x col y x y x  where 2 2
1 2( ,0), (0, ).y L a y L b    

Defi ne in H a linear operator  

  1 1 1 2 2 2( ) = ( ) ( ) ( ), ( ) ( ) ( ) ,qL y x col y x q x y x y x q x y x                (1.1)

Where q1, q2 - real function and 2 2
1 2( ) ( ,0), (0, ).q x L a q L b  

The domain of defi nition of the operator Lq has the form, 
2 2

1 1 2 2 1 2 2 1

1 2

( ) = { = [ 1, 2] ; ( ,0), (0, ), ( ) = 0, ( ) = 0, (0) (0) = 0,

(0) (0) = 0}
qL y col y y H y W a y W b y a y b y py

y py

       

 
     (1.2)
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( , 0).p p   The operator Lq (1.1),(1.2) is symmetric because 

0 0

1 1 1 1 2 2 2 20 0
< , > < , >= ( ) ( ) ( ) '( ) ( ) ( ) ( ) '( ) =

b b

q q a a
L y g y L g y x g x y x g x y x g x y x g x

 
     

2 1 2 1 1 2 1 2= (0) (0) '(0) (0) (0) (0) (0) '(0)=0.py g pg y pg y py g   

It is easy to show that Lq (1.1),(1.2) is self-adjoint.

Primary study the unperturbed operator Lo (q1=q2=0). Respectively, the function of operator Lo is a solution to the equations 

2 2
1 1 2 2= , = ( )y y y y                 (1.3)

and satisfi es the boundary conditions (1.2). From the fi rst two boundary conditions we fi nd that 

1 2= cos ( ), = cos ( ),y A x a y B x b             (1.4)

where , , .A B C   Second and third boundary  {y1, y2} (1.4) give a system of equations for A and B, 

cos cos =0,
sin sin =0.

Ap a B b
A a Bp b

 
   

 

 

           (1.5)

This system has non-trivial solution A and B, if only its determinant ∆(o,)=0, where 

2(0, )= cos sin cos sin .p a b b a                  (1.6)

If  = 0, then y1 = A, y2 = B  and from 2 1(0) (0)=0y py  follows that = .B pA  So = [1, ] ( )y Acol p A   operator's own function Lo, 

responding to its own value =0 With 0   from ∆(0,)=0 follows 

2 cos sin cos sin =0,p a b b a               (1.7)

Remark 1 

If = 1,p   that from (1.7) follow sin ( )=0a b   and hence the own numbers have the form 

= ( ) , 0n
n n a b

a b
   


            (1.8)

Consider the general case, not assuming, that 1p   and write equality (1.7) in form 

2 2( 1)sin ( ) (1 )sin ( )=0p a b p b a     

or 
2

2

(1 )sin ( ) sin ( )=0
(1 )

pa b b a
p

 
  

           (1.9)

Let be 

2

2

1( )= , = , = ,
1

p b ab a w k q
b ap

  


            (1.10)

then it is obvious that | | 1,| | 1,k q   and the equation (1.9) has form 

def

( )=0; ( ) = sin sinf w f w w k qw            (1.11)

The function f(w) is odd, therefore it is enough to fi nd its zeros f(w)  on the ray .

Show that the zeros of f(w) are simple. Assuming the opposite, suppose that w - repeated root, then from f(w)  and f′(w)=0, 
follows, that 

sin = sin
cos = cos

w k qw
w kq qw





That means 

2 2 22 2 = 1sin cosk qw k q qw

that's why 
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22 2
2

1=sin cosqw q qw
k

             (1.12)

Since | | 1 ( =1 which p=0,isimpossiblebyassumption)k k  and | |<1,q  then from (1.12) follows that the left side 
22 2 1,sin cosqw q qw   

and right side 
2

1 > 1.
k

 That's why roots f(w) are simple. 

Theorem  1 

Roots {s(0)} of the characteristic function (0, )  (1.6) are simple except 0(0)=0 which is duble multiple and they have the form, 

0 ={0, (0)= , >0;sin = sin },s
s s s s

w
w w k qw

a b
 


         (1.13)

where k i q-have of form (1.10), and the numbers sw   are numbered in ascending order. 

Remark 2  

Greatest positive root w1 equation f(w)=0 obviously lies in the interval 1< <
2

w   and that mean 1< (0)< .
2( )a b a b

 
   

Eigenfunctions (0, (0))s   of operator Lo, responding 0(0)s   (1.13) are equal 

(0, (0))= cos (0) cos (0)( ), cos (0) cos (0)( ) ,s s s s s sA col b x a p a x b                (1.14)

which is an obvious consequence (1.4), (1.5)

Perturbed operator

Let's move on to the perturbed op erator Lq.  The equation for the eigenfunction 1 2= [ , ]y col y y  of operator Lq has the form 

2 2
1 1 1 1 2 2 2 2= , =y q y y y q y y                 (2.1)

Consider the integral equations 

1 1 1

2 2 2

sin ( )( )= cos ( ) ( ) ( ) ;

sin ( )( )= cos ( ) ( ) ( ) .

x

a
b

x

x ty x A x a q t y t dt

x ty x B x b q t y t dt







 
 




  





         (2.2)

Then { ( )}ky x   ) solution (2.2) satisfy the equations (2.1), and the fi rst boundary conditions (1.2) correspond to y1, y2.

Solvability of the integral equation (2.2) for y1. Defi nition of Volterra operator in L2(-a,0), 

2
1 1 1( )( ) = ( , ) ( ) ( ) ( ( ,0)),

x

a

K f x K x t q t f t dt f L a


            (2.3)

where 

1

sin ( )( )( )= .x tK f x 



            (2.4)

Then the fi rst of the equations in (2.2) will take the form 

1 1( ) = cos ( ),I K y A x t             (2.5)

And that means 

1 1
=0

= cos ( )n

n

y K A x a


             (2.6)

where 

1 1, 1( )( )= ( , ) ( ) ( ) ,
x

n
n

a

K f x K x t q t f t dt

            (2.7)

For cores K1,n(x,t) the recurrence relations are valid 
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1, 1 1 1, 1( , )= ( , ) ( , ) ( ) ( > 1)
x

n n
t

K x t K x s K s t q s dt n            (2.8)

where K1(x,t) have from (2.4) 

We need kernel estimates K1,n(x,t) to prove the solvability of the integral equations.

Lemma 1 

The kernels K1,n(x,t) (2.8) satisfy the inequalities 

1
1

1,

( )( )| ( , )| ( ) ,
( 1)!

nn

n n

xx tK x t ch x t
nn





  


          (2.9)

where 

1 1= , ( )= | ( )| .
x

a

Im x q t dt  

            (2.10)

The proof of the estimates (2.9) is carried out by induction From (2.6) it follows, that 

1 1, 1 1 1
=1

( , )= cos ( ) ( , ) ( )cos ( ) = cos ( ) ( , , ) ( )cos ( ) ,
x x

n
na a

y x A x a A K x t q t t a dt A x a A N x t q t t a dt     


 

      
where 

1 1,
=1

( , , )= ( , ).n
n

N x t K x t




it follows from the estimates (2.9) that this series converges and 

1 1| ( , , )| cosh ( )( )exp ( ) ( )N x t x t x t x t x       

Similar reasoning is valid for the second equation (2.2). 

Theorem  2 

Integral equations (2.2) are resolved and,- 

1 1 1

2 2 2

( , )= cos ( ) ( , , ) ( )cos ( ) ;

( , )= cos ( ) ( , , ) ( )cos ( ) ,

x

a

b

x

y x A x a N x t q t t a dt

y x B b x N x t q t b t dt

   

   



  
       


       
 




        (2.11)

In this case, the kernels {Nk(x,t,)} ) satisfy the estimates 

| ( , , )| cosh ( ) ( ) {( ) ( )} ( =1,2),k kN x t x t x t exp x t t k                (2.12)

where 

1 1 2 2= , ( )= | ( )| , ( )= | ( )| .
x b

a x

Im x q t dt x q t dt   

           (2.13)

To fi nd a characteristic function ∆(q,) the operator Lq L uses the last boundary conditions (1.2) for the {yk(,x)}, ), as a result, we 
obtain a one-row system of equations for A and B,- 

0

1 1 2 2
0

0

1 1 2 2
0

cos (0, , ) ( )cos ( ) cos (0, , ) ( )cos ( ) =0,

sin (0, , ) ( )cos ( ) sin (0, , ) ( )cos ( ) =0

b

a

b
' '

a

pA a N t q t t a dt B b N t q t b t dt

A a N t q t t a dt pB b N t q t b t dt

     

       





    
               


                
   

 

      (2.14)

System (2.14) at this value q1 = q2 = 0 coincides with the system (1.5) and it has a nontrivial solution A, B, if its determinant ∆(q,)=0, 
where 

0

1 1 2 2def
0

0

1 1 2 2
0

cos (0, , ) ( )cos ( ) cos (0, , ) ( )cos ( )

( , ) =

sin (0, , ) ( )cos ( ) sin (0, , ) ( )cos ( )

b

a

b
' '

a

p a N t q t t a dt b N t q t b t dt

q

a N t q t t a dt p b N t q t b t dt

     



       





 
     

 
 

      
 

 

 
    (2.15)



016

https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics

Citation: Vovchuk S (2023) Spectral analysis of the Sturm-Liouville operator given on a system of segments. Ann Math Phys 6(1): 012-020. 
DOI: https://dx.doi.org/10.17352/amp.000070

It follows that, 

( , )= (0, ) ( ),q                  (2.16)

where∆(o,) ) have form (1.6), and () is equal 

0
2

1 1 2 2
0

0

1 1 2 2
0

0

2 2 1 1
0

( )= { sin (0, , ) ( )cos ( ) cos (0, , ) ( )cos ( )

(0, , ) ( )cos ( ) (0, , ) ( )cos ( ) }

sin (0, , ) ( )cos ( ) cos (0, , ) (

b
'

a
b

'

a
b

'

a

p b N t q t t a dt a N t q t b t dt

N t q t t a dt N t q t b t dt

a N t q t b t dt b N t q t

       

   

     







    

    

  

 

 

 
0

2 2 1 1
0

)cos ( )

(0, , ) ( )cos ( ) (0, , ) ( )cos ( )
b

'

a

t a dt

N t q t b t dt N t q t t a dt



   


 

    

     (2.17)

Let us formulate a theorem that shows how strongly the characteristic functions of the perturbed and unperturbed operators 
differ.

Theorem  3 

Operator characteristic function ( , )q   (2.15) is expressed in terms of the operator Lq (1.1),(1.2) characteristic function (0, )  (1.6) Lo 

(q1=q2=0) ) by the formula (2.16), where () has the fo (2.17) and is an entire function of exponential type while it satisfi es the estimate 

1 2| ( )| ( | | ),ch a ch b                     (2.18)

where 

def def
1 2 1 2 1 2

1 1 2 2 1 2 1 2= , = ( )
a b a b a b

ae be e e a b e
             

            (2.19)

and 1 1 2 2= , = (0), = (0)Im      . 

Proof The estimates are similarly (2.12) valid 

( , , ) ( ) { ( )( )} ( =1,2),k kN x t ch x t exp x x t k
x

  
  



therefore, it follows from (2.17) that 

2 1 2 1 2
1 2 1 2| ( )| {| | cos }

a b a b
p ch b a e a ch a ch b e a ch a ch b e e

                          

2 1 1 2
2 1 1 2| | .

b a a b
ch ach be b ch b ch a e bch a ch b e e

                    

Thus, 

2 2 21 2 1 2
1 2 1 2| ( )| { (1 | | ) ( | | ) ( )}

a b a b
ch b ch a e p a e b p e b p a

            
         

And since p2 <1, ) then 

1 2 1 2 1 2
1 2 1 2 1 2| ( )| {| |( ) ( )}

a b a b a b
ch a ch b ae b e e e e b a

               
       

which proves (2.18).              

Basic assessments

Characteristic function ∆(0,) (1.6) taking into account these (1.7 ),(1.8) is equal to,- 

def
2(0, )= ( 1) ( ); ( ) = sin ( ) sin ( ),p Q Q a b k q a b                  (3.1)

where q,k has form (1.10) and | | 1,| | 1.k q   Let us expand Q()by the Taylor formula in a real neighborhood of the point (0)( 0)s   

(1.13), 
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2 2( ) ( ) ( )
( )=( ) ( ) ( )=( ) ( ) 1 ,

2 2 ( )

''
' '' 's s s

s s s s s '
s

Q
Q Q Q Q

Q
    

       


  
      

 

where   i = ( ) (| | 1)s s s         for all  satisfy the condition 

( )
| |<

(

'
s

s ''
s

Q
Q


 


             (3.2)

the inequality is true 

| |
( )> ( )

2
's

sQ Q
 

 
             (3.3)

Because 

( )=( )[cos ( ) cos ( )]'Q a b a b kq q a b     

2 2( )= ( ) [sin ( ) sin ( )]''Q a b a b kq q a b                (3.4)

then 

2 2 2| ( )| ( ) (1 | |)<( ) (1 | |)''Q a b kq a b k       (3.5)

To get a lower estimate for the | ( )|'
sQ   we use the (3.4), then we get 

   2 2 2 2 22( ) =( ) 2 cos cos cos2 =( )cosQ' w a b w kq w qw k q qw a b     

 2 22 21 (1 ) 2 cos cos ,sin sinw k q qw kq qw w    

Where w=(a+b) and sin w=ksinqw. This implies that 

     
    

 

2 2 2 2 22 2 2

2 2 2 2 2 2 2 22 2 2

2 2

( ) ( ) 1 (1 ) 2| | 1 1sin sin sin

( ) 1 (1 ) 2| | 1 ( ) 1 | | (1 | | )sin sin sin

( ) | |(1 | |) (2 | | | |)> 2( ) | |(1 | |)(1 | |).

Q' w a b k q w q kq w qw

a b k q w q kq k qw a b kq w q

a b q k q qk a b q q k

        

            

       
     (3.6)

Then 

( (0)) > 2( ) | |(1 | |)(1 | |) >

>( )| |(1 | |)(1 | |)=( )| | ,
sQ' a b q k q

a b q q k a b q r

   

   
          (3.7)

where 

2

2

( , ) (1, )=(1 | |)(1 | |)=4 <1,
( )( 1)

min a b min pr q k
a b p

 
           (3.8)

Based on (1.10) therefore, according to (3.7), (3.8) the inequality (3.2) is certainly satisfi ed if 

| || |<
( )(1 | |)s

q r
a b k

 
 

Lemma 2  

For all real , from the neighborhood 

| || |< =
( )(1 | |)s

q r R
a b k

 
             (3.9)

of the zero  s(0) of the function ∆(0,) (1.6), the inequality is valid 

2 2| (0)| | (0)|
| (0, )|> | |(1 ) ( (0))> | |(1 )( )| | ,

2 2
's s

sp Q p a b q r
   

   
 

          (3.10)

Where r,q  has form (1.10), (3.8) 
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It follows from the (2.16) that 

| ( , )|>| (0, )| | ( )|.q      

We choose   R from the neighborhood (3.9) | (0)|<s R   of the zero (0) ( 0)s   of the function ∆(o,), then using (2.18) ( = 0) 

and (3.10) we obtain that 

2 2 2
1 2 1

| (0)| | (0)|
| ( , )|> | |(1 ) ( (0)) | | =| | (1 ) ( (0)) ,

2 2 | |
' 's s

s sq p Q p Q
    

        


  
       

 

where numbers s - has form (2.19). Therefore | |<s R   (3.9), then 

1

| | 1| |>| | >| | > > >0
2( ) ( )(1 | |) 2s

q rR R r
a b a b k a b
     

         

based on remark 2 , and that mean 

2 2
1

| (0)| ( )
| ( , )|>| | (1 ) ( (0))

2
2

's
s

a b
q p Q

r

  
   



 
  

    
  
 

if the fi rst part of this inequality is greater than zero, then 

2
1

2

4 ( )
2

2| (0)|>
(1 ) ( (0))s '

s

a b
r

p Q




 








then for such   R  function | ( , )|q   does not turn to zero. So, if 

2
1

2

4 ( )
2

2 <| (0)|< ,
(1 ) ( (0)) s'

s

a b
r R

p Q




  





 


 (3.11)

then | ( , )| 0q    multiplicity (3.11)isn`t empty, if 

2
1

2

4 ( )
2

2 < ,
(1 ) ( (0))'

s

a b
r R

p Q













and using (3.7) i (3.9), we fi nd that this inequality will certainly be satisfi ed if 

2 2
22

1

4 ( )
2 <(1 )

2 1 | |
a b q rp

r k






 

 
           (3.12)

So if the 1 and 2 (2.19) are such that holds (3.12), then the function ∆(q,) on the multiplicity (3.11) does not turn to 0. The signs 

∆(q,) and ∆(o,) on the left and right sides of multiplicity (3.11) coincide, and given that the signs of the function ∆(o,)  on these 

parts are different, it follows that ∆(q,) it has at least one root on the multiplicity. 

2
1

2

4 ( )
2

2| (0)|<
(1 ) ( (0))s '

s

a b
r

p Q




 








Lemma 3  

If numbers 1 and 2 (2.19) satisfy inequality (3.12), where p,q,r has form (1.10) and (3.8), then in the surrounding area 

2
1

2

4 ( )
2

2| (0)|<
(1 )( )| |s

a b
r

p a b q r




 





 

           (3.13)

the zeros s (0) of the function ∆(o,) (1.6) contains at least one root s (q), of the perturbed characteristic function ∆(q,) (2.19). 
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Main result

To prove that the characteristic function ∆(q,) has no other zeros, except s (q) we use Rousche's theorem.  Let us denote by 1 the 

contour in the ,  formed by the straight lines that connect the points (1 ), ( 1 ), ( 1 ), (1 ),( ).l l l li i i i l
a b a b a b a b

        
   

  We 

need a lower estimate for the function ∆(o,) ) on the contour 1 or, taking into account (3.1) a lower estimate for the function Q(). 

For = ( = )i c a b      have 

( ) = sin( ) sin ( ) = sin cosh cos sinh (sin cosh cos sinh ),Q i c k q i c c c i c c k qc qc i qc qc                 

then 

2 22 2 2 2 2 2| ( )| = 2 sin sin cosh coshsin cosh sin cosh cos sinhQ c c k qc qc k c qc qc c c c             

2 22 2 2 2 2 22 cos cos sinh sinh = ( )cos sinh cosh cos cosh cosk qc qc k c qc c qc c c k qc qc              

22 sin sin cosh cosh 2 cos cos sinh sinh (cosh | |cosh )k c qc qc c k c qc c qc c k qc             

2 2 22 2( )(1 |sinh ||sinh |) (cosh | |cosh ) (1 )(1 |sinh ||sinh |).cos cosc k qc c qc c k qc k c qc              

It follows that 

2
2

(1 |sinh ||sinh |)| ( )| (cosh | |cosh ) 1 (1 )
(cosh | |cosh )

c qcQ c k qc k
c k qc
   

 


   


Hence follows the statement 

Lemma 4  

At = i     for function ∆(o,) (3.1) the inequality is true 

 

2

1/22
22 2

22

| (0, )|>| |( 1)cosh ( ) 1

1 ( )cosh1 |sin ( )sin ( )| ( ) ( )cos cos
( )(1 )cosh

p q a b k

a ba b q a b a b k q a b
q a b k

  

   


    

  
        

  
     (4.1)

Through  1 we denote the contour in   formed by the square with the vertices at the points

(1 ), ( 1 ), ( 1 ), (1 ), ( ).l l l li i i i l
a b a b a b a b

         
   

  On the vertical section (4.1) = (1 ) ( 1 < <1)l i
a b
   


 it follow that 

1/22
2 2

2

1 ( )cosh| (0, )|> 1 | 1| 1 cosh ( ) 1 ,
( )cosh

l a bp k q a b
a b q a b
   


  

      
  

and from theorem 3 it follows that for such   we have 

1 2| ( )|<cosh cosh ( | | ),a b      

then at 1l  for = (1 ) [ 1,1]l i
a b
     


 we have 

| (0, )|>| ( )|               (4.2)

It is proved in a similar way that on the sides of the square 1 at 1l  the inequality is true (4.2). 

The following theorem can be formulated from the above.
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Theorem  4 

Suppose that the functions q1(x) and q2(x) in (1.1) are such that inequality (3.12) holds, where , ,p q r  are of the form (1.10) and (3.8). Then in 

each neighborhood (3.13) of the zero s(o) of the characteristic function ∆(o,) (1.6) of the unperturbed operator Lo there is only one zero s (q) of 

the perturbed characteristic function∆(q,) (2.19) of the operator Lq.

Therefore, when the potentials are small q1(x) and q2(x) which are expressed only in terms of the parameters of the boundary 
conditions (1.2) each corresponding value of the operator Lq is located in a small neighborhood of the corresponding value of the 
unperturbed value of the operator Lo.

Concluding remarks

Thus, we have shown that if the potentials are small, (3.12) holds, then the spectrum of the perturbed problem 1 2| ( ) | | ( ) | 0q x q x   

differs little from the unperturbed problem. Consequently, the perturbed oscillations will be close to the unperturbed ones.
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