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Abstract

In this paper, we are interested to provide an analytic solution for cooperative investment risk with an authoritative risk determined by the central Bank. This problem 
plays an important role in solving cooperative investment problems in an investment sector such as insurance companies or banks etc and keeping in our mind the 
effect of a risk determined by the central Bank which has not been done before. We reformulate cooperative investment risk by writing dual representation for each risk 
preference (Coherent risk measure) for each agent (investor). Finding an analytic solution for this problem for both cases individual and cooperative investment problem 
by using dual representation for each risk preference has a strong effect on the fi nancial market. Moreover, we fi nd the equilibrium allocation in terms of an equilibrium 
price by formulating the optimization problem in the case of equilibrium with an initial endowment for each agent’s ’investor’. In addition, formulate a problem that covers 
the risk minimization problem with an expected return constraint and expected return maximization problem with risk constraint, in both individual and cooperative 
investment cases, for the general case of an arbitrary joint distribution for the asset return under certain conditions and assuming that all coherent risk measure is 
continuous from below. Thus, the optimal portfolio is written as the optimal Lagrange multiplier associated with an equality-constrained dual problem. Furthermore, a 
unique equilibrium allocation as a fair optimal allocation solution in terms of equilibrium price density function for each agent (investor) is also shown.
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Introduction

Cooperative investment consider a recent problem and it 
is not very old, all the work before (2013). It was working on 
risk-sharing without portfolio optimization problems. Later, 
they focused on optimal risk-sharing which has become one of 
the central avenues of study for researchers, which is defi ned 
as similar to cooperative investment but is not concerned with 
portfolio optimization. 

Cooperative investment synthesizes three key elements; (1) 
Modeling of agents’ risk preferences. The fact that different 
agents have different utilities or different risk preferences 
for goods is the basis of all markets. In my paper we choose 
the coherent risk measure, not that there are many types 

of coherent risk measure, we focus on negative expected 
as defi nitions of coherent risk measure and we write dual 
representation for each risk preferences for each agent 
(investor). Then, formulate an individual optimization 
problem (2) Formulating and solving a cooperative investment 
problem. In this paper we develop T. Akturk, C. Ararat [1] 
studied portfolio investment with two risks and we develop 
this paper and solve cooperative investment by considering 
an authority risk measure determined by the central bank. 
Hence, we solve a cooperative investment problem with three 
risk measure: the fi rst risk measure represent the fi rst agent, 
the second risk measure represents the second agent, and an 
authority measure refl ected the third risk measure. It can be 
formulated as follows: for a given uncertain outcome X where 
we have m agents, the question is how X can be partitioned 
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into random , = 1,....,iY i m , which is based on their risk-reward 

preferences, such that =1
=m

ii
Y X  whether each Yi is acceptable 

for each agent i  or not. At fi rst glance, cooperative seems to 
offer no advantage over individual investment. However, the 
exact reason why cooperative investment has the advantage 
is that agents’ shares may not be replicable in an incomplete 
fi nancial market. In other words, sharing creates instruments 
that on one hand, satisfy individual risk preferences but, on the 
other hand, may not be replicable in the incomplete market, 
so each agent is strictly better at participating in cooperative 
investment than investing alone. Note that, the underlying 
asset returns X are in some Lp space [1, ]pL    and they 
have an arbitrary joint distribution with possible correlation. 
Assuming that all risk measures are continuous from below 
so that the suprema in the dual representations are attained 
at the same dual probability measure, we derive a simple dual 
problem with a linear objective and a linear equality constraint 
in addition to domain constraints for the dual variables. Thus, 
at fi rst, we write dual representation for each risk preference 
(Coherent risk measure) for each agent (investor). As shown 
in examples; example 1, then create an individual optimization 
problem and cooperative investment problem then fi nd the 
optimal solution as shown in theorem (1), and theorem (2), 
respectively. In the last step, we fi nd the equilibrium allocation 
in terms of equilibrium price by formulating the optimal 
problem in the case of equilibrium with an initial endowment 
for each agents ’investor’.

Literat ure review

Also, (Grechuk and Zabarankin, 2011a, 2011b) studied 
risk-sharing problems for agents with utility functionals 
depending only on the expected value and a deviation measure 
of an uncertain payoff. Moreover, all of these works formulated 
and studied cooperative games with players using different 
deviation measures as numerical representations for their 
attitudes towards risk. Note that, cooperative investment 
consider a recent problem and it is not very old, all the work 
before (2013) was working on risk measures without portfolio 
optimization problems [2]. Studied the cooperative game 
with a general deviation measure, and they showed that a 
cooperative portfolio does not, in general, accommodate the 
risk preferences of all agents, whereas the risk preferences 
of each agent are satisfi ed at the stage of fair sharing of 
cooperative portfolio’s return.

 [3] described the cooperative investment in a single period 
with an alternative utility function and alternative deviation 
measure, respectively. In [4] dynamic cooperative investment 
with the GARCH model and applied the GARCH model in the 
asset return. In [5] into cooperative investment in multi-period 
with synergy effect also suppose that Ui is a monetary utility 

function and he solves the following problem 
*( )Xsup U X , 

where *
=1

= m
ii

X Y  is a maximizer to the investment problem. 

In (Akturk 2019) studied Portfolio optimization with coherent 
risk measures with an authorized risk but not in cooperative 
investment [6]. Studied the economic and environmental 

assessment of retailers within a supply chain management and 
they were taking into account the equilibrium condition of the 
forward and backward supply chain and their results found 
by the classical optimization technique. However, they did 
not study the problem with an authoritative risk determined 
by the central Bank. Furthermore [7], in their Paper, focus 
on A multi-period multi-product inventory model which is 
tested through an artifi cial neural network for experiencing 
an uncertain environment. In addition, their result shows 
that the proposed approach is the best for cost optimization 
and time minimization through an artifi cial neural network. 
Furthermore [8], their problem was designed as a risk-sharing 
strategy that is based on mean-variance optimizations of 
participants’ terminal reserves. They show convergence of the 
risk-sharing solution and the ratios of long-term reserves. As 
well as, they study the impact of fi nancial fairness on various 
risk-sharing strategies and their long-term limits, but they 
did not apply it to portfolio optimization problems.

1) In this paper, I develop (Akturk 2019) and joint it in 
the case of cooperative investment. Hence, we create 
Cooperative investment with an authorized risk 
introduced by the central bank where the underlying 
asset returns X are in some L


. Then we start to solve 

three key elements of cooperative investment as follows: 
formulate individual investment and it is different 
than (Akturk 2019) because in my case we need to add 
expected return constraints for investors and this is the 
fi rst difference before. then 

2) expand our problem to cooperative investment for two 
agents with an authority risk measure and its level 
determined by the central bank. 

3) studying an equilibrium problem to fi nd a fair 
equilibrium allocation to be satisfi ed and acceptable for 
each agent mean this point the result from equilibrium 
allocation for each agent is better than the result from 
solving the investment problem alone.

Problem formulation

Problem reformulation: :Firstly  in the case of 
individual problems. Let us start to model risk-aversion, let 

1 2 3, , : pL R     be three arbitrary coherent risk measures. 

The aim of the portfolio manager for an individual case is 
to choose a portfolio W  that minimizes the type 1 risk 

1( )T X   while controlling the type 2 risk 2 ( )T X   with a 

fi xed threshold level r R  that while satisfying 2 ( )T X r    

which we refer to as the risk constraint ( an external regulatory 

authority), and expected return level refl ected by [ ]TE X . In 
the case of individual investors with each risk measure defi ned 
by negative expectation, in this case, we can formulate the 
individual investment as follows: 

1 2( )     ( )   , [ ]   ,T T Tminimize X subject to X r E X W          

                  (3.1)

Here 1( ) = [ ]Y E Y   for each pY L , in our case the random 
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vector X  with arbitrary distribution and assuming that 1 2,   
are continuous from below, in this paper we characterize 
an optimal solution for (2.2) as a Lagrange multiplier of an 
associated dual problem. we need to address some literature 
review for portfolio optimization problems under an arbitrary 
joint distribution as follows: we assume 

p
nX L  for a fi xed 

[1, ]p   and 1 2,   are continuous on pL , see (Kain,2009, 

corollary 2.3), thus 1 2,   admit dual representations of the 
form: 

1
1 1 1
( ) = [ ]Q

QY max E Y  

and 

2
2 2 2
( ) = [ ]Q

QY max E Y  

for each pY L , where 1 2,   are convex subsets of 1 ( )qM P  
such that corresponding density set 1( )D  , 2( )D  , are convex 

( , )q pL L -the compact subsets of 
qL . For each {1,2}j , Let us 

defi ne the continuous convex function : n
ig R R  by 

( )( ) = ( ) = [ ]T T
i j V D j
g X max E V X    

for each 
nR . We recall a few notations and facts from convex 

analysis. Let   be a Hausdorff locally convex topological linear 

space with topological dual   and bilinear duality mapping 

< .,. >: R    = nR  with the usual topology which yields 

= nR  together with < , >= Tx y y x  for every nx R  , ny R . 

= qL  with [1, )q   the weak topology ( , )q pL L , 

which yields = pL  together with < , >= [ ]Y U E UY  for every 

,q pU L Y L  . 

= L  with weak topology ( , )q pL L , which yields = pL  

together with < , >= [ ]Y U E UY  for every ,q pU L Y L  . 

Let A   be a set. ( )cone A :={ | 0, }x x A    , is called 

the conic hull of A . if A  is convex then ( )cone A  is a convex 
cone. For x A , the convex cone 

:= { | :< , >    < , >}` `A y x A y x y x    

is called the normal cone of A  at x . The function : { }AI R   

defi ned by ( ) = 0AI x  for x A  and =AI   for \x A  is 

called the indicator function A . Note that A  is convex if and 

only if AI  is convex. Let := { }g R   be a function. For 

x , the set := { | : ( ( ) < , >}` ` `g y x g x g x y x x         is 

called subdifferential of g  at x  . It A  is a nonempty convex 

set then it is well -known that from [9] ( ) = ( )A AI x x   for 

every x A  and ( ) =AI x   every \x A . The function 
* : { }g R   defi ned by 

*( ) := (< , > ( ))xg y sup y x g x   for 

every x , y  such that g  is lower semi-continuous at x. 

Now, we need to formulate a second constraint qualifi cation, 
we also need the following. For A  , the set 

( ) := { | ( )      }Aqri A x A x is a subspace of  

is called the quasi-relative interior of A  see [10]. When = nR

, hence, ( )qri A  coincides with the relative interior of A . In this 

case, ( )qri A   whenever A  is nonempty close, and convex. 

When = ( [1, ])qL q   is considered with topology ( , )q pL L  

and A  is nonempty, close, and convex, one has to ( )qri A   see 

Borwein(1992). In particular, if := { | { 0} = 1}q qA L U L U  

, then ( ) = { | { > 0} = 1}qqri A U L U  , Borwein [10], while the 

usual interior A  can even be empty. (For <q  , considering 
the strong and topologies on qL  yield the same quasi relative 
interior for a convex set, see Borwein [10]. 

Note that in our problem as mentioned in (3.1) we add 
constraint qualifi cation which is called (Slater’s condition ) as 
an authority risk measure defi ned 2  to be able to study a dual 
problem with zero duality gap. 

The main theorems in this paper are showing theorems 
and their proofs, by constructing a Lagrange dual problem for 
(3.1) and exploiting the dual representations 1 2,  . Moreover, 
the optimal solution for (3.1) can be calculated as the Lagrange 
multiplier of the equality constraint of dual problems at 
optimality where the dual problem is as follows; 

1 2  maximize r                   (3.2)

1 2    [ ]  [ ] [ ]  1 = 0subject to E UX E VX E X      

1 2 1 2( ), ( ( )), 0, ,U V cone R        

The optimal value for individual problems is shown in 
Theorem (1). 

Secondly: Reformulate the problem in the case of 
cooperative investment. 

In this section, we develop and present a novel technique 
for solving continuous portfolio optimization problems in 
cooperative investment cases. Now, we suppose the two 
agents (investors) agree to invest their joint capital into the 
risky instrument. Then, divide the random variable X  by 
the number of money investors (agents) get at the end of the 

investment period, where 1Y , 2Y  is the optimal allocation of 

the fi rst and second agents, respectively. such that 1 2=X Y Y
. Now, the portfolio optimization for individual investment 
for fi rst and second investors is formulated as the problem 
(3.1), while the cooperative investment optimization problem 
with an external regulatory authority with a different risk is 
refl ected by 3  imposing the risk constraint as an obligation 

for the portfolio manager. This also makes sense when the 
portfolio manager wishes to work with two risk measures in 
the case of individual investment and three-risk measures in 
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the case of cooperative investment. Furthermore, the principle 
one risk 1  for the agent having higher seniority than the 

other risk 2  which represents a risk constraint and controlled 
it within a fi xed threshold level r R , which is expressed 

as follows 2 ( )T
iY r   . Indeed, in the case of cooperative 

investment, an external regulatory authority with a different 

risk is refl ected by 3( )X  , Where 1= 2X Y Y  and = TX x . 

Thus, we formulate cooperative investment for the continuous 
portfolio optimization problem with short selling as : 

1 1

2 2 1 3 2

1 1 2 2 2

1 2

    ( ),
. .
( ) ,  ( )

[ ] , [ ] ,
= ,  

T

T T

T T

minmize Y
S T

Y r x r
E Y E Y
X Y Y

 

   
   



 
 
 

            (3.3)

The portfolio manager aims to choose a portfolio   

that minimizes the type-1 risk 1 1( )TY   while controlling the 

type-2 for second agents 2 2( )TY   within a fi xed threshold 

level 1r R and controlling the type-3 risk 3( )T X   within a 

fi xed threshold level r R , note that when you need to choose 

2r R  is less than or equal to value as solving minimization 

individual problem for each agent. In Particular, For a random 
vector X  with an arbitrary distribution and assuming that 

1 2 3, ,    is continuous from below. Note that, this framework 
covers as special cases the problem of maximizing expected 

return subject to a risk constraint if we take 1 1 1( ) = [ ]Y E Y   for 

each 
pY L  as well as the problem of minimizing ( the type 1) 

risk while maintaining a high-enough expected return if we 

take 2 2 2( ) = [ ]Y E Y   and 3( ) = [ ]X E X   for each 1 2, , pY Y X L . 

So the Lagrange dual problem (3.3) for cooperative investment 
problem takes the more explicit form as follows 

1 1 2 2 1 1 2 2 3  maximize r r                      (3.4)

1 1 1 2 2 2 1 1 2 2 3    [ ]  [ ] [ ] [ ] [ ]  1 = 0subject to E UY E VY E V x E Y E Y          

1 1 2 3 3 1,2 1,2,3( ), ( ), ( ), ,U V V R R          

the optimal value for the cooperative Investment problem 
is shown in (2)theorem  

Remark

According to the condition of Karush-Kuhn-Tucker 
condition for a problem and from [9], thus an optimal solution 
for (3.1),(3.3) is an optimal solution for their dual problem 
(3.2), (3.4) for individual investment problem and cooperative 
investment problem, respectively. Note that dual problem (3.2), 
and (3.4) is equal to (4.1), and (4.2) in the next section. According 
to (Akturk and Ararat, 2019) Slater’s condition ( as an external 
regulatory authority with a different risk perception refl ected 
by 2 , and 3  for individual and cooperative investment 

problems, respectively) already guarantees the existence of 
an optimal solution. We reformulated the dual problem and 
defi ned variables , , ,U V    and the relationship between them 
in the dual problem (3.2),(3.4), thus, the existence of an optimal 
for a dual problem is not guaranteed prior. However, when we 
rewrite the dual problem and rewrite the objective (fi rst line of 
the problem in both (3.2),(3.4)) these automatically imply the 
existence of an optimal solution for the Lagrange multiplier for 
the equality constraint in the dual problem (3.2),(3.4), which is 
shown to give an optimal for the original problem (3.1), (3.3) 
respectively, for more details see [9]. Consequently, we already 
fi nd the optimal solution but when we change the value of 

2 3,r r  as in the fi xed level of risk for the second investor, this 
characterizes the set of all Pareto optimal allocations, which 
can be visualized as the effi cient frontier. 

Fair equilibrium allocation

Now, the neutral question is how can we select a unique 
’fair’ point o n the effi cient frontier. In the next section, we 
will address the unique solution that satisfi ed each agent, thus, 
we need to fi nd a special point which is called ’Equilibrium 
allocation’. Hence, in the third step for solving the cooperative 
investment problem (3.3), we need to fi nd a fair point that is 
called " an equilibrium allocation" among all the points in the 
effi cient frontier. Note that: to fi nd the whole effi cient frontier 
we need to change the value for 1 2 1 2, , ,r r pi  in the cooperative 
investment (3.3). The effi cient frontier is the convex curve 
between two investors for the main problem in the case of a 
cooperative investment problem (3.3) "concave curve for its 
corresponding dual problem (3.4)". According to the theory of 
market Equilibrium, the price of assets will no longer be given 
in advance. Different agents demand in accordance with their 
preferences and their budget. According to (Follmer, Schied, 
2009), 

Steps for Finding Equilibrium allocation

(1)  we need the equilibrium allocation for each agent’s 
’investo rs’ by solving the utility maximization problem of an 
agent i I  with respect to price density  . 

   ( )   .    ( ) ( ),    = 1,2,....,i i imaximize U Y s t E Yi E W i I m    

                 (3.5)

where = [ (.)]i iU E u , and we can suppose there are no initial 

endowments, in this special case we can replace the condition 

( ) 0iE Y   and fi nd an equilibrium allocation in terms of 
price density  . Hence, to formulate each problem for each 

agent (investor) = {1,2,3,..., }i I m  to fi nd each equilibrium 

allocation in terms of price density 

11
   ( )Y iminmize Y                      (3.6)

2.     ( )s t X r 

1[ ]E Y 

[ ] 0iE Y 
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and we reformulate it for each agent (investor 
= {1,2,3,..., }i I m  as follows: 

1 1 2 2 1 11
[ ] ( [ ] ) [ ] ( [ ] )Y i i imaximize E UY E M X r E M Y E Y             

                 (3.7)

in our problem, we will say iY


 solve the utility maximization 

problem for the agent ’investor’ i I  with respect to the price 

density  . Thus, the key problem is whether   can be chosen 

in such a way that the requested profi les iY


 i I  form a 
feasible allocation. Moreover, (Follmer 2009) defi ned ’Arrow-
Debreu -equilibrium’ as follows 

Defi nition

A price density *  together with a feasible allocation 
*( )i i IY   

is called an Arrow-Debreu equilibrium if each 
*
iY  solves the 

utility maximization problem of an agent i A  with respect 
* .

In particular, the initial endowments ,iW i I  are assumed 

to be non-negative. Moreover, we assume [ > 0] 0iP W   for 

all i I  and [ ] <E X  , where =ii I
W X

 . In our case, we 

have =ii I
Y X

  since we don’t have an initial endowment. 

A function 
1( , , )L P    , such that > 0   P   a.s, is a price 

density if [ ] <E X  more that this condition is satisfi ed as 

soon as   is bounded, due to our assumption [ ] <E X  . Given 

a price density  , each agent faces exactly the optimization 

problem in terms of price measure P P  . Hence, it 
*( )i i IY   

is an equilibrium allocation with respect to price density 
* . 

Feasibility implies *0 iY X   and so it follows as in the proof 

of (corollary 3.42), (Follmer 2009) that 

* *= ( ),    i i iY I c i I 

with a positive constant > 0ic . Indeed, according to 

(Follmer,2009), we have the inverse function of the strictly 
decreasing function in (4.2), then the optimal *X , where 

* *= ii I
X Y

 . Thus, * = ( )X I c , where each equilibrium 

allocation * *= ( )i i iY I c , = ii I
c c

 , and I   is simply the 

positive part of the function 1= ( )I U  , it's the inverse of 

restriction of U   to [0, ] , were In our problem after rewriting 
dual representation for each risk preference for each agent 
(investor). Hence, our problem will be written as follows: 

 ( )   .    ( ) 0,    = 1,2,....,i imaximize Y s t E Yi i I m              (3.8)

where, 

 
1 1 2 2 1 1= [ ] ( [ ] ) [ ] ( [ ] )i i iE UY E M X r E M Y E Y           

(2)  then, joint equilibrium allocation for each agent 
’investor’ and solve the feasibility problem to fi nd the 
equilibrium price. 

Let us start to formulate an equilibrium problem; Consider 
a fi nite set I  of economic agents and a convex set   of an 
admissible claim. Suppose at the initial time = 0t  each agent 

i I  in our case in this paper = 1,2i  two investors, so each 

agent ’investor ’ has no initial endowment ,  = 1,2iw i  whose 

discount payoff at the time = 1t , furthermore, Agents may 

want to exchange since there is no initial endowment iw

, hence admissible claim iY  . Consequently, This could 

lead to a new allocation ,  = {1,2}iY i I  ad the total demand 
matches the overall supply. 

Defi nition (Follmer 2009)

A collection , = {1,2}iY i I    is called a feasible allocation 

if it satisfi es the market clearing condition 

= ,      .i
i I
Y X P a s





The budget constraints will be determined by a linear 
pricing rule of the form 

( ) := [ ],         X E X X 

Where   is a price density, and   feasible set, i.e an 

integrable function ( , )  , such that > 0  P- a.s and 

[ | ] <iE Y    for all i I . To any such,   we can associate a 

normalized price measure P P   with density 1[ ] .E    

Note that the market clearing condition 

* *= = ( )i i i
i I i I

X Y I c

 
 

Consequently, we can write the feasibility problem as 
follows: 

     Find P                (3.9)

    subject to

1 2 = ( )rY Y X 

( ( ) = 0rPX 

2 2( ) =Y r

this problem can solve as follows: 

  0minimize              (3.10)

    subject to

1 2 = ( )rY Y X 
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( ( ) = 0rPX 

2 2( ) =Y r

To any such,   we can associate a normalized price 

measure P P   with density 1[ ]E   , see (Follmer 2009). 
Note that, the aim for solving the feasibility problem is to get at 
the end fair point which is on effi cient frontier for more details 
for applying this in the real market: we solve the feasibility 
problem we have the value for the price then plug the value for 
price in each equilibrium allocation since it is written in terms 
of price density.

Main results

Thermos and Proofs: Thermo 1: The optimal value for the 
individual problem (3.1) is equal to the optimal value for the 
corresponding dual problem.

1 2  maximize r                  (4.1)

1 2    [ ]  [ ] [ ]  1 = 0subject to E Ux E Vx E x      

1 2 1 2( ), ( ( )), 0, ,U V cone R        

and optimal value denotes it by 

1 2
,

= ( , , )  = 1,2sup
Ri

p d fori
 

  
   

for each 0  , a nd ,  = 1,2i i R  . 

Proof: Let us denote p  the optimal value of the problem 
(3.1) Since the optimal value for the problem (3.1) is the optimal 
value of the Lagrange dual problem (4.1), that is 

0, ,2 1 21
= ( , , )Rp sup d     

where, for each 0  , 1 2, R   , thus 

1 2 1 2 1 2( , , ) = ( ( ) ( ( ) ) ( [ ] ) (1 1))inf T T T T

nR
d x x r E x


            



     

By using a dual representation 1 2,  , we fi x 0  , 1 2, R    

1 2 ( ) 1 2 1 22( )1

( , , ) = ( [ ])   [ ]) ( [ ]) (1 )max T T T T
n VR U

d inf E U x max E V x E x r


             
        

 

let 1 2( , , ) := [ ]   [ ] [ ] 1T T T Tf U V E U x E V x E x             

for each nR , 1 2( ), ( )U V     . Note that 

( , , )f U V   is convex(affi ne) and continuous, 

( , ) ( , , )U V f U V  concave (affi ne) and ( , )q pL L -continuous 

(continuous), and 1 2( ) ( )     ( , )q pL L -compact. Hence, 
From classical minmax theorem see [11] ensures that 

1 2 1 2 1 2
( , ) ( ) ( )1 2

( , , ) = ( [ ]   [ ] [ ] 1 )sup T T T T
nRU V

d inf E U x E V x E x r


            
 

       
   

Clearly, for every 1 2( , ) ( ) ( )U V       

1 2
1 2

0, if [ ]  [ ] [ ]  1 = 0
( [ ]   [ ] [ ] 1) =inf , else
n T E Ux E Vx E x
R E Ux E Vx E x



  
   

    
      

It follows that 

1 2 1 2 1 2
1 2

, if ( , ) ) ( : [ ]  [ ] [ ]  1 = 0
( , , ) =

, else
r U V E Ux E Vx E x

d
     

  
          
 

  

So the Lagrange dual problem (3.1) for the individual cases 
takes the more explicit form as follows 

1 2  maximize r                  (4.2)

1 2    [ ]  [ ] [ ]  1 = 0subject to E Ux E Vx E x      

1 2 1 2( ), ( ), 0, ,U V R        

Now, we make some changes in variables to avoid the 

multiplication of variables ,V  as follows; if 2( ( ))M cone  

, then they exist 0   and 
2( )V   such that =M V : we 

simply take = [ ]E M  and = MV


 if > 0  and arbitrary 

2( )V    if = 0 . Conversely, if 0   and 2( )V  

, then 2= ( ( ))M V cone    . These observations allow us to 

reformulate a dual problem (4.3) as (4.1). Note that both problems 

have p  their optimal value. Let * * * *
1 2( , , , ) q pU M L L R R       

be an optimal solution for (4.1), see ([10]corollary 4.8), there 
is a strong duality with corresponding Lagrange dual problem 
that relaxes the equality constraint, that is, we have 

1 2 1 2
( ), ( ( )),1 2 1,2

= ( [ ] ( [ ] [ ] [ ] 1))supinf T

nU M cone RR
p rE M E Ux E Mx E X


    

  

      
   

1 2 1 2
( ), ( ( )),1 2 1,2

= ( [ ] [ ] [ ] [ ] 1)supinf T T T T

nU M cone RR
p rE M E U x E M x E x


       

  

        
   

also ([10], corollary 4.8) [10] ensures that there exists an 

optimal Lagrange multiplier * nR . By the fi rst-order condition 

with respect to *=U U , thus we have that 

* *
( )1

0 ( ) ( )T x U   

this means 

* * *[ ( ) ] [ ( ) ]T TE U x E U x   

for every 1( )U   , that is * * *
1(( ) ) = [ ( ) ]T Tx E U x  

We conclude that * *( )U    where *( )   defi nes as 

*
( )( ) := [ ]T

j V j
argmax E Vx     , see (Akturk, Ararat,2019, 

Lemma 3.4), Hence, 

* *
1[ ] ( )E U x g                 (4.3)

 and the same way, the fi rst order condition with respect to 
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*=M M  yields 

* * *[ (( ) )] [ (( ) )]T TE M x r E M x r     

for every 2( )M cone  , that is 

* * *

( ( ) )2

[ (( ) )] = [ (( ) )]maxT T

M cone
E M x r E M x r 


   

 
           (4.4)

Since 2( )cone   is the cone, the quantity 

*
( ( ) )2

[ (( ) )]sup T
M cone E M x r     can either take the value 0  or 

 , Since *[ (( ) )]TE M x r   is a fi nite number, both sides of 

(5.3) must equal to zero, thus we obtain 

* *

( ( ) ) ( )02 2

0 = [ (( ) )] = ( )( [ (( ) )])supmax maxT T

M cone V
E M x r E V x r


  

  
     

   

 

                (4.5)

* *
2 2= . (( ) ) = ( ( ) ) )T Tx r x r      

Moreover, we have optimality 
*

2 ( ) ) =T x r  . 

Let 
* *= [ ]E M , and suppose fi rst that * > 0  and let 

*
*

2*:= ( )MV


   Then, 

* * * *[ (( ) )] = [( ) ] = 0T TE M x r E x r    

so that, * *[ ( ) ] =TE V x r . Hence 

* * * *
2

( )2

[ ( ) ] = = ( ) ) = [ ( ) ]maxT T T

V
E V x r x E V x   


 

 

that is 
* *

2 ( )V   . Actually 

* *
2[ ] ( )E V x g  

Furthermore, suppose that * = 0  that is * = 0M  p   

almost sure. Let us pack some 
* *

2 ( )V    arbitrarily. since 

*
2 ( )    because 2  is assumed to be continuous from 

below, thus, in both cases we may write * * *=M V  and we can 
write 

* * * * *
2[ ] = [ ] ( )E M x E V x g                   (4.6)

Now, from the feasibility of
* * * *

1 2( , , , )U M    the dual problem 
(4.1), we have 

* * * * * * * * *
1 2 1 2[ ] [ ] 1 = [ ] [ ] 1 = 0E U x E M x E U x E V                 

                 (4.7)

Consequently, from (4.3),(4.6), and (4.7) we obtain 

* * * * *
1 2 1 20 ( ) ( ) 1g g         

Finally, According to the fi rst order condition with respect 

to *
1,2 1,2=  , respectively. Also, we got 

*1 = 1T

where *  .

Theorem 2: The optimal value for the cooperative 
investment problem (3.3) is equal to the optimal value for the 
corresponding dual problem 

1 1 2 2 1 1 2 2 3  maximize r r                    (4.8)

1 1 1 2 2 2 1 1 2 2 3    [ ]  [ ] [ ] [ ] [ ]  1 = 0subject to E UY E VY E V x E Y E Y          

1 1 2 3 3 1,2 1,2,3( ), ( ), ( ), ,U V V R R          

and optimal value denotes it by 

1 2 1 2 3
0, , ,1 2 3

= ( , , , , ),   = 1,2sup
Ri

p d For i
   

    
 

for each 1 2, 0   , 1 2 3, , R    . 

Note that the proof for case cooperative investment with an 
authorized risk measure for theorem (2) is similar to the proof 
of the theorem (1) just we have a more constraints since the 
problem two agents (investor) managing their risk and taking 
into account an authorized risk determine by the central bank. 

Proof: Let us denote P the optimal value of the problem (3.3) 
Since the optimal value for the problem (3.3) is the optimal 
value corresponding to the Lagrange dual problem for (4.8), 
that is 

1 2 1 2 3
0, , ,1 2 3

= ( , , , , ),   = 1,2sup
Ri

p d For i
   

    
 

where, for each 1 2, 0   , 1 2 3, , R     , thus 

1 2 1 2 3 1 1 1 2 2 1 2 3 2 1 1 1 2 2 2( , , , , ) = ( ( ) ( ( ) ) ( ( ) ) ( [ ] ) ( [ ] )inf T T T T T

nR
d Y Y r x r E Y E Y


                  



       

3(1 1))T  

By using Dual representation 1 2 3, ,   , we fi x 1 2, 0   , 

1 2 3, , R     

1 2 1 2 3 1 1 1 2 2 2
( ) ( ) ( )1 1 2 2 3

( , , , , ) = ( [ ])   [ ])   [ ])max max maxinf T T T

n U V VR
d E U Y E V Y E V x


         

  

    
     

1 1 2 2 3 1 1 2 2 1 1 2 2 3( [ ]) ( [ ]) (1 ))T T TE Y E Y r r                 

Let 

1 2 1 1 1 2 2 2 1 1 1 2 2 3( , , , ) := [ ]   [ ]   [ ] [ ] [ ] [ ] 1T T T T T T Tf U V V E U Y E V Y E V x E X E Y E Y                       

each nR , 
1 1 2 3 3( ), ( ), ( )U V V         Note that 

1 2( , , , )f U V V   is convex(affi ne) and continuous, 

1 2 1 2( , , ) ( , , , )U V V f U V V  is concave (affi ne) and ( , , )q p sL L L  
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-continuous (continuous), and 1 2 3( ) ( ) ( )        is 

( , , )q p sL L L -compact. Hence, from classical minmax theorem 
see (Sion,1958) ensures that 

 
1 2 1 2 3 1 1 1 2 2 2

( , , ) ( ) ( ) ( )1 2 1 2 3

( , , , , ) = ( [ ]   [ ]   [ ]sup inf T T T

nU V V R
d E U Y E V Y E V x


         

   

     
     

 
1 1 2 2 3 1 1 2 2 1 1 2 2 3[ ] [ ]   1 )T T TE Y E Y r r                

Clearly, for every 1 2 1 2 3( , , ) ( ) ( ) ( )U V V          

 
2 1 1 2 2 1 1 1 2 2 3( [ ]   [ ]   [ ] [ ] [ ] 1)inf n TR E UY E VY E V x E Y E Y


              

1 1 1 2 2 2 1 1 2 2 30, if [ ]  [ ] [ ] [ ] [ ]  1 = 0
=

, else
E UY E VY E V x E Y E Y           



It follows that 

1 2 1 2 3( , , , , )d     

1 1 2 2 1 1 2 2 3 1 2 1 2 3

1 1 1 2 2 2 1 1 2 2 3

, if ( , , ) ) ( ( :
= [ ]  [ ]  [ ] [ ] [ ]  1 = 0

, else

r r U V V
E UY E VY E V x E Y E Y

     
    

        
        
 

    

So the Lagrange dual problem (4.8) for the cooperative 
investment problem takes the more explicit form as follows: 

1 1 2 2 1 1 2 2 3  maximize r r                    (4.9)

1 1 1 2 2 2 1 1 2 2 3    [ ]  [ ] [ ] [ ] [ ]  1 = 0subject to E UY E VY E V x E Y E Y          

1 1 2 3 3 1,2 1,2,3( ), ( ), ( ), ,U V V R R          

Now, we make some changes in variables to avoid 

the multiplication of variables 1 1,V , 2 2,V , as follows; if 

1 2( ( ))M cone   , then their exist 1 0   and 1 2( )V    such 

that 1 1 1=M V : we simply take 1 1= [ ]E M
 and 

1
1

1

= MV
  if 1 > 0  

and arbitrary 1 2( )V    if 1 = 0 . Conversely, if 1 0   and 

1 2( )V   , then 1 1 1 2= ( ( ))M V cone    . Similarly, variables 

if 2 3( ( ))M cone   , then their exist 2 0 
 and 2 2( )V    

such that 2 2 2=M V : we simply take 2 2= [ ]E M  and 2
2

2

= MV


 

if 2 > 0  and arbitrary 2 3( )V    if 2 = 0 . Conversely, if 

2 0   and 2 3( )V   , then 2 2 2 3= ( ( ))M V cone     let These 

observations allow us to reformulate a dual problem (4.9) as 
(4.8). Note that both problems have p  their optimal value. 

Let * * * * * *
1 2 1 2 3( , , , , , ) q p sU M M L L L R R R          be an 

optimal solution for (4.2), see ([10], corollary 4.8) [10], there 
is a strong duality with corresponding Lagrange dual problem 
that relaxes the equality constraint, that is, we have 

1 1 2 2
( ), ( ( )), ( ( )),1 1 2 2 3 1,2,3

= ( [ ] [ ]supinf
nU M cone M cone RR

p r E M r E M
    

 
     

1 1 2 2 3 1 1 2 2 1 1 2 2 3( [ ] [ ] [ ] [ ] [ ] 1))T E UY E M Y E M x E Y E Y                

1 1 2 2
( ), ( ( )), ( ( )),1 1 2 1 3 1,2,3

= ( [ ] [ ]supinf
nU M cone M cone RR

p r E M r E M
    

 
     

1 1 2 2 3 1 1 2 2 1 1 2 2 3[ ] [ ] [ ] [ ] [ ] 1)T T T T T Tlk E U Y E M Y E M x E Y E Y                       

also ([10], corollary 4.8) [10] ensures that there exist an optimal 
Lagrange multiplier * nR  . By the fi rst-order condition with 
respect to *=U U , thus we have that 

* *
1 ( )1

0 ( ) ( )T Y U   

this means 

* * *
1 1[ ( ) ] [ ( ) ]T TE U Y E U Y   

for every 1( )U   , that is 

* * *
1 1 1(( ) ) = [ ( ) ]T TY E U Y  

We conclude that * *( )U   where *( )   defi nes as 

*
( ) 1( ) := [ ]T

j V j
argmax E VY     , see (Akturk, Ararat 2019, 

Lemma 3.4),

* *
1[ ] ( )E U x g             (4.10)

and the same way, the fi rst order condition with respect to 
*= ,   = 1,1i iM M for i  yields 

* * *
1 2 1 1 2 1[ (( ) )] [ (( ) )]T TE M Y r E M Y r     

and 

* * *
2 2 2 2[ (( ) )] [ (( ) )]T TE M x r E M x r     

for every 1 2( )M cone    and 2 3( )M cone   , that is 

* * *
1 2 1 1 2 1

( ( ) )1 2

[ (( ) )] = [ (( ) )]maxT T

M cone
E M Y r E M Y r 



   
   

             (4.11)

and 

* * *
2 2 2 2

( ( ) )2 3

[ (( ) )] = [ (( ) )]maxT T

M cone
E M x r E M x r 



   
   

              (4.12)

Since 2( )cone   is a cone, the quantity 

*
1 2 1( ( ) )1 2

[ (( ) )]sup T
M cone E M Y r

    can either take the 

value 0  or  , and 3( )cone   is a cone, the quantity 

*
2 2( ( ) )2 3

[ (( ) )]sup T
M cone E M x r

    can either take the value 0  

or  , Since 
*

1 2 1[ (( ) )]TE M Y r   and *
2 2[ (( ) )]TE M x r   are 

a fi nite number, both sides of (4.11) and (4.12) must equal to 
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zero, thus we obtain 
* *

1 2 1 1 1 2 1
( ( ) ) ( )01 2 1 21

0 = [ (( ) )] = ( )( [ (( ) )])supmax maxT T

M cone V
E M Y r E V Y r


   

  

   
     

            (4.13)
* *

2 2 1 2 2 1= . (( ) ) = ( ( ) ) )T TY r Y r      

as well 

* *
2 2 2 2 2

( ( ) ) ( )02 3 2 32

0 = [ (( ) )] = ( )( [ (( ) )])supmax maxT T

M cone V
E M x r E V x r


   

  

   
     

             (4.14)

* *
3 2 3 2= . (( ) ) = ( ( ) ) )T Tx r x r      

Moreover, we have optimality 
*

2 2 1( ) ) =T Y r   and 
*

3 2( ) ) =T x r   

Let * *= [ ],    = 1,2i iE M for i , and suppose at the fi rst 

* > 0,    = 1,2i for i  and let 
*

* 1
1 2*

1

:= ( )MV


   and

*
* 1

2 3*
1

:= ( )MV


   Then, 

* * * *
1 2 1 1 2 1[ (( ) )] = [( ) ] = 0T TE M Y r E Y r    

* * * *
2 2 2 2[ (( ) )] = [( ) ] = 0T TE M x r E x r    

so that, * *
1 2 1[ ( ) ] =TE V Y r , * *

2 2[ ( ) ] =TE V x r . Hence 

* * * *
1 2 2 2 1 2

( )1 2

[ ( ) ] = = ( ) ) = [ ( ) ]maxT T T

V
E V Y r Y E V Y   



 
 

that is * *
1 2 ( )V   , 

* * * *
2 2 2

( )2 3

[ ( ) ] = = ( ) ) = [ ( ) ]maxT T T

V
E V x r x E V x   



 
 

that is * *
2 3( )V   . Actually 

* *
1 2 2[ ] ( )E V Y g  

* *
2 3[ ] ( )E V x g  

Furthermore, suppose that * = 0,    = 1,2i for i  that is 

* = 0    = 1,2iM for i  p   almost sure. Let us pack some 

* *
2 2 ( )V    , * *

3 3( )V    , arbitrarily. Since *
2 ( )   , 

*
3( )   , because 2 3,   are assumed to be continuous from 

below. Thus, in both cases, we may write 
* * *= ,    = 1,2i i iM V for i

, and we can write 

* * * * *
1 2 1 1 2 1 2[ ] = [ ] ( )E M Y E V Y g               (4.15)

and 

* * * * *
2 2 2 2 3[ ] = [ ] ( )E M x E V x g                (4.16)

Now, from the feasibility of * * * * * *
1 2 1 2 3( , , , , , )U M M     for dual 

problem (4.2), we have 

* * * * * * * * * * * * * *
1 2 3 1 1 2 2 3 1 1 2 1 2 1 1 1 1 3[ ] [ ] [ ] 1 = [ ] [ ] [ ] 1 = 0E U x E M Y E M x E U x E V Y E V x                            

            (4.17)

Consequently, from (4.10),(4.15), (4.16), and (4.17), we 
obtain 

* * * * * * * *
1 1 2 2 3 1 1 2 2 30 ( ) ( ) ( ) 1g g g                

Finally, according to the fi rst order condition with respect 

to *
1,2,3 1,2,3=  , respectively, we got 

*1 = 1T

where *  .

We conclude that *  is the optimal solution for problem 
(4.1) or (4.8) so from the condition of Karush-Kuhn- 

Tucker condition for a problem and from [9] *=   is the 
same optimal solution for problems (3.1) and (3.3), respectively. 

Moreover, once we have the optimal * , we get *=X x , we 

can fi nd the division 1Y  and 2Y  where 1 2=X Y Y , see [5].

Examples and numerical results

We choose the risk measure as a coherent risk measure. 
In the following examples, we show how to write dual 
representations for each risk preference for each agent 
(investor). In the fi rst example, two investors will choose risk 
measure as the negative expected value in the second example; 
in the second example investors choose average-value at-risk 
and in the third example one of the investors choose s negative 
risk and others will choose average-value-at-risk. 

Example 1: see(Two-CVAR) 

Let = 1p  and take 1 1( ) = [ ]Y E Y   for every 1
1Y L , it is easy 

to check that   satisfi es the properties for the coherent risk 
measure above. while the dual representation for each investor 

(agents) risk preferences, we simply have 1 = { }   so that 

1 1( ) = {1} L  . While second investors will be of the form 

2 2( ) = [ ]Y E Y   for every 2
2Y L , It is easy to check that   

satisfi es properties for the coherent risk measure above. While 

the dual representation (2.1) for each investor (agents), we 

simply have 2 = { }   so that 2 2( ) = {1} L   

Example 2: (average-at-risk) Let (0,1)   be a probability 

level. The average value-at-risk at Level   for the fi rst investor

1
1Y L  is defi ned as 

1 10

1@ ( ) := @ ( )uAV R Y V R Y du


  
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It is well-known that @AV R  is a law-invariant coherent 

risk measure 
1L . In the dual representation in (3.1), we may 

take 1 1
1= { ( ) | { } = 1}QQ


    


so that 

1 1
1( ) = { | {0 } = 1}V L V


    

While for second investor will be the same form 

2 20

1@ ( ) := @ ( )uAV R Y V R Y du


  

It is well-known that @AV R  is a law-invariant coherent 

risk measure 
1L . In the dual representation in (3.1), we may 

take 1 1
1= { ( ) | { } = 1}QQ


    


so that 

2 2
1( ) = { | {0 } = 1}V L V


    

Example 3: The fi rst investor chooses a negative Expected 
value and the second investor will choose Average value-at-

risk. Let = 1p  and take 1 1( ) = [ ]Y E Y   for every 1
1Y L , it is 

easy to check that   satisfi es properties for the coherent risk 
measure above while the dual representation (3.1) for each 

investor (agents) simply has = { }   so that 1 1( ) = {1} L 

. Also, the measure for the second investor will be as follows: 

2 20

1@ ( ) := @ ( )uAV R Y V R Y du


  

It is well-known that @AV R  is a law-invariant coherent 

risk measure 
1L . In the dual representation in (3.1), we may 

take 2 1
1= { ( ) | { } = 1}QQ


    


so that 

2 2
1( ) = { | {0 } = 1}V L V


    

You can see some literature review for coherent risk 
measure and how is formulated in my fi rst draft of this paper 
and references in (Follmeire). 

Numerical experiment 

For the fi nancial market model, Let us assume that one 
risk-free asset and n  a risky asset. Also, the initial endowment 

of an agent = {1,2,...., }i I m  is given by a portfolio 1nR   so 

that the discount payoff at the time = 1t  is 

.= ,     = {1,2,...., }
1i
SY i I m
r






the market portfolio is given by 
.=

1
SX
r


 , with 

0:= = ( , )ii I
   

 , and 0= ( , )S S S  is asset Price. Hence, 

in our problem for cooperative investment. Just we need to 

replace each iY  and X  in the equilibrium allocation for each 

investor * *= ( )i iY I c  as follows: 

Algorithm in real Market 

Step 1: Finding derivative of   in (3.7) for each investor 

(agent = 1,2i ) in terms of iy , respectively. 

Step 2: By solving cooperative investment (3.3) we get the 
value of  . 

Step 3: The value of the derivative in step 1 and the value 
  in step 3 plug into the system (3.9) in order to get the 
equilibrium price P . 

Step 4: Plug the value of equilibrium price P  in equilibrium 

allocation 
*
iY  where we can fi nd it as the positive inverse of the 

derivative of i  each investor(agent = 1,2i  at an equilibrium 

price that we fi nd by solving a feasible problem (3.9). Note that, 
solving a problem (3.3) in CVX-MATLAB we write inv-pose for 

derivative of i  to write iY  in the program.

Real Experiment: Solving Individual Investment (IV) (3.1) 
and cooperative investment (CI) (3.3) with one risk-free 
=0.01 and 3 risky assets (APA, BA, BK) weekly historical data 
downloading from yahoo fi nance S & P 500 (January 2022 to 

May 2022) where 1 2= 0.0025, = 0.001r r  and 1 2= 0.025, = 0.05 

. We got the result as follows: note that we wrote the coherent 

risk measure as the negative risk which is an expected shortfall 
at

 Risk measure  the optimal value for CI  the optimal value for IV  (CI-IV)   100 

 1( )y
 +0.0014842  +0.0445431  -0.043 %

 2 ( )y
  +0.00110  +0.0253  -0.024 %

We can be changing the value or 1r  and fi xed the value 

2 1, , 2r    in order to get the whole effi cient frontier. then 
solve feasibility problem (3.9) to get equilibrium price then 

equilibrium allocation as follows. 
* *
1 2= 0.0014822, = 0.001002y Y  

which is still better than the optimal value for individual 
investors as shown [1]. 

Conclusion

In this paper, we reformulate cooperative investment 
risk by writing a dual representation for each risk preference 
(coherent risk measure) for each agent (investor). First, fi nding 
an analytic solution for the problem for both cases individual 
and cooperative investment problems which are represented in 
theorems 1 and 2. Second, numerical experiments support our 
result by getting better investment in the case of cooperative 
investment. Hence, we conclude that the cooperative investment 
still has better results since sharing creates instruments that 
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on the one hand, satisfy individual risk preferences but, on 
the other hand, are not replicable in an incomplete market, 
so each agent is strictly better in participating in cooperative 
investment than investing alone. 

This research can be extended in at least two directions. 
First, solving cooperative investment with infl ation effect in 
case of initial endowment exist and without. The second is a 
case study of applying cooperative investment in Saudi Arabia 
Financial market.
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