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Introduction
1In this note, a map f acting between metric (or topological) 

spaces is referred to be pre-continuous at a point x if, for some 

sequence  xn  of points nx  different from x and converging 

to x, the sequence   f xn  converges to  f x  (section 2, 

Defi nition 1). We observe that this rather weak property enjoys 
every function with a dense graph, and a function is not pre-
continuous at a point if, and only if, the respective point of 
its graph is isolated. In particular every additive, exponential, 
logarithmic, and multiplicative function is pre-continuous at 
every point. As a matter of fact, these functions have a stronger 
property, namely, they are uniformly pre-continuous (section 
3, Defi nition 2, and Defi nition 3). 

Another defi nition of continuity, using the notion of a 
preopen set, was introduced by Mashhour, Abd El-Monsef, and 
El-Deep [1] (Remark 1).

In section 4 we show that pre-continuity can be useful 
in solving some functional equations. Applying the property 
of uniform (and one-sided) pre-continuity, we determine 
the translative beta type functions considered in [2], the 
homogeneous multiplicative Cauchy quotients, and a topic 
leading to the Pexider equation.

Recently the family of beta-type means considered in [3,4] 
was applied in [5] (Remark 6).

Pre -continuous functions

We introduce the following

Defi nition 1

Let    , ,,X d Y dX Y , be metric spaces. A function 

:f X Y  is called pre-continuous at the point ,x X  if there 

exists a sequence  nx ,  \x X xn   for n  such that 

=lim x xn n  and    =lim f x f xn n . The function 

f is called pre-continuous if it is pre-continuous at every point ox X. 

It is easy to construct examples of functions that 
are not pre-continuous. For instance, every function 

:f    that is increasing at 0, i.e. such that 

     < 0 <limsup liminf 00 f x f f xxx    , is 

not pre-continuous at 0. On the other hand, even extremely 
discontinuous functions are pre-continuous. Namely, we have 
the following

Theorem 1

Let    , , ,X d Y dX Y  be metric spaces and let :f X Y

be an arbitrary function.

(i) If the graph f is dense in the product metric space X×Y, 
then f is pre-continuous.---------------------------------12010 Mathematics Subject Classi ication. Primary 26A15, 33B15, 39B22
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(ii) The function f is pre-continuous at a point x X  if 
and only if   ,x f x  is not an isolated point of the 
graph f.

(iii) If f is continuous at an accumulation point X, then f is 
pre-continuous at the point .  

Proof. (i) Take an arbitrary point x X . The density of 

the graph of f there exists a sequence   ,x f x Xn n   X Y  

n , such that      , = ,lim x f x x f xn n n  in 

the product metric, that is such that  , = 0lim d x xn nX  

and     , = 0lim d f x f xn nY , which completes the 

proof.

(ii) If f is pre-continuous at a point x X  then, by Defi nition 

1, there is a sequence  xn ,  \n nx x X x  for n  such 

that =limn nx x  and    =limn nf x f x . Without 

any loss of generality, we can assume that  nx  is one-to-

one. Then   ,n nx f x   X Y , n , is a sequence of 

different points of the graph f converging   ,x f x  in the 

product topology. The converse implication follows from the 
defi nition of the product topology.

We omit an easy argument for (iii). 

It is well-known that the graph of every discontinuous 
additive function :    is dense 2  (as well as the 

graphs of discontinuous multiplicative, exponential, and 

logarithmic functions are dense in the suitable natural subsets 

2 ).

Theorem 2

Let I    be an interval. For an arbitrary function, :f I    

the set of all points x I  that f is not pre-continuous x is at most 
countable. 

Proof. Let Z X  be the set of all x I  such that 

f  is not pre-continuous at x . By Theorem 1(ii), the set 

   , :x f x x Z  is the set of all isolated points of the 

graph f , that are contained I  . But, clearly, the set of 

isolated points of any subset I   is at most countable. 

Remark 1 

Let  ,X  ,  ,Y   be topological spaces. In [1] a function 

:f X Y  is said to be pre-continuous at a point ,x X  if for 

every open set V   containing  f x  there is a set U X  

such that , x U    U Int Cl U  (preopeness) and 

 f U V  (see also [6]). 

For obvious reasons, the notion of precontinuity proposed 
in Defi nition 1 could be called a Heine-type. We omit to discuss 
the mutual relations between these two concepts.

Uniform pre-continuous functions

Defi nition 2

Let X  be a sub set of a metric group G  with an addition "

 " and neutral element 0 and Y  be a metric space. A function 

:f X Y  is called uniformly pre-continuous, if there exists a 

sequence  \ 0nz G  for all n , with = 0limn nz  

such that x   ,nz X  for all ,x X  n ,  and 

   = .lim n
n
f x z f x




Remark 2

Let X  be a metric group with an addition " " and neutral 

element 0 , Y  be a metric space, and :f X  Y  be an additive 
function, i.e. 

     = , , .f x y f x f y x y X  

The following two conditions are equivalent

(i) f  is pre-continuous at a point;

(ii) f  is uniformly pre-continuous . 

Proof. To prove (i)  (ii) assume that for some 0x X  there 

is  0\nx X x  for all n  such that 0=limn nx x  

   0=limn nf x f x . Putting 0:=n nz x x  we have 

 \ 0nz X  for every n  and = 0limn nz . Hence, 

for arbitrary x X , making use of the additivity of f  and 

its oddness, we 

         = =lim lim limn n n
n n n
f x z f x f z f x f z

  
    

         0 0= =lim limn n
n n

f x f x x f x f x f x
 

     

       0 0= = ,f x f x f x f x   

Which proves (ii). The converse implication is trivial. 

Remark 3

In the case of functions of real variable we defi ne a uniformly 
right-pre-continuous (left-pre-continuous ) function, postulating 
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that the respective zero sequences  nz  are positive (resp. negative). 

In this case, the oddness of the additive function implies that the 

above result remains true if (i) is replaced by " f  is left- or right-
pre-continuous at a point". 

Corollary 1

Let X  be a metric group with an addition " " and a neutral 

element 0 . If a function :f X    is additive and discontinuous 

at a point, then its graph is dense in the product metric space X  . 

Proof. Assume that :f X    is additive and 

discontinuous at a point. Of course, f  is discontinuous 0  

(see, for instance [7]). Since  0 = 0f there is a sequence 

 nz  with = 0limn nz  such that either  limn nf z  is 

a fi nite nonzero real number or   =limn nf z  .

In the fi rst case, we can assume that

  = 1lim n
n
f z



If the second case holds, choosing a sequence of real rational 

numbers   ,nr  0nr   for all n , such that 

  = 1,lim n

n n

f z
r

and putting

:= , ,n
n

n

zw n
r



we have 

= 0,lim n
n
w



and, making use of the rational homogeneity of f  (Aczél [8] 
p. 32, Kuczma [7] p. 121, Theorem 1), 

   = = = 1.lim lim lim nn
n

n n nn n

f zzf w f
r r  

 
 
 

Thus, in both possible cases, there exists a sequence  nz  

= 0limn nz  such that

  = 1.lim n
n
f z



Hence, by the rational homogeneity of ,f  every rational 

number r , we have 

   = = ,lim limn n
n n
f rz r f z r

 

Which implies that every point 

    0 0, : 0t X t   �   is an accumulation point 

of the graph f . Through the additivity f  we have 

     = , ,n nf x rz f x f rz x X r   �

so, for every point x X , the set  x   is contained in 

the closure of the graph .f  This completes the proof. 

Defi nition 3

Let X  be a subset of a metric group G  with a multiplication 

"  " and neutral element 1and Y  be a metric space. A function 

:f X Y  is called uniformly pre-continuous, if there exists 

a sequence  \ 1nz G  for all n , with = 1limn nz  

such that for all ,x X  n , we have ,nx z X   and 

   = .limn nf x z f x   

Remark 4

Here, in the case of functions of real variable we defi ne uniformly 

right-pre-continuous (left-pre-continuous ) functions, postulating 

that the respective zero sequences  nz  are such that > 0nz  (resp. 

< 0nz ) for all n . 

Theorem 3

Every additive function :    is uniformly pre-
continuous.

Every additive function  : 0,    is right-
uniformly pre-continuous. 

Indeed, assume that :    is additive and take 

1=nz n
 for n . As every additive function is rationally 

homogeneous, we have for every x  and n , 

     1 1 1= = 1 ,x x x
n n n

            
   

Whence  1 =limn x x
n

 
  
 

. Since   the 

addition is a group of the neutral element 0,  and the euclidean 

topology, satisfi es the conditions of Defi nition 2, the function 

  is uniform and pre-continuous  .

The argument for the second result is analogous.
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Corollary 2

Every exponential function  : 0,f   , i.e. such that

     = , , ,f x y f x f y x y 
is uniformly pre-continuous (in the additive group  ). 

Proof. It  : 0,f    is exponential then := log f   

is additive in  , and = expf  . Thus, for all x  and 

n , by the additivity of ,  similarly as above, we have 

         

 
111 1 1= = exp = exp = ,nf x f x f f x f x e f x

n n n n


                  

so  1 =limn f x f x
n

  
 

. Using Defi nition 2 with 

=X   and 
1=nz n

 for n , we get the result. 

Corollary 3 

Every logarithmic function  : 0,f   , i.e. such that

       = , , 0, .f xy f x f y x y  

is uniformly pre-continuous (in the multiplicative group 

 0, ). 

Proof. The interval  0,  with the multiplication, neutral 

element 1, and the euclidean topology, satisfi es the conditions 

of Defi nition 2. It  : 0,f    is logarithmic then 

:    defi ned by := expf   is additive, and 

= logf   . Taking 
1:= expnz n

 
 
 

 we have = 1limn nz

and for all > 0x  and n ,

           
1

= = log = log n
n n nf x z f x f z f x z f x e 

 
     

 

     11= = ,f x f x
n n


    
 

whence limn     = ,nf x z f x  which, in view of 

Defi nition 3, shows that the function f  is uniformly pre-
continuous. 

Corollary 4

Every multiplicative function    : 0, 0, ,f     i.e. such 
that

       = , , 0, ,f xy f x f y x y 

is uniformly pre-continuous (in the multiplicative group 

  0, ,  ). 

Proof. The function :    defi ned by := log expf    

is additive, and = exp logf    we can argue similarly as 
in the proof of Corollary 3 .  

Examples of applications

To illustrate the possible advantages of the introduced 
notions we begin with the following

Proposition 1

The functions  , : 0,f g    satisfy the equation 

     ( ) = ( ) , , , 0, ,f x y g z f z y g x x y z       
       
 (1)

and f  is uniformly right-pre-conti nuous, if and only if 

= , =f b g c  

for some additive function  : 0,    and ,b c . 

Proof. Assume that ,f g  satisfy this equation (1) and f  is 

uniformly right-pre-continuous. Writing this in the form 

     ( ) = ( ) , , , 0, ,f x y g x f z y g z x y z     

We see that the difference  ( )f x y g x   does not depend 

on x , so the function  : 0,h    given by 

   := ( )h y f x y g x 

is well defi ned and, consequently, the Pexider functional 
equation 

       = , , 0, ,f x y g x h y x y                 (2)

is satisfi ed. In view of Defi nition 1 (see also Remark 2), there 

exists a positive sequence  nz  tending to 0  such that for 

every > 0x ,

   = .lim n
n
f x z f x




Setting = ny z  in (2) we have, for every > 0,x
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     = , ,n nf x z g x h z n  

and letting n , we obtain conclude that

     0= , 0, ,f x g x h x               (3)

where

 := lim0h h znn

Exists and does not depend on x .

Similarly, taking :=x zn  in (2), we have

     = , ,f z y g z h y nn n  

and letting n , us obtain

   0= , > 0,f y g h y y             (4)

Where 

 := lim0g g znn

is a real constant. From (2), (3), and (4), setting 

:= ,0 0b g h

we get 

       = , , 0, ,f x y b f x b f y b x y            

which shows that := f b   is an additive function, and 

= .f b 

Setting this function into equation (1) gives 

         = , , 0, ,g x x g z z x z    

that is =g c  for some real C. Thus 

     = , 0, .g x x c x   

The converse implication follows from the fact that   is 

uniformly right-pre-continuous (Theorem 2). 

For a function    : 1, 0,f     defi ne the bivariate 

function    2: 1, 0,Pf     by 

     
 

, := , , > 1.
f x f y

P x y x yf f xy

Proposition 2

Let    : 1, 0,f     be uniformly right-pre-continuous 

and    : 1, 0,m     be an arbitrary function.

Then the following conditions are equivalent

(i) the function Pf is m -homogeneous, i.e.

     , = , , , , > 1;P tx ty m t P x y t x yf f               (5)

ii) the function 1m   and there is > 0b  such that the 

function 
f
b

 is multiplicative, i.e.

     = , , > 1.bf xy f x f y x y

Proof. Assume (i). Then for all , , , > 1s t x y  we have 

 
 
 

    
 

 
     

, , ,
= = = ,

, , ,

P stx sty P s tx s ty P tx tyf f fm st m s m t
P x y P tx ty P x yf f f

so m is multiplicative.

The interval  1,  is a subset of the multiplicative group 

  0, ,   with neutral element 1. Let  zn  be a sequence 

satisfying the conditions of Defi nition 3 of uniform right-

precontinuity of f in  1, ; in particular > 1zn  for n  

and = 1lim zn n . Using the defi nition of Pf  and setting 

:=y zn  in (5) we have

   
       

 
= , , > 1, .2

f tx f tz f x f zn nm t t x n
f xzf t xz nn



Letting n  us conclude that 

 := limb f znn

exists, is positive, fi nite, and 

   
   = , , > 1.2

f tx f t
bm t t x

f t x

Thus 
 
 2
f tx

f t x
 does not depend on x. So, replacing hereby 

x, and setting 
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     
   

:= , > 1,
f x f t

g t t
f tx m t

we get 

     = , , > 1.f tx g t f x t x
             (6)

Taking here = nx z , n , as above, we have 

     = , > 1, .f tz g t f z t nn n 

Letting n , the assumed precontinuity of f gives

   = , > 1,f t bg t t               (7)

Hence, making use of (6), we have

     = , , > 1,g tx g t g x t x  (8)

that is g is multiplicative.

Applying in turn (5), the defi nition of Pf , (7) and (8) we 

get, for all , , > 1,t x y  

 
 
 

     
     

,
= = 2,

P tx ty f tx f ty f xyfm t
P x y f t xy f x f yf

     
     

     
     

2 2 2
= = 2 2 22

g t g x g yg tx g ty g xy

g t xy g x g y g t g x g y

          

          
= 1

which completes the proof of (ii).

The implication ( ) ( )ii i  is obvious .  

Remark 5 

Of course, the counterpart of the above result for function 

   : 0,1 0,f    also holds true. 

Let    : 0, 0,f     be an arbitrary function. The 

two-variable functions    2: 0, 0,B f     given by 

     
 

, := , , > 0,
f x f y

B x y x yf f x y

is called a beta-type function, and f is referred to as its generator 
([2]). 

Remark 6

Note that Barczy and Burai [5] have derived strong laws of large 
numbers and central limit theorems, among others, for a new type 
family of beta-type means considered in [3] and [4]. 

A function  2: 0,F     is called translative with 

respect to a function  : 0,    , if 

Remark 7 

If F is translative with respect to   then   is an additive 

function. If moreover F nonnegative, then there is a  0a a 
such that   =t at  for all > 0t . 

Proof. Indeed, for all  , , , 0,x y s t   we have 

      , = , =F x s t y s t F x s t y s t       

         , = , ,F x s y s t F x y s t      

and 

     , = , ,F x s t y s t F x y s t     

whence      = ,s t s t     so   is additive in 

 0, .

From the transitivity of F and the just proved additivity of 

  we have, for all , , > 0x y t  and n , 

         , = , = , .F x nt y nt F x y nt F x y n t    

Clearly, this equality and the assumed nonnegativity F 

exclude existence  > 0 < 0t t . 

Proposition 3 

Let    : 0, 0,f     be a (right) uniformly pre-

continuous function and  : 0,     be given functions. The 

following conditions are equivalent:

(i) the beta-type function    2: 0, 0,B f     is 

translative with respect to the function  ;

(ii) 0   and, for some > 0c , the function 
f
c

 is an 

exponential function, i.e. 

     = , , > 0.cf x y f x f y x y

 Proof. Assume (i). In view of Remark 4, there is a real 
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number 0a   such that   =t at  for all > 0t  and from 

the assumed transitivity ,B f  we have

   
 

   
 

= , , , > 0.
2

f x t f y t f x f y
at x y t

f x y t f x y
 


  

Hence, for all > > 0x y , and > 0s ,

   
 

    
    

   
 

= = .
f x y y f s yf x f y s f x y f s

ay
f x y s f x y sf x y y s y

   


        

Setting here =s zn , where  zn  is a sequence such 

that is > 0zn  all n , = 0lim zn n , satisfying the 

condition of the uniform right-precontinuity, we have

   
 

   
 

= , ,0 < < .
f x f y z f x y f zn n ay n y x
f x y z f x y zn n

 
 

   


Letting n , and making use of the right continuity f, 

we conclude that the limit 

 := limb f znn                           (9)

exists, is nonnegative, fi nite and

   
 

= , 0 < < .
f x f y

b ay y x
f x y


              (10) 

or, equivalently, that 

   
   = min , , , > 0.

f x f y
b a x y x y

f x y




For arbitrary , > 0x z , choosing positive y such that <y x  

and <y z , we hence get

   
 

   
 

= = ,
f x f y f z f y

b ay
f x y f z y


 

whence

 
 

 
 

= .
f z y f x y
f z f x
 

It follows that the function    : 0, 0,g   

   
 

:= , > 0,
f x y

g y y
f x


is well defi ned. Since f,g are continuous and satisfy the 
Pexider functional equation

     = , , > 0.f x y f x g y x y
             (11)

By the symmetry of the left-hand-side x  and y  we have

     = , , > 0.f x y f y g x x y

Setting here =y zn , where the sequence =y zn  is 

chosen above, we have

     = , , , > 0.f x z f z g x n x yn n 

Letting here ,n  and using (9), we get

   = , > 0,f x bg x x
             (12)

which implies that 0b  . Hence, using (11), we obtain

     = , , > 0,g x y g x g y x y

which means that g is an exponential function. From (10) we 

get = 0,a  and using (12) we conclude (ii).

The implication ( ) ( ) ii i is obvious. 

Proposition 4 

If the functions  , , : 0,f g h     satisfy the equation 

   ( ) = ( ) , , 0, ,f x y g x h y x y   
             (13)

then 

= , = , =f b c g c h b     

for some additive function  : 0,     and ,b c . 

Proof. From (13), making use of the commutativity of 

addition, we have for all  , 0,x y   

     ( ) = ( ) = ( ) = ,g x h y f x y f y x g y h x   

whence, for all  , 0,x y  , 

     = ( ) .h x g x h y g y 

Choosing arbitrarily = > 00y y , we get

     = ( ) , > 0.0 0h x g x h y g y x 
            (14)

Setting this into (13) we get

           = ( ) , , > 0,0 0 0 0f x y g y h y g x g y g y g y x y          
     



093

https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics

Citation: Matkowski J (2022) Precontinuity and applications. Ann Math Phys 5(2): 086-094. DOI: https://dx.doi.org/10.17352/amp.000044

whence, setting 

             := , := , > 0,0 0 0f x f x g y h y g x g x g y x   
   

                 (15)

we obtain 

     = , , > 0.f x y g x g y x y 
             (16)

Hence, by induction we get

     ... = ... , , 2; ,..., > 0,1 1 1f x x g x g x n n x xn n n     

Whence

   = , , 2; > 0.f nx ng x n n x 

Replacing hereby 
x
n

, we get 

 
= , , 2; > 0,
f xx

g n n x
n n

  
 
 



which implies that 

1
= 0.lim g

n n
 
 
 

Now (16) implies that g  is uniformly pre-continuous 

1
=zn n

. Of course, (16), f  is uniformly pre-continuous, and 

from (14) and (15) it follows that , ,f g h  are uniformly pre-

continuous with the same sequence 
1

=zn n
.

In view of Defi nition 1 (see also Remark 2), there exists 

a positive sequence  zn  tending to 0 such that for every 

> 0x ,

   = .lim f x z f xnn




Setting =y zn  in (13) we have, for every > 0,x

     = , ,f x z g x h z nn n  

and letting n , we obtain conclude that

     = , 0, ,f x g x b x  
              (17)

Where

 := limb h znn

exists and does not depend on x.

Similarly, taking :=x zn  in (13), we have

     = , ,f z y g z h y nn n  

and letting n , us obtain

   = , > 0,f y c h y y
                (18)

where 

 := limc g znn

is a real constant. From (13), (17), and (18), setting 

:= ,a b c

we get 

             = , , 0, ,f x y b c f x b c f y b c x y               

which shows that  := f b c    is an additive function, 
and 

 = .f b c  

Hence, from (17) we get 

     = , 0, ,g x x c x   

and from (18),

     = , 0, ,h x x b x   

Which completes the proof. 

Final Remark 

Following Azad [9] one could try to consider the fuzzy 
versions of precontinuity.
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