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Introduction

'In this note, a map f acting between metric (or topological)
spaces is referred to be pre-continuous at a point x if, for some

sequence (xn) of points X, different from x and converging
to x, the sequence (f(x,)) converges to f(x) (section 2,

Definition 1). We observe that this rather weak property enjoys
every function with a dense graph, and a function is not pre-
continuous at a point if, and only if, the respective point of
its graph is isolated. In particular every additive, exponential,
logarithmic, and multiplicative function is pre-continuous at
every point. As a matter of fact, these functions have a stronger
property, namely, they are uniformly pre-continuous (section
3, Definition 2, and Definition 3).

Another definition of continuity, using the notion of a
preopen set, was introduced by Mashhour, Abd El-Monsef, and
El-Deep [1] (Remark 1).

In section 4 we show that pre-continuity can be useful
in solving some functional equations. Applying the property
of uniform (and one-sided) pre-continuity, we determine
the translative beta type functions considered in [2], the
homogeneous multiplicative Cauchy quotients, and a topic
leading to the Pexider equation.

Recently the family of beta-type means considered in [3,4]
was applied in [5] (Remark 6).
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Pre-continuous functions

We introduce the following
Definition 1

Let(X, dX ) ,(Y, dY)’ be metric spaces. A function
f: X — Y iscalled pre-continuous at the point x € X, if there
exists a sequence (xn ) , Xp€X \ {x} for ne N such that
limpn—so0X;; = X and limn—>oof(xn ) = f(x) . The function
fis called pre-continuous if it is pre-continuous at every point ox X.

It is easy to construct examples of functions that
are not pre-continuous. For instance, every function

f:R— R that is increasing at o, ie. such that

limsup _y0_f (x) < £ (0) < liminf x—0+7 (x), is

not pre-continuous at 0. On the other hand, even extremely
discontinuous functions are pre-continuous. Namely, we have
the following

Theorem 1

Let (X’dX)’(Y’dY) bemetricspacesandletfIX—>Y

be an arbitrary function.

(i) If the graph f is dense in the product metric space XxY,
then f is pre-continuous.
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(ii) The function f is pre-continuous at a point x € X if
and only if (x, f (x)) is not an isolated point of the
graph f.

(iii) If f is continuous at an accumulation point X, then f is
pre-continuous at the point-

Proof. (i) Take an arbitrary point x € X . The density of
the graph of f there exists a sequence (xn,f (xn )) eX XxY
neN, such that limn—>oo(xn,f(xn )) = (X,f(x)) in
the product metric, that is such that limn—>OOdX (xn ) x) =0
and limn—>oody (f(xn ),f(x)) =0 which completes the
proof.

(ii) If fispre-continuous atapoint x € X then,byDefinition
1, there is a sequence (xn ), X, X, € X\ {X} for n € N such
that lim,«X, =X and limn—mf(xn): f(x) Without
any loss of generality, we can assume that (x,,) is one-to-
one. Then (x,,,f(x,,)) € XxY, neN,isa sequence of

different points of the graph f converging (X, f (x)) in the

product topology. The converse implication follows from the
definition of the product topology.

We omit an easy argument for (iii).

It is well-known that the graph of every discontinuous
additive function , .[R _» R is dense Rz (as well as the

graphs of discontinuous multiplicative, exponential, and
logarithmic functions are dense in the suitable natural subsets

R2).
Theorem 2
Let | — R beaninterval. Foranarbitrary function, SiI—->R

the set of all points x € I that f is not pre-continuous x is at most
countable.

Proof. Let £ C X be the set of all x €] such that

f is not pre-continuous at X By Theorem 1(ii), the set
{(xaf(x)) ‘X E Z} is the set of all isolated points of the

graph f , that are contained / xR . But, clearly, the set of

isolated points of any subset / X R is at most countable.
Remark 1
Let (X,T), (Y,S) be topological spaces. In [1] a function
f: X > Y issaid to be pre-continuous at a point X € X, if for

every open set VeS containing f(x) thereisaset U C X
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such that x€U, [y ]nt(Cl(U)) (preopeness) and
f(U)cV (seealso [6]).

For obvious reasons, the notion of precontinuity proposed
in Definition 1 could be called a Heine-type. We omit to discuss
the mutual relations between these two concepts.

Uniform pre-continuous functions
Definition 2

n

Let X be a subset of a metric group (G with an addition
+ " and neutral element () and Y be a metric space. A function

f : X — Y is called uniformly pre-continuous, if there exists a
sequence z, € G\{O} for all €N, with lim,-.2z, =0
such that x+ Z,€X, for al xe X, neN, and
limf (x+z,)= f(x).

n—w

Remark 2

Let X be a metric group with an addition "+ " and neutral

element (), Y be a metric space, and f : X — Y bean additive
function, i.e.

f(x+y)=r(x)+f(y), xyeX.

The following two conditions are equivalent

(i) f is pre-continuous at a point;

(ii) f is uniformly pre-continuous .

Proof. Toprove (i) => (ii)assumethatforsome X, € X there
is X, € X\{xo} for all €N such that lim X, = X,
1im,Hoof(xn)=f(x0). Putting Z, = X, —X, we have
z, € X\{O} for every 5 ¢ N and lim,—«Z, = 0. Hence,

for arbitrary y ¢ X , making use of the additivity of f and

its oddness, we

lim/ (x+2,) =tlim[ f (x)+(z,)]= / (x)+lim/ (z,)

n—>0 n—

= /() timf (5, =) = S (1) + lim / (5,) =/ ()]

n—ow

=/ () +[f (x0) = f (%) ] = f (%),
Which proves (ii). The converse implication is trivial.
Remark 3

In the case of functions of real variable we define a uniformly
right-pre-continuous (left-pre-continuous ) function, postulating
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that the respective zero sequences (Z,, ) are positive (resp. negative).

In this case, the oddness of the additive function implies that the

above result remains true if (i) is replaced by " f is left- or right-
pre-continuous at a point".

Corollary 1
Let X be a metric group with an addition "+ " and a neutral

element 0 .If a function f X — R isadditive and discontinuous

at a point, then its graph is dense in the product metric space X xR -

Proof. Assume that f X — R is additive and

discontinuous at a point. Of course, f is discontinuous 0
(see, for instance [7]). Since f (0) = 0 there is a sequence
(Zn) with [im,—«Z, = 0 such that either hm'wa(Zn) is
a finite nonzero real number or lim_u/ (Zn) =00,

In the first case, we can assume that

lim/ (z,)=1

n—x0

If the second case holds, choosing a sequence of real rational

numbers (Vn)’ ¥, #0 forall n e N, such that

lim———= =1,
n—»0 v

and putting

w,=—"*, nel,
r}’l
we have
lirnW,, = 03
n—»0

and, making use of the rational homogeneity of f (Aczél [8]
p- 32, Kuczma [7] p. 121, Theorem 1),

lim/ (w,) = lim/ j— =1im—fgz”)=1.

Thus, in both possible cases, there exists a sequence (Zn)
lim,—«Zz, = 0 such that

limf (z,)=1.

n—w

Hence, by the rational homogeneity of f , every rational
number ¥ € Q , we have

lim/ (rz,)=rlimf (z,)="r,

n—>0 n—>0

https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics 8

Which implies that every point
{0} XR{(O,t) :0e X Ate R} is an accumulation point

of the graph f . Through the additivity f we have

f(x+rzn)=f(x)+f(rzn), xeX,reQ

so, for every point X € X , the set {x} xR is contained in
the closure of the graph f - This completes the proof.
Definition 3

Let X be a subset of a metric group G with a multiplication

men

and neutral element land Y be a metric space. A function

f : X =Y s called uniformly pre-continuous, if there exists

a sequence Z, € G\{l} for all M€ N, with limy—Z, =1

such that for all xeX, n EN, we have X-Z, €X, and
lims.f (x-2,)= 1 (x).
Remark 4

Here, in the case of functions of real variable we define uniformly

right-pre-continuous (left-pre-continuous ) functions, postulating

that the respective zero sequences (Z,,) aresuchthat z, > 0 (resp.
z, <0)foral neN.
Theorem 3

Every additive function ¢ :IR — IR is uniformly pre-
continuous.

Every additive function a:(Opo)—)]R is right-
uniformly pre-continuous.

Indeed, assume that & :[R — R is additive and take
z, =— for n e N. As every additive function is rationally
n

homogeneous, we have for every x e R and n e N,

a(x+lj=a(x)+a(lj=a(x)+la(l),

n

1
Whence limy—s—o& (X + —] =a (X) . Since [R the
n

addition is a group of the neutral element 0, and the euclidean
topology, satisfies the conditions of Definition 2, the function

o is uniform and pre-continuous R .

The argument for the second result is analogous.
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Corollary 2
Every exponential function f :IR — (O,oo), i.e. such that

fx+y)=r(x)f(y), xyeR,

is uniformly pre-continuous (in the additive group R ).
Proof. It SR> (O,oo) is exponential then & ‘= loge f
is additive in [R , and f = eXpe & . Thus, for all ¥ € R and

n € N, by the additivity of &> similarly as above, we have

f(x_i_%j:f(x)f(%]:f(x)exp(a[%j]:f(X)eXp a,(ll) =e@f(X),

SO 1imu_ssef (x+l] =f (x) Using Definition 2 with
n

X =R and Z, =— for n € N, we get the result.
n

Corollary 3

Every logarithmic function f: (0,00) — R i.e. such that

f(w)=f(x)+1(y), xye(0,0).
is uniformly pre-continuous (in the multiplicative group

(0,00) )-

Proof. The interval (O,oo) with the multiplication, neutral

element |, and the euclidean topology, satisfies the conditions

of Definition 2. It f :(0,00)—>R is logarithmic then

a:R—>R defined by &= foexp s additive, and
1 .

f = aolog - Taking Z, = €Xp| — | wehave lim,—Z, = 1
n

andforall x>0 and ne N,

f(x-z”)—f(x)+f(zn)—f(x)+a(logzn)—f(x)+a[loge']’j

whence limy e f(x Zn) = f(x): which, in view of

Definition 3, shows that the function f is uniformly pre-
continuous.

Corollary 4

Every multiplicative function f : (0,00) - (0,00), i.e. such
that

https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics 8

f(w)=F(x)f(¥), xye(0,0),
is uniformly pre-continuous (in the multiplicative group
((0.).))
Proof. Thefunction oy - R — [R definedby ¢y := logo f oexp

is additive, and f = eXpo & olog we can argue similarly as
in the proof of Corollary 3-

Examples of applications

To illustrate the possible advantages of the introduced
notions we begin with the following

Proposition 1

The functions f, g : (0, oo) — R satisfy the equation
S(x+y)+g(z)=fz+y)+g(x), x,ze(0,0),
(®

and f is uniformly right-pre-continuous, if and only if

f=a+b, g=a+c

for some additive function & : (0,00) — R and b,C eR.
Proof. Assume that f » & satisfy this equation (1) and f is

uniformly right-pre-continuous. Writing this in the form
fx+y)-g(x)=fz+»-g(z), xy,z€(0,0),

We see that the difference f (x + y) - g (X ) does not depend

on x, so the function /: (0,00) —->R given by

h(y)=f(x+y)—-g(x)

is well defined and, consequently, the Pexider functional
equation

fx+y)=g(x)+h(r), xye(0,0), @

is satisfied. In view of Definition 1 (see also Remark 2), there

exists a positive sequence (Zn) tending to () such that for

every x > (),

limf (x+z,)= f(x).

n—>0

Setting y = z _ in (2) we have, for every x > (),

089

Citation: Matkowski J (2022) Precontinuity and applications. Ann Math Phys 5(2): 086-094. DOI: https://dx.doi.org/10.17352/amp.000044



P PeertechzPublications

f(x+zn)=g(x)+h(zn), neN,

and letting 7 — o0, we obtain conclude that

f(x)zg(x)—i-ho, xe(O,oo), (3)

where

hozzigygbh(zn)

Exists and does not depend on x .

Similarly, taking x := z,, in (2), we have

f(zn+y)=g(zp)+h(y), neN,

and letting 7 — oo, us obtain

f(y)=g,+h(y), y>0, %)

Where

2o = lim ()

n—>0
is a real constant. From (2), (3), and (4), setting
b= gyt ho,
we get
S(xry)=b=[f(x)=b]+[ 1 (y)-b]. x.ye(0.2),
which shows that @ = f — b is an additive function, and
f=a+b.
Setting this function into equation (1) gives
g(v)-a(x)=s()-a(2). xz<(0.2)
thatis € —@ = ¢ for some real C. Thus
g(x)=a(x)+c, xe(0,0).

The converse implication follows from the fact that & is

uniformly right-pre-continuous (Theorem 2).

For a function f : (l,oo) - (0,oo) define the bivariate

function p

r :(1,00)2 —>(0,oo) by

https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics 8

Proposition 2
Let f: (l,oo) - (0,00) be uniformly right-pre-continuous

and m :(l,oo) - (0, oo) be an arbitrary function.
Then the following conditions are equivalent

(i) the function P 7 is m -homogeneous, i.e.

Pf(tx,ty)=m(t)Pf(x,y),t,x,y>1; (5)
ii) the function ;s =1 and there is p > () such that the
function i is multiplicative, i.e.

bf (w)=f(x) £ (»), xp>1.

Proof. Assume (i). Then for all $>/,%,Y > 1 we have

m(st = =

Pf(x,y) P"f(foJ’) Pf( y)

R (stx,s17) ) Pf(s(tx),S(ty)) P (ti,ty) = m(s)m ().

so m is multiplicative.
The interval (1 , oo) is a subset of the multiplicative group
((O,oo),-) with neutral element 1. Let ( zn) be a sequence

satisfying the conditions of Definition 3 of uniform right-

precontinuity of f in (l,oo); in particular z;; >1 for ne N
and limpu—»o0zy = 1. Using the definition of P f and setting

Y=z, in (5) we have

, t,x>1,neN.

£(6) i) 507 (zn)
f(tzxzn) f(xzn)

Letting n — oo us conclude that
b= 1lim f(z
i/ )
exists, is positive, finite, and

S(2) /(1)
1)

f(tx)

Thus DY does not depend on x. So, replacing hereby
(%)

=bm(t), tx>1.

1~ x

X, and setting
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we get

f(e)=g(0) f(x), t.x>1. )

Taking here X = 2, , N € N , as above, we have
f(tzn)Ig(t)f(zn),t>l,neN.

Letting 7 —> o0, the assumed precontinuity of f gives

f(t)=bg(z), t>1, 7)

Hence, making use of (6), we have

g(tx) = g(t)g(x), t,x>1,(8)
that is g is multiplicative.
Applying in turn (5), the definition of Pf , (7) and (8) we
get, forall #,x,y > 1,
n(i)- Pf (tx,1v) .

Pr(xy)  p(Pw)r(x) £ (5)

which completes the proof of (ii).
The implication (if) = (@) is obvious -
Remark 5

Of course, the counterpart of the above result for function

I (0,1) — (0,00) also holds true.
Let fl(O,OO)—>(0,00) be an arbitrary function. The

two-variable functions Bf : (0,00)2 - (0,00) given by

S(x)f(»)
f(x+y)

is called a beta-type function, and f is referred to as its generator

(2D).

By (xy)= L %y>0,

https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics 8

Remark 6

Note that Barczy and Burai [5] have derived strong laws of large
numbers and central limit theorems, among others, for a new type
family of beta-type means considered in (3] and [4].

2
A function F:(O’OO) —> R s called translative with

respect to a function ¢ : (0,00) > R,if
Remark 7

If F is translative with respect to & then @ is an additive

function. If moreover F nonnegative, then thereisagae R a > (0

such that a(t) =at forall t > 0.

Proof. Indeed, for all X,V,S,l € (ano) we have

F(x+s+t,y+s+t)=F((x+s)+t,(y+s)+t)=

F(x+s,y+s)+a(t)=F(x,y)+a(s)+a(t),

F(x+s+t,y+s+t)=F(x,y)+a(s+t),

whence a(5+f):05(5)+a(t)’ so @ is additive in

(0,00).

From the transitivity of F and the just proved additivity of

a we have, forall X,y,>0 and ne N,
F(x+nt,y+nt) = F(x,y)+a(nt) = F(x,y)+na(t).
Clearly, this equality and the assumed nonnegativity F

exclude existence ¢ > (0 ¢ (t) <0.
Proposition 3

Let S (O,OO) - (0,00) be a (right) uniformly pre-
continuous function and & : (O,OO) —> R pe given functions. The
following conditions are equivalent:

(i) the beta-type function Bf :(0,00)2 —)(0,00) is
translative with respect to the function  ;

(ii) ¢ =0 and, for some ¢ >0, the function i is an

c
exponential function, i.e.

of (x+y)=f(x)f(»), x.y>0.
Proof. Assume (i). In view of Remark 4, there is a real
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number g > () such that a(t) =gt forall >0 and from

the assumed transitivity B o we have

St f(y+t) 1(x) /()

= +at, x,y,t>0.
f(x+y+2t) f(x+y)

Hence, forall x>y >0 and s >0,

S(=0)42)0(s+2)  F(x=2)1(5)

= = +ay.

S([G=p)+ ]+ (s+y))  Flx-p+s)

S(x)f(r+5)
fx+y+s)

Setting here s =z, , where (Zn) is a sequence such

that is z, >0 all ¢ N> limp—sooz; =0, satisfying the
condition of the uniform right-precontinuity, we have
f()f(tzn) (=) f(zn)

= +ay, neN,0<y<ux.
f(x+y+zn) f(x—y+zn)

Letting » — oo, and making use of the right continuity f,

we conclude that the limit
b= lim f|z
exists, is nonnegative, finite and

7f(X)f(y) =b+ay,0<y<ux.
f(x+y) (10)
or, equivalently, that
f(x) /()
f(x+y)

For arbitrary x, z > (), choosing positive y such that y < x

=b+amin(x,y), x,y>0.

and y <z, we hence get

10I0)_,  FE0)
f(x-l—y) f(z+y) ’
f(z+y):f(x+y)
) )

1t follows that the function g : (0, oo) - (O, oo)
f(x+y)

E\V)=— 7~
(») o)

is well defined. Since f,g are continuous and satisfy the
Pexider functional equation

, y>0,

https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics 8

f(x+y)=f(x)g(y), x,y>0. ()

By the symmetry of the left-hand-side X and )} we have

f(x+y)=rf(v)e(x), x.y>0.

Setting here Y = Zp, where the sequence y =z, is

chosen above, we have
f(x+zn)=f(zn)g(x), neNyx,y>0.

Letting here 5 — oo, and using (9), we get

f(x)=bg(x), x>0,

(12)
which implies that p % (). Hence, using (11), we obtain
g(x+y)=2(x)g(y), xy>0,

which means that g is an exponential function. From (10) we

get ¢ = (, and using (12) we conclude (ii).

The implication (ji) = (7) is obvious.
Proposition 4

If the functions f,g,h :(0, oo) — R satisfy the equation

f(x+y)=g(x)+h(y), x,ye(O,oo), 13)

then
f=a+b+c, g=a+c, h=a+b
for some additive function & : (0,00) —> R and b,ceR.

Proof. From (13), making use of the commutativity of

addition, we have for all x, y € (0,)
gx)+h(y)=rx+y)=fr+x)=g(y)+h(x),
whence, for all x,y € (0,),
h(x)=gx)+h(y)-g(»).
Choosing arbitrarily ¥ = Yy > 0, we get

h(x)=g(X)+h(y0)—g(y0), x>0. "

Setting this into (13) we get

f(X+y)—[g(yo)+h(yo)}:[g(X)—g(yo)}{g(y)—g(yo)},x,y>0,
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whence, setting

7(x):=f(x)*[g(yo)w(yoﬂ, g(x) :=g(X)*g(yO), x>0,
(15)

we obtain

f(x+y)=§(x)+§(y), x,y>0. (16)

Hence, by induction we get

f(xl+...+xn)=§(x1)+...+§(xn), neNn>2;x,..,x, >0,

Whence

f(nx)=n§(x), neNn>2;x>0.

b
Replacing hereby —, we get
n

§(£]= f(x)’ neNn>2;x>0,

which implies that

(1
lim g (—j =0.
n—o \ n
Now (16) implies that g is uniformly pre-continuous

1 —_
= —. Of course, (16), f is uniformly pre-continuous, and
n

Zn
from (14) and (15) it follows that f.g,h are uniformly pre-
1

n
In view of Definition 1 (see also Remark 2), there exists

continuous with the same sequence z; =

a positive sequence (Zn) tending to 0 such that for every

x>0
’

lim f(x+zn)=f(x).

n—>0

Setting ¥ = Zy in (13) we have, for every x > (),

f(x+zn)=g(x)+h(zn),neN,

and letting n — 00, we obtain conclude that

f(x) = g(x)+b, xe (O,oo), )

Where

b= nhl)nooh(zn)

https://www.peertechzpublications.com/journals/annals-of-mathematics-and-physics 8

exists and does not depend on x.

Similarly, taking x := z;, in (13), we have
f(zn +y)=g(zn)+h(y), neN,
and letting » — oo, us obtain

f(y)=c+h(y), y >0, (18)

where

i g )

is a real constant. From (13), (17), and (18), setting

a=b+c,

we get

f(x+y)—(b+c)=I:f(x)—(b+c):|+|:f(y)—(b+c):|, x,ye(O,oo),

which shows that & = f —(b +C) is an additive function,
and

f=a+(b+c).

Hence, from (17) we get

g(x)=a(x)+e, xe(0,),
and from (18),

h(x)=a(x)+b, xe(0,2),

Which completes the proof.

Final Remark

Following Azad [9] one could try to consider the fuzzy
versions of precontinuity.
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