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Introduction

 Our purpose is to provide basics of quantum information 
by accommodating it within framework of linear algebra via 
quantum mechanics and functional analysis in plausibly the 
most reader-friendly way. This attempt was made in [1, pp. 
16-46] and our presentation here is its development with 
more elucidation. It is usually the case that one takes some 
basic knowledge for granted without recourse to its source. 
E.g. the Kronecker product of two matrices is taken as heaven-
sent axiom. It is, however, the matrix associated to the tensor 
product of two linear maps. Or one uses Cn as an n-dimensional 
C-vector space and the underlying result is neglected that an 
n-dimensional K vector space is isomorphic to Kn, i.e. vector 
space structure, linear maps, etc. are all ignored. In this paper 
we make pavement of some of such cracks on the road. We also 
restore the lost legay by rferring to standard classics on the 
subject, Chebyshev, Hermite, Dirac, Pauling, et al.

Quantum mechanics is described by the language of 
functional analysis, Hilbert spaces and linear operators. In the 
beginning of development, however, infi nite matrices used to 
be used. Cf. e.g. [2]. Also in [3] and [4] infi nite matrices are 
extensively used. Cf. §  4.
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In [5] we remarked the following. True that Chen [6] 
has rather diligently searched for lost references after 
1983, especially [7] which is not mentioned in [8] but is the 
very genesis of Chebyshev-Markov Expansion (CME) and 
arithmetical Fourier transforms in [9]. It is taken up in [10] as 
a paper containing infi nite matrices in connection with Möbius 
inversion formula.

More recently [11] treats infi nite matrices in another 
context: “An infi nite dimensional vector whose components 
are Fourier coeffi cients of an automorphic form is characterized 
as one which is annihilated by an infi nite matrix whose entries 
are the values of a Bessel function.”

Along with development of functional analysis, the use of 
infi nite matrices has been abandoned and replaced totally by 
linear operators. Since functional analysis may be thought of 
as an advanced deviation of linear algebra, it may be the most 
accessible way to grasping quantum mechanics passing from 
linear algebra to functional analysis and thence to quantum 
theory. This will be given in § 2.

One of the main possible menace on any Grid system 
connected to many users will come from using conventional 
crypto-system. There is a possibility of realization of quantum 
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computers which will break many crypto-systems. §  4 is a 
prelude to quantum information which hopefully will help the 
readers to recognize the underlying structures.

However, in order to recognize the idea of quantum 
computers, it is necessary to have some basics in quantum 
mechanics and for this one needs some basics of mechanics 
since the former is a modifi cation of Newtonian one. In §  3 
we give basics on transition from Newtonian mechanics to 
quantum mechanics,

Then there are two extremal cases. One is qubits theory and 
the other extreme is continuous variable quantum mechanics 
which is the theory of infi nite objects and is directly connected 
to quantum mechanics.

We specify to the theory of qubits (quantum bits) in §  
4. For implementation purpose it is more favorable to have 
simple structures and qubits are simpler and suitable for 
implementation as quantum circuits, cf. e.g. [12].

Funct ional analysis as an advanced deviation of linear 
algebra

 In this section we make a brief transition from linear 
algebra to functional analysis, stating different notation and 
terminologies. There are enormous amount of literature on 
linear algebra and functional analysis. We refer to [13] or [14] 
for the former and [15] etc. for the latter.

A vector space V over a fi eld K is an algebraic system in 
which V is an additive Abelian group with scalar multiplication 
x by elements  of K, where x  V. The scalar multiplication 
satisfi es standard laws in algebra. It follows that V is the set 
of all linear combinations with coeffi cients in K. As is always 
the case with mathematics, given two systems , '

V V  with the 
same structure, the map is of the most importance that keeps 
algebraic structure, i.e. f(x-y)= f(x)-f(y) and f(x)=f(x). These 
two conditions are equivalent ot linearity f(x+μy) = f(x)+μf(y) 
and we call such a map a l inear map : '

f V V . Every vector 
space V has a basis { | }u i Ii  , which is the smallest set of 
generators. I.e. every element x  V may be expressed uniquely 
as a linear combination =x ui I i i   with only fi nitely many 
i’s are non-zero, denoted =V Kuii I  . If the basis consists 
of fi nitely many elements, V is called fi nite-dimensional 
and otherwise infi nite-dimensional. In the former case, an 
n-dimensional K-vector space is isomorphic to Kn. 

Theorem 2.1 Let 

= , = , =
=1 =1 =1

n m
' ''

V Ku V Kv V Kwi j ki j k
  


           (1)

 be vector spaces and let : '
f V V  be a linear map. Then we 

have the basis correspondence formula 

( ) = , , 1 .
=1

m
f u a v a K j nj ij i iji

                (2)

 or in row form 

( ( ), , ( )) = ( , , ) , = ( ) ( ),,1 1f u f u v v A A a M Kn m ij m n        (3)

Under (3), the linear map y=f(x) is in column form 

1 1
= = ( ) = = ,

y x
f A AA

y xm n

   
   
   
   

y x x              (4)

which means 

 =
=1 =1 =1

m m n
y v a x vi i ij j ii i j

                 (5)

and is referred to as the coordinate correspondence formula. 
The representation matrix of g f  is BA, where : ' ''

g V V  
is a linear map satisfying the same conditions as f with the 
representation matrix B.

The correspondence between a linear map f and a matrix 
A is one-to-one and a linear map may be treated as fA in (4).

Here matrix product is carried out according to the rule: 
row × column. It has chirality and if we express (2) in column 
vector form, we have 

t
A  in (4). 

The fi eld K of scalars may be any fi eld, e.g. in coding theory, 
fi nite fi elds are taken. We choose K to be the complex number 
fi eld C.

The inner product (scalar product) of two vectors a,b is 
defi ned by 

t t *( , ) ab baa b ba                (6)

This entails non-negativity 

2 2( , ) = | | =| | 0.
=1

n
aii

 a a a               (7)

The inner product satisfi es linearity in the fi rst entry 

( , ) = ( , ) ( , ), ( , ) = ( , )c c a b c a c b c a b a b             (8)

and because of the complex conjugation property 

( , ) = ( , )b a a b                (9)

it satisfi es modifi ed linearity 

( , ) = ( , ), ( , ) = ( , ) ( , ).c c  a b a b a b c a c b c             (10)

Defi nition 1: The inner product on a C -vector space V is defi ned 
as a map V×V→C satisfying the non-negativity (7), linearity in the 
fi rst entry (8), complex conjugation property (9) and linearity in the 
second entry (10). A C-vector space is called an inner product space 
if there is defi ned an inner product. In this case, the norm is defi ned 
by (7), i.e. 

= ( , ) .a a a                     (11)

We may speak of orthogonality of vectors. Two vectors 

a o , b o  are said to be orthogonal if (a,b) =0 as suggested 
by the cosine theorem. Given an orthogonal system (OS) we 
may normalize it to be an orthonormal system (ONS) by the 
Gram-Schmidt process. If a basis of a vector space is an ONS, it 
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is called an Orthonormal Basis (ONB). Cn 

Lemma 2.1: (i) For a degree K matrix A with complex numbers 
entries, the following conditions are equivalent.

 (a) A is a normal matrix (A A* = A* A) and all eigenvalues of 
A are real numbers. 

 (b) A can be diagonalized by a unitary matrix ( )U U k   as 

11 = = ,
O

U AU D
O k






 
 
 
 

                (12)

where i are real.

(c) A is a Hermite matrix.

(ii) Suppose a Hermite matrix A of degree k is diagonalized 
by a unitary matrix U as (12). Then 

1
1 1= = .

=0 !

e O
A n
e A U U

n n kO e





 


 
 
 
 

            (13)

In what follows we assume the coeffi cient matrix 
= ( )1 ,A aij i j k   has constant entries. We consider the 

homogeneous system of DEs (xj = xj(t)

1 1d
=

d

x x
A

t x xk k

   
   
   
   
 

in the form 

d
( ) = ( ),

d
t A t

t
x x                (14)

by writing 

= ( ) = ( ( ), , ( ))1
t

t x t x tkx x 

as a generalization of the DE for the fi rst-order reaction (a is 
a constant) 

d
( ) = ( ).

d
x t ax t
t

                 (15)

It is weell-known that the solution to (15) is 

( ) = (0),at
x y e x                   (16)

so that the system obeying (15) is an exponential phenomenon. 
This will be applied very often in what follows.

We may also treat the linear DE of degree k

1d d
= 01 11d d

k k
x x

a a xkk k
t t



                  (17)

as a special case of (14) with 

( )
=

( 1)
( )

x t

k
x t



 
 
 
 

x                 (18)

and 

0 1 0 0
0 0 1 0

= .

11

A
a ak 

 
 
 
 
 
 







             

(19)

For differentiation of (18) gives 
d ( )

( ) = ( , , )
d

kt '
t x x

t
x   and the 

last entry is 

1d
11 1d

k
x

a x ak k
t



     by (17) and so (17) amounts 
to (14).

Theorem 2.2: Suppose A is a square matrix of degree k which is 
diagonalizable as in (12). Then the solution of the system of diff erential 
equations (14) under the initial condition (0) = ( (0), , (0))1

t
x xnx   is 

given by 

( ) = (0).At
t ex x                  (20)

A Hilbert space H is an inner product vector spaces over C 
which is complete with respect to the norm            induced by the 
scalar product (,) (as in (11) ). Here completeness means that 
every Cauchy sequence is convergent which enables analysis 
to be conducted on H. The elements of H are usually complex-
valued functions defi ned on a certain domain. A typical example 
is L2(a,b) the Hilbert space of square integrable function on the 
interval (a,b). Thus we call a linear map a linear operator (or 
an additive operator) which sends a function to another object. 
Hilbert spaces come in quantum mechanics as the state space 
(totality of all states) of a quantum system and all (quantum) 
mechanical quantities are expressed as Hermitian operators (or 
self-adjoint operators), i.e. linear operators T: H→H satisfying 
T* = T, where T* means the conjugate operator, i.e.

( , ) = ( , ).1 2 1 2T T


                  (21)

Let {E()} be a resolution of the identity, i.e. each E() is 
a projector having the properties in Proposition 4.1 and they 
satisfy certain other conditions.

Theorem 2.3: Let {E()} be a resolution of the identity. Then for 
a real-valued continuous function Ø(x), we have 

( , ) = ( )d( ( ) , )Tx y E x y                  (22)

defi nes the self-adjoint operator T with domain of defi nition H 
satisfying ( ) ( )TE E T  . In particular for Ø()=

( , ) = d( ( ) , )Tx y E x y                (23)

 defi nes the self-adjoint operator T with domain of 
defi nition H. abbreviated as 

= d ( )T E                  (24)

called the spectral decomposition of T. Here integrals are 
Stieltjes integrals and reduce to sums for discrete { } . 

Defi nition 2: Let T be a Hermitian operator with dense domain 
of defi nition. For a complex number  let 

||.||,
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=T T I                 (25)

and consider its inverse.  belongs to the spectra S (T) of 

T if there is no continuous inverse operator 
1

T


 such that 

1( ) =D T


 . ( )S T  is divided into two subsets: 

( ) = ( ) ( ),S T P T C T                (26)

where P(T) is the point spectra and C(T) is the continuous 
spectra. (In general there is residual spectra), defi ned 
respectively as follows.

• ( )P T   means 
1( ) =D T
  , i.e. the inverse operator 

1T


 does not exist. 

• ( )C T   means 
1( ) =D T H


 but 
1T


 is not 
continuous. 

Theorem 2.4: That ( )P T   is equivalent to the fact that the 
equation =Tx x  has a non-trivial solution. If this is the case,  is 
called the eigenvalue of T and 0x   the eigenvetor of T.

The set of all eigenvectors and the zero vector forms a 
subspace ET () of H called the eigenspace of T.

For a Hermitian operator = d ( )T E   we have 

•  ( )S T   . 

• ( )S T   is equivalent to ( ) ( )1 2E E   for some open 
interval (1 , 2) containing . 

• ( )P T   is equivalent to ( ) ( 0)E E   and 
( ) = ( ( ) ( 0))IE E EmT     . 

•  ( )C T   is equivalent to ( ) = ( 0)E E    and for any open 
interval (1,2) contaning  we have ( ) ( )1 2E E  . 

For a compact operator (or a completely continuous 
operator), Theorem 2.3 reduces to the spectral decomposition 
in the form of a series [16, p. 189](1990),p. 189], whose special 
case is Theorem 4.2 below.

From classical to quantum mechanics

In this section we provide a transition from classical  to 
quantum mechanics. We shall use notation in [17, 5.1] rather 
than the commonly used one in quantum mechanics.

We shall fi rst see that taking for granted that every physical 
quantity T can be represented by a linear operator, which by 
abuse of language is denoted by the same letter T, Hermitian 
operators are the ones that are needed. For the expectation 
value of T is given as the inner product 

( , ) = | = d ,T T T     


   r             (27)

where ( , )T  indicates the inner product in the vector space H 
and r = (x,y,z) is the position vector. Since expectation value is 
the average of the measured real values of a physical quantity, 

it must be real. For this it suffi ces that the conjugate operator 
T* exists such that T T


 , which means that T* is an extension 

of T . T is then called symmetric. Symmetric operators are not 
always self-adjoint but physical interpretation requires that 
operators which represent measurable physical quantities 
must be self-adjoint, and we use symmetric and Hermitian 
synonymously so is customary.

For a Hermitian operator T, the eigenvectors |   belonging 
to its eigenvalue ( )    are viewed as the quantum state whose 
mechanical quantity is equal to .

The Hermitian operator H expressing the total energy of a system 
is called the Hamiltonian. In most of quantum physics books, 
the Hamiltonian is denoted Ĥ  but we use the same letter H as 
with the Hamiltonian function.

The wave function (denoted as a ket vector | =| ( , )t  r , 
cf. §  4) is a (vector-valued) function in the position vector r 
and time t and is to satisfy the (time dependent) Schrödinger 
equation. 

| ( , ) = | ( , ) ,i t H t
t


   


r r              (28)

where 

=
2

h


                 (29)

is called the reduced Planck constant, referred to as the Planck 
constant and where 

27= 2 = 6.624 10 e sh rg ec


 

is the Planck constant.

More concretely, consider a system of N point particles 

= ( , , )x y zj j j jr  with mass mi , 1 j N   moving around a 

three dimensional space under the infl uence of forces given as 
a potential energy V = V(R,t), where 

3= ( , , ) = ( , , )1 1
N

x zN N R r r                (30)

 is a 3N-dimensional vector. For this the Hamiltonian H in 
(28) reads

2 1
= ,

=12

N
H Vjj m j

  


             (31)

where Δj is the Laplacian operating on each rj defi ned by 

2 2 2
= .2 2 2j
x y zj j j

  
  

  
              (32)

Hence the Schrödinger equation (28) amounts to the non-
relativistic Schrödinger equation in position basis 

( , ) = ( , ),i t H t
t


 


R R                (33)

where ( , )t R , called the (position-space) wave function, 
describes the state of the system at time t. In this case, there 
is a postulate (M. Born) that the probability of the positions 
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of N particles lying in a certain region 
3N

D    is to be 

proportional to 

2| ( , ) | d .tD   R R               (34)

For this we must have the probability of the total event is 
to be 1, and a fortiori 

23 | ( , ) | d < ,N t   R R                 (35)

i.e. the 
2
L -space 

2 3( )NL   is the place where the wave 

functions are to lie.

In the form (31), we may easily check the condition for H 

to be symmetric. Let 
3N

D    be either bounded or equal to 

the whole set. In the former case, we consider only those wave 

functions which are 0-extensions, i.e. ( , ) 0t R  if DR  and 

in the case 
3= N

D  , we take account that ( , ) 0t R  quickly 

enough as one of the position variables tends to   in view of 
(35). We refer to this as a boundary condition. It suffi ces to 
consider the case  xR , say. By integration by parts, we have (
'R  denoting the (3 1)N  -dimensional vector) 

2
( , ) ( , , , )d1 22t x tD

x


  


R R  

= ( , ) ( , , , )d1 2
'

t x tD
x x

 
   

 
R R  

2
= ( , ) ( , , , )d ,1 22 t x tD

x


  


R R  

or (21) with = =T T H


.

We shall explain how the Hamiltonian (31) is deduced from 
the Hamiltonian function. For a conservative system (in which 
the potential energy does not depend on time) the Hamiltonian 
function H = H(R) is the total energy (kinetic and potential) of 
the system: 

= ( ) = ( ) ( ) = .H H T V WR p R              (36)

Here the momentum pk related to the direction xk  is m xk k
, so that 

= ( , , ) = ( , , )1 1 1p p m x m xN N Np                 (37)

and the kinetic energy = ( )T T p  is 

1 1 12 2 2 2= ( ) = .
=1 =12 2

n n
T m x y z pk k k k kk k mk

               (38)

Substituting (38) into (36), we deduce that 

1 1 2( ) = ( ) = .
=12

n
H p V Wkk mk

 R R              (39)

Making the replacement 

= , = ,
2 2

h h
p i W ik

i x x i t tk k 

   
  

   
            (40)

we obtain the Hamiltonian (31).

The Hamiltonian (31) operates on the wave function ( , )t R  
as 

2 1
( , ) = ( , ) ( , ) = .

=12

N
H t t V t ijj m tj


     


R R R


           (41)

Hence the wave equation (33) amounts to (41).

In case the boundary conditions can be so chosen that the 

Hamiltonian is Hermitian, then (41) can be solved using the 

spectral decomposition. [18, pp. 172-185]: 

( , ) = ( , 0), =
i Ht

t U U et t


 R R            (42)

where eB is the exponential function in the bounded operator. 
Hence this may be thought of as a manifestation of exponential 
phenomenon. We note that Ut is a unitary operator [17, p. 175]. 
We add a standard characterization [18, p. 41]. 

Theorem 3.1: For a bounded operator U to be unitary it is 
necessary and suffi  cient that 

1= .U U
 

              (43)

Our aim from here is to solve (41) under the assumption 
that   is of variables separable type 

( , ) = ( ) ( )t t  R R                (44)

and prove Theorem 3.3 generalizing the standard Theorem 
3.2. Both of them hold on the assumption that ( ) R  is also 
of variables separable type. Substituting (44) in (41), we have 

2 1 d ( )
( ) ( ) ( ) ( ) = ( ) ,

=12 d

N t
V x t ijj m tj


     

 
  
 

R R R


      (45)

whence dividing both sides by ( ) ( )t  R  we have 

2 21 1 d ( )
( ) ( ) = .2( ) 2 ( ) d

t
V i

m x t t

 


 


 



   
     

R R
R


            (46)

Since the left-hand side of (46) is a function in R only and 
the right-hand side in t only, it follows that (46) must be a 
constant, say W. Hence (46) is equivalent to the system 

d ( ) = ( )
d

2 1 ( ) ( ) ( ) = ( ).
2 =1

t iW t
t

N
V Wjm jj

 

  

 
 

 
 
    
 

R R R R





           

(47)

The second equation in (47) is often written as 

1 2
( ) ( ) ( ) = 02=1

N
W Vjj m j

    R R


             (48)
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and called the Schrödinger amplitude equation for a 
conservative system of point particles. W = Wn represents the 
energy of the system at its various stationary states and is 
called the characteristic energy values or eigenvalues of the 
wave equation.

Since the fi rst equation in (47) is one for the fi rst-order 

reaction (15), the solution is given by 
iW tn

e

 . Hence by the 

principle of superposition, the general solution ( , )t R  of (41) 
is given by 

( , ) = ( , ) = ( ) .

Wni t
t a t a en n n nn n




  R R R               (49)

Up here the variable separation condition on ( )n R  was not 
assumed. From here we assume that ( ) R  is also of variables 
separable type, in which case we may separate the components 
as in [19, p. 101] and treat the case (48) for R = x.

2d 2
( ) ( ) = 0.2 2d

m
W V x

x


 


             (50)

Since this is a linear DE of degree 2 with variable coeffi cients, 
we apply the Lagrange constant variation method) to fi nd its 
(approximate) solutions (66). Let 

( )
= ( ) = ,

q x
x e              (51)

say, where 

( ) = d
i

q x y x


               (52)

and = ( )y y x . Then 

d ( )
= .

d

i q x
ye

x




               (53)

Hence differentiating again, we obtain 

2d d ( )2= .2d d

i y i q x
y e

x x




 
 
  

              (54)

Substituting (54) and (51) into (50) and dividing both sides 

by 
1 ( )
2
q x
e


, we transform (50) into 

d 2 2 ( ) = 0
d

y
y m W V

i x
   


or 

d 2 2 2= 2 ( ) = ,
d

y
m W V y p y

i x
  


            (55)

say, where 

= 2 ( )p m W V              (56)

is the classical expression for the momentum.

The Wentzel-Kramers-Billouin Method (WKB method) 
consists in giving an approximation to the solution of the wave 

equation. The fi rst term leads to the result obtained by classical 
mechanics (Newtonian mechanics), the second term to the 
old-quantum theory result, and higher terms to corrections 
which brings in the effects characteristic of the new (quantum) 
mechanics.

In [19], they apply WKB method by viewing y  a priori as a 

function in h  and expand it into the Maclaurin series in :=t
i


: 

= ( , ) = ,
=0

n
y y x h y tnn


              (57)

where yj are functions in x. We compare the coeffi cients of (57) 
and (55) in the form 

 d 2 2 2 2 2 2= = = ( 2 ( 2 ) ).0 0 1 1 0 2 0d

y ' n
t t y t p y p y y y t y y y tnnx


        

               (58)

Hence 

2 2 2= 0, 2 = , 2 = ,0 0 1 0 1 0 2 1
' '

p y y y y y y y y                 (59)

so that 

 1 20= , = = , = .0 1 2 1 1
2 2 20 0

' 'y p '
y p y y y y

y p y

 
          (60)

Since 

2
= ,

2

'
mV'

p
p


             (61)

it follows that 

2
= = .1 2(2 ) 4( )

' '
mV V

y
p W V

            (62)

Substituting the expressions for 1y '  and 
2
1y  in the third 

equality in (60), we fi nd that 

1 1 2= (4 ( ) 5 )2 22 16( )

'' '
y V W V V

p W V
  


              (63)

1 1 2= (4 ( ) 5 )5/232 2 ( )

'' '
V W V V

m W V
  



Incorporating the coeffi cients 0 1 2, ,y y y  from (57), (62) 

and (63), we have an approximation to (52) 

2

= =0 1 2
4( )

'
V

y y y y p
i i i W V

   


 
 
 

  
             (64)

2
1 1 2(4 ( ) 5 ) .5/232 2 ( )

'' '
V W V V

i m W V
   



 
 
 




Substituting (64) up to the second term and noting that by 
(62) 

1
d = log( ) ,1

4
y x W V C                                           (65)

we fi nd an approximation 
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1
2 ( ) d4= ( )
m W V x

M W V e
                (66)

with M  a constant. The probability distribution function is 

1
12( )C W V
p




                  (67)

in conformity with the classical result that the probability of 
fi nding a particle in a range dx is inversely proportional to the 
velocity in that range and the velocity is proportional to p.

Quantization occurs when one attempts to extend the 
region for W by an associated condition 

d = 2 , = 0,1, 2, ,y x hn nC                 (68)

where the integral is a certain contour integral. The fi rst 
approximation in (64) amounts to the classical quantum theory 
condition (68) with p in place of y. The second approximation 
in (64) gives 

1
d = 2 , = 0,1, 2, .

2
p x n nC  

 
 
 
               (69)

Lemma 3.1: Writing in (50) 

1 2= ( ) = ,2x p 


              (70)

where p is defi ned by (56), we fi nd that (50) amounts to the 
homogeneous equation for a one-dimensional wave ( )y x  

= 0,''
y y                (71)

which entails (78). 

Corollary 3.1 In the case where  is a constant (we may suppose 
>0), this can be solved e.g. by the method of diagonalization, cf. 
Theorem 2.2 or by the Laplace transform method and the solution 
to (71) is 

(0)
( ) = (0) cos sin = sin( ),

'
y

y x y x x A x   


              (72)

say. Further if ( )y x  has the initial value (0) = 0y  and satisfi es 

the boundary condition that ( ) = 0y x  for > > 0x a , a being 

big enough. Then (71) amounts to the one-dimensional 
Schrödinger equation 

= ,22

''
y Ey

m



             (73)

where = 22
E

m



. By continuity, ( ) = 0y a . The solution (72) 

reads 

(0)
( ) = sin .

'
y

y x x


               (74)

For this to vanish at =x a , we must have =a n  , n    
or 

2

= .
n

a




 
 
 

                (75)

Hence 

2

= = 22

n
E En

m a

 
 
 


               (76)

are energy levels and 

( ) = sin
n

y x c xn
a


             (77)

are eigenfunctions belonging to En . 

We are in a position to prove Theorem 3.2.

(71) contains the case of simple harmonic motion of a point 
particle under the restoring force directly proportional to the 
displacement x  acting on it in the direction opposite to x , i.e. 

=''mx kx                 (78)

which is the case (71) with =
k

m
 . It is customary to write 

  for the frequency, i.e. =
k

m
  or 

2=k m . Since the potential 

inducing the restoring force on the left-hand side of the above 

equation is 
1 2( ) =
2

V x x , the Hamiltonian function (39) is 

1 12 2 2= ( ) = .
2 2

H H x mp m xx                (79)

Making the replacement (40), we fi nd the Hamiltonian— 
harmonic oscillator 

2 2d 1 2 2= 22 d 2
H m x

m x
 


               (80)

and the Schrödinger equation corresponding to (48) with W=E 
reads 

( ) = ( ).H x E x               (81)

Introducing the notation 

2
, = ,

m
x x E







 

 (81) amounts to 

2d 2 ( ) = ( )2d
x x x

x
  

 
 
 

           (82)

which is (86) below satisfi ed by Hermite polynomials. The 
solutions satisfying the boundary condition that ( ) 0x   as 
x    are possible only for = n   with 2 1n  , = 0,1,n   and 
are proportional to (85).

Invoking the normalization of   we have proved 
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Theorem 3.2: Under the assumption of (??), eigenfunctions 

corresponding to eigenvalues 
1

=
2

E nn 
 
 
 

  are 

21 2( ) = .
2 !

m xm m
x H x en nn

n


 






 
 
 


 

            (83)

Cf. e.g. [20].

Here the Hermite polynomial = ( )y H xn  is a solution of the 
DE

2d d
2 2 = 02d d

y y
x ny

x x
                 (84)

and 

1 2
2= ( )
x

w e H xn


              (85)

is a solution of 

2d 2(2 1 ) = 0.2d

w
n x w

x
              (86)

Hermite polynomials are one of well-known class of 
orthogonal polynomials (cf. e.g. [21, II, pp.153-231]) and the 
class of functions given by (83) forms an ONB (orthonormal 
basis).

There is an explicit formula ([21, II, p. 193 (9)]) 

2[ /2] ( 1) (2 )
( ) =

=0 !( 2 )!

m n mn x
H xn m m n m







            (87)

which may be proved by the formula 

2 2
( ) = ( 1)n x n x

H x e D en


             (88)

with 
d

=
d

D
x

. First a few terms are 

2 3( ) = 1, ( ) = 2 . ( ) 4 2, ( ) = 8 12 , .0 1 2 3H x H x x H x x H x x x  

Below we give proofs of some of the properties of Hermite 
polynomials. 

(84) reduces to (86).

Proof. We determine the constants   so that by the change 
of variable 

2
= xy e w

                (89)

(84) reduces to the one without 
d

d

w

x
. We have 

2d d
= 2

d d

y wx
e xw

x x


 

 
 
 

and 

 
2 22d d d 2= 4 2 2 12 2d d d

y w wx
e x x w

x x x


    

 
 
 

Substituting these and dividing by 
2xe , we see that (84) 

reads 

   
2d d 24 2 4 ( 1) 2 2 = 0.2d d

w w
x n w

x x
                (90)

We choose 
1

=
2

 . Then the coeffi cient of w  for this choice 
is 

22 1n x 

and (86) follows. 

The confl uent hypergeometric functions are solutions of 
the DE 

2d d
( ) = 02d d

y y
x c x ay
x x

               (91)

and one of the solutions is given by ( , ; )a c x  [21, II, p. 248].

(91) amounts to Whittaker’s standard form 

1 2
2d 1 4 = 02 2d 4

w
w

x x x



   

 
 
 
 
 


               (92)

where 
1

=
2

a   , = 1 2c  .

Proof. We determine the constants ,   so that by the 
change of variable 

= x
y x e w

 
               (93)

(91) reduces to the one without 
d

d

w

x
. We have 

1
d d2 2=
d d

c xy w
x e w

x x x





 

  
    

and 

 2 2 2d d d 2 2= 22 2 2d d d

y w wx
x e w

x x x x x x

    
 


    

   
        

Substituting these and dividing by 
xx e 

, we see that (91) 
reads 

 
2d d

2( )2d d

w w
x x c x
x x

                   (94)

2
2 ( 1) = 0.

c
c a x w

x

  
    

 
      
 
 
 
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For the coeffi cient of 
d

d

w

x
 to vanish, we choose =

2

c
  , 

1
=

2
 . Then the coeffi cient of w for this choice is 

2

14 2 .
2 4

c c

c
a x

x

 

  

Dividing (94) by x  leads to (92). 

(91) reduces to (84) and (86).

Proof. We write the variable x by x in (91) and put 

2=z x                             (95)

to obtain 

d d d 1 d
= 2 , = .

d d d 2 d

y y y y
x

x z z x x




Hence 

2 2d d d d 1 d d2= 2 2 = (2 )2 2d d d d d d

y y y y y
x x

x z x z x x z
   

or 

2 2d 1 d 1 d
= .2 2 2 2d 4 d d

y y y

z x x x z


 
 
 

Substituting in (91), we deduce that 

2d 1 d 1 d2( ) = 02 24 d d 2 d

y y y
c x ay

x x z x x




 
   

 
 
 

or 

2d 1 d d
2 4 = 0.2d 2 2 d d

y y y
c x ay

x x x x


 


   
 
 
 

Letting =
2

c

 , we arrive at 

2d d
2 4 = 0.2d d

y y
x ay

x x
               (96)

Hence (96) with = 1  (whence 
1

=
2

c ) and 
1

=
2

a n  
amounts to (84). 

Proposition 3.1: For the Hermite polynomial (87) we have ([21, 
II, p.194 (16)] 

1 1 2( ) = 2 , ;
2 2

n
H x n xn  

 
 
 

             (97)

and [21, I, p. 267 (32)] 

1 1 3 2( ) = 2 , ; .
2 2 2

n
H x x n xn  

 
 
 

                          (98)

amounts to (97). 

Proof. Recall the asymptotic formula [21, I, p. 278 (1)] 

 ( ) ( 1) 1( , ; ) = ( 1) | | ,
=0 !

N a a cm a m a Nm ma c x x O x
m m

      
    

             (99)

where 

3 3
= 0,1, 2, , < < , | | .a

2 2
N x xrg   

Comparing the leading coeffi cients of (87) and (99), we 
conclude (97).

To show that (98) amounts to (97) we recall [21, I, p. 267 
(6)]

1( , ; ) = ( 1, 2 : ),c
a c x x a c c x


              (100)

(100) with =
2

n
a  , 

1
=

2
c , 

2
x x  establishes (98). 

Using Proposition 3.1, Theorem 3.2 reads 

Theorem 3.3 Under the assumption of (??), eigenfunctions 

corresponding to eigenvalues 
1

=
2

E nn 
 
 
 

  are 

22 1 1 2( ) = , ; ,
! 2 2

mn xm m
x n x en

n


 




  

 
 
 


 

        (101)

where the left-hand side resp. right-hand side   means the 
wave function resp. confl uent hypergeometric function. 

A slightly more general class of functions are that of 
parabolic cylinder functions, [21, pp. 115-132] (in which the 
header on p. 131 should read “parabolic cylinder functions”).

Finally we state the following extreme case which is 
important in molecular orbital theory. Cf. [22, pp. 16-22].

Example 3.1: We consider the extreme case where the quantum 

state = ( )t    varies with time variable t  only according to the 

Schrödinger equation (28), If ( ) = ( )H t E t    and the eigenvalue E 

is real called the energy levels of the system, cf. the fi rst equation in 
(47). The solution of this equation is called the stationary state on the 
ground that its expectation does not change with time. The energy 
level means the values of the energy which the stationary state can 
assume. (28) amounts to 

d
( ) = ( )

d

iE
t t

t




  

   
          (102)

and the solution given by (42) amounts to 
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( ) = (0).
iEt

t e

               (103)

Quantum information

Given two wave-functions ,m n  , their inner product 

( , )m n   is usually defi ned as in (27) by 

( , ) = d .m n m n    r              (104)

We show in (112) below that 

( , ) = |m n m n                   (105)

in the Dirac notation [23].

Let { }iu  be an ONB (e.g. (83) in infi nite dimensional case). 

Then an arbitrary wave-function may be expressed as 

= ,c um im ii
 

   
            (106)

where = ( , )c uim m i    such that 

2
= 1.cimi

                (107)

We defi ne the ket vector | m   by 

1
| = 2

c m
cm m 
 
 
 
 

            (108)

and the bra vector |m  by 

 |=| = , , ,1 2c cm m m m 


             (109)

Cf. Table 1.

(108) reads for the element μi of the ONB, 

0

0
| = = ,

1
0

ui i

 
 
 
 
 
 
 

e





              (110)

the i th fundamental unit vector. (107) implies that 

|| |= 1.m                 (111)

Substituting (107) into (104), we fi nd that 

( , ) = ( ) =c c u u c cm n im jn i j im jn iji j i j
                (112)

= = ( |, | ),c cim in m ni
   

i.e. the matrix product of the bra- and the ket-vectors, which 
we express as |m n    following Dirac’s convention [23, p. 
19, ll. 15-16 from below] of contracting two vertical lines into 
one. Hence (112) leads to (105). Up here the Hilbert spaces 
comprising of wave functions is of infi nite dimensional and is 
referred to as continuous-variable quantum information. The 
ket vectors and matrices are of infi nite degree, which are rather 
classical, as stated in §  1. For modern theory cf. e.g. [24].

 In what follows we shall confi ne ourselves to qubits where 
the associated Hilbert spaces H are fi nite dimensional complex 
vector spaces which we may view as CN (as mentioned in §  

2. = 2 ,N


 cf. (119)). Hence a ket vector is an N-dimensional 
column vector and a Hermitian operator is a Hermite matrix. 
Since qubits are (N -dimensional) unit vectors, unitary matrices 

are essential because they are isometries: | | |=|| |U    . It will 

turn out that qubits are generated from single qubits ,    by 

Kronecker product =       which are then processed by 

unitary matrices. This is expressed by saying that a qubit    is 
input into a quantum gate U and output is U  .

From here to the end of this section we partly refer to 
[12,25] some materials are taken from there with more detailed 
and lucid expoundation using more well-known symbols from 
linear algebra. It is standard to start from the 2 -dimensional 

complex vector space 
2 = 1 2e e     (the totality of all 

single qubits). It is customary to denote the unit basis vectors 

as two special states | 0 ,|1   known as computational basis 

states. In the notation of (110) 

   1 0
| 0 = = , | 1 = = .1 20 1
 e e              (113)

These correspond to the spin-up and spin-down states 
of a particle such as an electron or a proton. All the elements 

| 0 | 1a b   , 
2 2| | | | = 1a b  in 

2   are called (single) 
qubits (quantum bits) or a 1-qubit. When qubits are observed 

Table 1: Notation in linear algebra and quantum theory.

Subject  Lin. alg.  Quantum (ftn’al analysis) 

 system  vector space, matrices  Hilbert space, linear operators 

 complex conj.  A   T


 

 transpose 
 
t
A

  
T
T  

 conj. transpose 
 A


  

†
T  

 Hermitian 
 =A A


  

† =T T  

 unitary 
 

1=U U
 

  
† 1=U U


 

 vector  column a   ket | |   

 vector 
 row 

'a   bra | (=| ) 


   

 inner prod. 
 ( , ) = a b b a   

| =| |1 2 1 2   


   
 

Here the scalar product hψ1|ψ2i is as in (105)
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(or measured), the value is determined either to be 0  or 1 
with probability 

2| |a  and 
2| |b , respectively. Measurement is 

formally conducted by applying the measurement operators 
in Defi nition 6 and the coeffi cients 

2| |a  and 
2| |b  may be 

thought of as probabilities (cf. Remark 1).

Single qubits are extended to v-qubits by way of tensor 
products. Cf. e.g. [14,26]. 

Defi nition 3: For two free C-modules M,N (i.e. C-vector 

spaces) with bases { }u , { }v , their tensor product M N  

is the totality of all linear combinations of u v  , which is 

again a free C-module. For matrices, we specify the tensor 
product to be the Kronecker product in Defi nition 4.

Every state of a quantum system is expressed by a ket vector 
   which is a wave function and satisfi es the Schrödinger 
equation (28): 

| = | .i H
t

 


 




If    is only timedependent, then Example 28 gives an 
explicit expression as an exponential phenomenon: 

( ) = (0)
iHt

t e


                (114)

which is called the time evlolved state.

The state space of a composite quantum system is the 
tensor product of the state spaces of the component systems. If 

| j  , 1 j n   are the states of the component systems ( N j

-qubit), then the joint state of the total system is the Kronecker 

product | |1 n     , which is an = 1N N Nn -qubit in CN 

. For the length of this vector is || | || |= 11 n    in view of 
(124).

Hence 2-qubits are all the unit vectors in the state space 

2 2
  . Then we defi ne v-qubits inductively as unit vectors 

in (116) below.

For linear maps : '
f M M , : '

g N N , there exits a 

unique linear map denoted f g  such that 

( )( ) = ( ) ( ).f g x y f x g y             (115)

v -qubits are all the unit vectors in the Hilbert space (state space) 

2 2 ,


                  (116)

i.e. they are of the form 

1 1a a N e e                (117)

with normalization 

2| | = 1,
=1

N
akk

                (118)

where 

=| 0 0 , , =| 1 11 N e e  

and 

= 2 .N


               (119)

E.g. | 0 0 = | 0 | 0


       is the Kronecker product of   

| 0 ’s. Since  1
| 0 =

0
 , we have | 0 0 = (1, 0, , 0)t

   by (123).

Defi nition 4: For any matrices 1 ,1= ( )ij i m j nA a      and 

= ( )1 ,1B bk k p q      their Kronecker product (or tensor product) 

A B  is defi ned by 

11 1
= = ( )

1

a B a Bn
A B a bij k

a B a Bmnm


 
 
 
 


 


          (120)

and this extends linearly in both variables. In particular for two 
ket vectors 

1 1
2 2| = , | =

c d
c dm n

c dm n

    

   
   
   
   
   
 

             (121)

their Kronecker product is 

1 1

1

| | = ( ) = ,

1

c d

c dn

c di j

c dm

c dm n

  

 
 
 
 
 
 
 
 
 







           (122)

which we usually express in the transposed row vector form 

( , , , , , , ).1 1 1 1
t
c d c d c d c dn m m n  

The left-hand side of (122) is abbreviated as: 

| | =| =| | = ( ),c di j                     (123)

This satisfi es 

|| | |=|| ||| | .                   (124)

The outer product | |   is the Kronecker product 

| |     given by 

1
1 1 1

2| |=| | = ( , , ) = ,1
1

d
c d c dmd

c cm
c d c dn m ndn

   


    

             


 




 
       
       
            (125)
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It is convenient to view it as a linear map Cm→Cn 

| | (| ) =| | = | | .' ' '
                        (126)

If { }je  be an ONB, then we have 

| |= ,e e Ei j ij                (127)

where Eij is a matrix unit consisting of all 0’s except for the (i, 

j)-entry which is 1. In particular, 

=| |=P e e Ek k k kk            (128)

is called a projector, cf. [17, p. 173] for a projector in a Hilbert 
space. They have properties stated in (135). 

It is instructive to know the source of the Kronecker product. 

Theorem 4.1: Suppose , , ,' '
M M N N  are f.g. free K -modules. 

Then = H ( , )M om M JJ


 denoting the dual of M , we have 

( )M N M N
  

              (129)

in general. (129) and 

H ( , ) H ( , ) H ( , )' ' ' '
om M N M N om M M om N NR R R       (130)

are equivalent. (130) gives a motivation for the tensor product 
of maps in Defi nition 4.

Suppose = =1
n

M Kuii , = =1
'' n '

M Ku jj , = =1
m

N Kvk k

, and = =1
'' m '

N Rv a   and that the matrices corresponding to 

= H ( , )'f f om M MKA   and = H ( , )'g g om N NB K  are as in 

Theorem 2.1. Then the matrix corresponding to the tensor 

product f g  with respect to the bases { }u vi k , { }' '
u vj    

is the Kronecker product A B : 

( )( ) = ( ) .' '
f g u v u v A Bi jk              (131)

Example 4.1: v-qubits can represent 2v states: 

| = ,1n n e               (132)

where the left-hand side means the nth member of the 
sequence of v digits numbers in dyadic expansion arranged in 
increasing order and the right means the nth 2v -dimensional 
fundamental unit vector.

E.g. for = 3N , we have by (123) and (122) 

| 6 =| 110 =| 1 | 1 | 0 =| 1 | 1 | 0                   (133)

       
0

0 0 1 0 1
= = = (0, 0, 0, 0, 0, 0,1, 0) = .71 1 0 0 0

1

t
  

 
 
  
 

e

Here the fi rst notation is the decimal number 6  viewed as 
its dyadic expansion 

22 1 2 0   . 

Proposition 4.1: (125) and (126) are equivalent. Let { }e j  be an 

ONB satisfying | =e ei j ij  . Then the completeness condition 

| |= .
=1

n
e e Ei ii

              (134)

as well as 

2 = , | = | , = 0 ( )1 2 1 2P P P P P P kk k k k k          
    (135)

are satisfi ed, where Pk  is the projector defi ned by (128). 

Proof. Let 

1

2| =

'
c
'' c

'
cm

 

 
 
 
 
 


. Then noting | = =1
' 'm c ci i i    , we 

see the equivalence by multiplying | '
   by the matrix (125).

The second assertion follows from (127). Finally the second 
equality in (135) holds since both sides are | |1 2e ek k    . 

We prove that the totality of all Kronecker products of 
single qubits | |a b   does not exhaust the totality of 2
-qubits states.

Proof. 2 -qubits are of the form 

| 00 | 01 | 10 | 111 2 3 4a a a a                 (136)

with 
24 | | = 1=1 ak k .

On the other hand, by (132), 

| | = ( | 0 | 1 ) ( | 0 | 1 ) = ( , , , ),1 2 1 2 1 1 1 2 2 1 1 2
t

a b a a b b a b a b a b b b          

              (137)

which cannot exhaust (136). 

E.g. 

| 00 | 11 1 1
= , 0, 0,

2 2 2

t   
 
 

            (138)

cannot be expressed in the form (137).

But since the totality of all N-qubits arising from the 
Kronecker products of component Nj-qubits have restrictions 
on the coeffi cients, it does not exhaust all N -qubits. In qubit 
theory one says that a state of a composite system which cannot 
be written as a product of states of its component systems is an 
entangled state. The state (138) is an entangled state.

The following theorem is the special case of Theorem 2.3 
for a compact operator as stated toward the end of §  2.

Theorem 4.2: Let A be a Hermite matrix of degree n  with 

eigenvalues k  and the corresponding eigenvectors | k  , 1 k n   

forming an ONB. Then the spectral decomposition 

= = | |
=1 =1

n n
A Pk k k k kk k

                 (139)
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holds true, where Pk is the projector in (128). If ( ) = =0
k

f z a zk k
  

is an analytic function with power series convergent in a disc, 
then 

( ) = ( ) | |
=1

n
f A f k k kk

             (140)

and in particular, 

= | |
=1

nA ke e k kk


                (141)

Proof. This is a special case of Lemma 2.1 with a Hermite 
matrix. Indeed, writing 

= = ,
=1

n
A UDU UE Uk kkk


 

           (142)

we see that this amounts to (139).

We may directly prove this by operating A resp. =1
n Pk k k  

on an arbitrary | = |=1
na a     . We have 

| = | = |
=1 =1

n n
A a a A ak k k k kk k

     

and 

| = | | | = | | = |
=1 =1 =1 , =1

n n n n
P a a a ak k k k k k k k k k kk k k k

                       

by orthogonality, whence (139) follows.

Proposition 4.2: Let 

 0
= =2 0

i
y i

 


            (143)

be one of three three Pauli matrices. Then prove that 

 cos sin
=

sin cos

i y
e
  

 


             (144)

which is the matrix of rotation by   

Proof. It is easy to see that the eigenvalues and the 

corresponding eigenspaces of y  are = 1, = 11 2  

,  (1) =
1
i

E
y

 ,  ( 1) =
1
i

E
y

  . With  1
| =1 12

i



 , 

 1
| =2 12

i
  , we have 

   1 11 1
| |= , | |= .1 1 2 21 12 2

i i
i i

   


 


          (145)

Substituting this in (141), we conclude (144). 

Information processing (IP) f is a process by which an input 
data is processed by f and an output data is released. This has 
been done by classical computers whose circuits consist of 
wires and logical gates, where the former carry information 

around the circuit and the latter perform manipulations of 
information from one form to another. A Parallel Information 
Processing (PIP) is the case where there are several processors 
fi working on an input to give an output, where processors are 
not necessarily independent. Quantum Information Processing 
(QIP) is similar in spirit to PIP in that instead of several 
processors one uses only one processor—a (programmed) 
unitary operator as in (42) and the logical gate performing this 
operation of multiplying by a unitary matrix is called a quantum 
gate: 

| = | , = ,o i

i H tf
U U eut f n f


               (146)

where fH  is the Hamiltonian corresponding to the processor f. 

The quantum computer to be defi ned in Defi nition 7 drastically 
reduces the number of computational steps by means of the 
generated entanglement.

It is noticeable that quantum physics, esp. quantum 
entanglement has a close connection with the Riemann zeta-
function, esp. the Riemann-Siegel formula [27-31] etc. This 
will be studied elsewhere.

Example 4.2: The NOT gate acting on single qubits is the one 
which changes | 0  and | 1  and can be represented by the matrix 

 0 1
=

1 0
X                (147)

which is a unitary matrix and one of Pauli matrices denoted 

= =1 Xx  .

Let U be a unitary matrix of degree2. Then the controlled 
U-gate acting on 2-qubits is the one which transforms the 
second bit (target bit) by U only when the fi rst bit (the control 
bit) is |1 . In the special case where the unitary matrix U is 
given by 

 
1 0 0 0
0 1 0 0 2= = ,C 0 0 0 1
0 0 1 0

E O
U NOT O X

 
 
  
 

          (148)

the controlled U -gate is called the CNOT (controlled NOT 

gate). I.e. CNOT gate acts on 2-qubits and changes | xy  into 

| ( ) mod 2x x y  , i.e. it changes the target bit—the second bit by 

the other one only when the control bit—the fi rst bit is 1. 

For any unitary matrices used U1, U2, the conditional 
transformation 

=| 0 0 | | 1 1 |1 2U U U               (149)

is also unitary. For 

= (| 0 0 | | 1 1 | )(| 0 0 | | 1 1 | )1 2 1 2UU U U U U
  

         

reduces to | 0 0 | | 1 1 | = =2 2 2 2 4E E E E E       since 

= .E E Eii jj ij ij            (150)
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Since 

 

     2 2= = =| 0 0 | | 1 1 | ,11 2 22 2
E O E O O O

E E E X E X
O XO X O O

          
       
              (151)

it follows that the matrix CU NOT  in (148) is a conditional 
transformation and a fortiori is a unitary matrix.

Example 4.3: The Hadamard gate H is defi ned by 

11
| = ( 1) | .

=02

xy
H x y

y
               (152)

Hence it sends | 0  (resp. |1 )  to 
1

(| 0 | 1 )
2

   (resp. 

1
(| 0 | 1 )

2
   ) and is represented by the matrix  1 1 1

=
1 12

H


. Since 
2 = 2H E  we have 

| 0 =| 0 , | 1 =| 1 .HH HH               (153)

 Consider the CNOT gate with the control and target bits 
are squeezed by two Hadamard gates. Then if the fi rst input bit 
is |1 , then by the conditional negation, the second input bit 
is interchanged, i.e. the second input bit after the controlled 
negation becomes | 1H   (resp. | 0H  ) if the second input 
bit is | 0H   (resp. | 1H  ). Then this is processed by the last 
Hadamard gate to become | 1H   (resp. | 0H  ), i.e. this circuit 
has the same effect as the up-side-down CNOT gate.

We have also 

1 1
| 00 = | 0 0 = | 0 | 0 = (| 0 | 1 ) (| 0 | 1 ).

2 2
H H H H H H               

             (154)

Let 

 2=
E O

U
O U

               (155)

where 

= 4

a b
U E

c d

 
 
 
 

o
o o

o
              (156)

where , , ,a b c d    satisfy the conditions under which U  is 
unitary. Let 

 = .
a b

U
c d

                (157)

U acts non-trivially only on the 3rd qubit | 010   and the 8
th q-bit | 111   of a 3-qubit giving rise to 

(0, 0, , 0, 0, 0, 0, ).t
a b c d    

We interpret this as an action of U . A Grey code connecting 
| 010  and | 111  is 

=| 010 =| 011 =| 111 .1 2 3g g g                (158)

Since g2 and g3 are different only at the fi rst qubit, we think 

of them as contracted to  | 0 | 1 =


 


    and multiply it by 

U  and then pull back the fi rst entry a b   to the 3rd qubit 
| 010 -position as shown in Figure 1.

In Figure 1, 2 1ac c   is input to the gate 2 1AC C . The cross 

symbol means the NOT gate and so 010  is output as 011 . 
Then after operation by U , 011U   is output as 010U  .

 It can be shown that any unitary matrix U can be expressed 
as the product of level 2-matrices. This is a step toward the 
proof of Theorem 4.3 at the end. For its proof we refer to [25].

The theory of fi nite Fourier transforms (or discrete Fourier 
transform) has been developed in [32] in the case of periodic 
functions and in [17, pp. 109-114] in the case of a fi nite group. 
Cf. also [33, 8.1], [22, 4.1, 4.3]. 

Defi nition 5: Let 

2 /( ) = , 1 ,ix N
x e j Nj


            (159)

where x is an integer variable and N is defi ned by (119). Then 

the set { ( ) | 1 }x j Nj    forms a basis of the vector space C(N) 

of all periodic arithmetic functions with period N, where an 
arithmetic function is one defi ned only for integer arguments. 

We defi ne the discrete Fourier transform (DFT) f̂  (or the y th 
Fourier coeffi cient) of f by 

11ˆ ( ) = ( ) ( ).
=0

N
f y x f xyxN



             (160)

Then the Fourier inversion or Fourier expansion formula 
holds true: 

1
ˆ( ) = ( ) ( ).

=0

N
f x f y xyy



             (161)

Note that (161) is the expression of f with respect to the 

basis { }j . 

Example 4.4: The case N = 2 of (160) amounts to the Hadamard 

gate. This is so since ( ) = ( 1)
xj

xj   and the quantum gate realizing 

the DFT (N = 2) coincides with (152). 

Defi nition 6: Let 

Figure 1: Circuit implementing U in (155).
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, , ( = 2 )1u u NN


           (162)

be an ONB of H and le | = | ,
=1

N
a um mm

           (163)

where = |a um m  . Then we defi ne the measurement 

operator Mm  by 

| = | .M a um m m                (164)

After the measurement by Mm , the probability that the 
result involves | um   is 

2
( ) = | | = ( | , | ) = | .p m M M M M Mm m m m m    


      

             (165)

Normalizing the vector in (164), we see that the state after 
the measurement is to be 

|
= |

( ) ( )

M am m um
p m p m

 


 

           (166)

whose right-hand side is sometimes abbreviated as |m  to 
indicate that the state after the measurement is the mth basis 
element, so that more information is contained here than (132). 

Remark 1 Since 

| =| = ( | ) = ( | ) = |M M M a u a um m m m m m m  
    

      

               (167)

 by (164), it follows that 

2 2( ) =| | | =| | .m m m mp m a u u a           (168)

This explains the statement after (113) about the probability 
of a qubit | 0 | 1a b   .

(34) is viewed as the probability, which is the inner product 

|   . Since (165) is also an inner product |M Mm m    by 

(165), it is reasonable to view (165) as the probability. 

Example 4.5: (i) By (127), 

= =| 0 0 |, = =| 1 1 |1 2|0 |1M M M M             (169)

 work as measurement operators on 1-qubits: If 

| = | 0 | 1a b      then 
2 2(0) =| | , (1) =| |p a p b , so that the state 

after the measurement (166) reads 

| ||0 |1
= | 0 , = | 1 .

| | | | | | | |

M Ma b

a a b b

   
            (170)

(ii) Similarly, the measurement operators acting on the 
fi rst qubit of a 2-qubit given by (136) are 

   11 22=| 0 0 | = , =| 1 1 | = .1 2 2 2
11 22

E O E O
M E M E

O E O E
     

                (171)

Expressing (136) as 

| =| 0 ( | 0 | 1 ) | 1 ( | 0 | 1 ).1 2 3 4a a a a                      (172)

we obtain 

  | = | 0 0 | | 0 ( | 0 | 1 )1 2 1 2M E a a                    (173)

   =| 0 0 | | 0 | 0 | 12 1 2E a a     

 =| 0 | 0 | 11 2a a    

with 
2 2(0) =| | | |1 2p a a . Hence the state after the measurement 

(166) reads 

|1 =| 0 | 0 | 1
(0) (0) (0)

M a b

p p p

 
    
 
 
 

           (174)

and similarly for 
|1

(1)

M

p

 
. The measurement operators acting 

on the second qubit can be introduced verbatim. 

Defi nition 7 Let H be the state space of a quantum system, i.e. 
the Hilbert space in (116), U be a unitary operator acting on H and 

let {Mm} be a set of measurement operators. The triple (H,U,{ Mm}) 
is called a quantum computer. In this context, H is called a register 
and U an algorithm. 

Theorem 4.3 (Barenco, et al.) The set of single qubit gates and 
the CNOT gate is universal, i.e. any quantum circuit or any unitary 
matrix can be constructed by them. 

There are a few well-known quantum algorithms which 
enable to accomplish computation not possible by conventional 
computers in polynomial time. For well-known Shor or Glover 
algorithms, cf. e.g. [25].

Now that the reader has acquired some sense and is to be 
ready for browsing through the bnewest research papers with 
less psycological barrier, e.g. [34] and those in the website 
https://arxiv.org/archive/quant-ph.
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