Dirac spinor’s transformation under Lorentz mappings
Main Article Content
Abstract
For a given Lorentz matrix, we deduce the Dirac spinor’s transformation in terms of four complex quantities.
Downloads
Article Details
Copyright (c) 2021 Montiel-Pérez JY, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Dirac PAM (1928) The quantum theory of the electron. Proc. Roy. Soc. London A117: 610-624 andA118: 351-361. Link: https://bit.ly/2ThErAQ
Leite-Lopes J (1977) Introduction to quantum electrodynamics. (Trillas, Mexico).
Ohlsson T (2011) Relativistic quantum physics. (Cambridge University Press, England).
Bagrov VG, Gitman D (2014) The Dirac equation and its solutions. (Walter de Gruyter GmbH, Berlin).
Maiani L, Benhar O (2016) Relativistic quantum mechanics. (CRC Press, Boca Raton, Fl, USA).
Good RH (1955) Properties of the Dirac matrices. Rev. Mod. Phys. 27: 187-211. Link: https://bit.ly/3khDfsc
López-Bonilla J, Rosales L, Zúñiga-Segundo A (2009) Dirac matrices via quaternions. J. Sci. Res. (India) 53: 253-255. Link: https://bit.ly/3idWv77
López-Bonilla J, Ovando G (2021) Arbitrary 4x4 matrix in terms of Dirac matrices. Studies in Nonlinear Sci. 6: 17-18. Link: https://bit.ly/3B2N1Et
Cohen-Tannoudji C, Dupont-Roc J, Grynberg G (1989) Photons and atoms: Introduction to quantum Electrodynamics. (John Wiley and Sons, New York) Chap. 5.
Cayley A (1858) A memoir on the theory of matrices. London Phil. Trans. 148: 17-37. Link: https://bit.ly/3rbam26
Sylvester J (1884) On quaternions, nonions and sedenions. John Hopkins Circ. 3: 7-9. Link: https://bit.ly/36BWuVl
Pauli W (1927) Zur quantenmechanik des magnetischen electrons. Zeits. für Physik 43: 601-623. Link: https://bit.ly/3hFPJbh
Synge JL (1965) Relativity: the special theory. (North-Holland, Amsterdam).
López-Bonilla J, Morales J, Ovando G (2002) On the homogeneous Lorentz transformation, Bull. Allahabad Math. Soc. 17: 53-58. Link: https://bit.ly/3B2NeHL
Ahsan Z, López-Bonilla J, Man-Tuladhar B (2014) Lorentz transformations via Pauli matrices. J. of Advances in Natural Sciences 2: 49-51. Link: https://bit.ly/3ehmc5G
Carvajal B, Guerrero I, López-Bonilla J (2015) Quaternions, 2x2 complex matrices and Lorentz transformations. Bibechana 12: 30-34. Link: https://bit.ly/3B4YseJ
López-Bonilla J, Morales-García M (2020) Factorization of the Lorentz matrix. Comput. Appl. Math. Sci. 5: 32-33. Link: https://bit.ly/3B4aZiE
López-Bonilla J, Morales-Cruz D (2020) Rodrigues-Cartan’s expression for Lorentz transformations. Studies in Nonlinear Sci. 5: 41-42. Link: https://bit.ly/3rclgVr
López-Bonilla J, Morales-Cruz D, Vidal-Beltrán S (2021) On the Lorentz matrix. Studies in Nonlinear Sci. 6: 1-3. Link: https://bit.ly/3B2N1Et
Pauli W (1936) Contributions mathématiques la théorie de Dirac. Ann. Inst. H. Poincaré 6: 109-136. Link: https://bit.ly/2UIwDbA
Rose ME (1961) Relativistic electron theory. (John Wiley and Sons, New York).
Rumer J (1936) Spinorial analysis. (Moscow).
Aharoni J (1959) The special theory of relativity. (Clarendon Press, Oxford).
Penrose R, Rindler W (1984) Spinors and space-time. I. (Cambridge University Press).
Acevedo M, López-Bonilla J, Sánchez M (2005) Quaternions, Maxwell equations and Lorentz transformations. Apeiron 12: 371-384. Link: https://bit.ly/3ehmPMA
Cruz-Santiago R, López-Bonilla J, Mondragón-Medina N (2021) Unimodular matrix for a given Lorentz transformation. Studies in Nonlinear Sci. 6: 4-6. Link: https://bit.ly/3B2N1Et
Gürsey F (1955) Contribution to the quaternion formalism in special relativity. Rev. Fac. Sci. Istanbul A20:149-171. Link: https://bit.ly/3wQSVW9
Gürsey F (1957) Relativistic kinematics of a classical point particle in spinor form. Nuovo Cim. 5: 784-809. Link: https://bit.ly/2TdnW8T
Müller-Kirsten H, Wiedemann A (2010) Introduction to supersymmetry. (World Scientific, Singapore).
Macfarlane AJ (1966) Dirac matrices and the Dirac matrix description of Lorentz transformations. Commun. Math. Phys. 2: 133-146. Link: https://bit.ly/3rcsngP
Caicedo-Ortiz HE, López-Bonilla J, Vidal-Beltrán S (2021) Lorentz mapping and Dirac spinor. Comput. Appl. Math. Sci. 6: 9-13. Link: https://bit.ly/2UPIGDP