Application of logistic regression equation analysis using derivatives for optimal cutoff discriminative criterion estimation

Main Article Content

Andrey Bokov*
Svitlana Antonenko

Abstract

Background: Sigmoid curve function is frequently applied for modeling in clinical studies. The main task of scientific research relevant to medicine is to find rational cutoff criterion for decision making rather than finding just equation for probability calculation.
The objective of this study is to analyze the specific features of logistic regression curves in order to evaluate critical points and to assess their implication for continuous predictor variable dichotomization in order to provide optimal cutoff criterion for decision making.
Methods: Second order and third order derivatives were used to analyze estimated logistic regression function, critical values of independent continuous variable that correspond to zero points of second and third derivative were calculated for each logistic regression equation. Using those values continuous predictors of each logistic regression equations were converted into dichotomized scales using 1 value that correspond to second order derivative and 2 values that correspond to zero points of third derivative then receiver operating characteristics of estimated equations with dichotomized predictor were assessed.
Results: Sigmoid curve of logistic regression has the same structure with inflection point corresponding probability 0.5 (zero value of second derivative) and maximal torsion (zero values of third derivative) corresponding 0.2113 and 0.7886 probability values. Thresholds accounting for predictor values that correspond to zero values of second and third derivative provide estimation of logistic regression applying dichotomized predictor with optimal ratio of sensitivity, specificity and overall accuracy with maximal area under curve.
Conclusion: Analysis of logistic regression equation with continuous predictor applying derivatives help to choose optimal thresholds that provide maximally effective discriminative functions with priority sensitivity or specificity. Using this dichotomization discriminative function can be adjusted to the needs of particular task or study depending which characteristic is in priority – sensitivity or specificity.

Downloads

Download data is not yet available.

Article Details

Bokov, A., & Antonenko, S. (2020). Application of logistic regression equation analysis using derivatives for optimal cutoff discriminative criterion estimation. Annals of Mathematics and Physics, 3(1), 032–035. https://doi.org/10.17352/amp.000016
Research Articles

Copyright (c) 2020 Bokov A, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Peleg M, Corradini MG, Normand MD (2007) The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Research International 40: 808-818. Link: https://bit.ly/31XB5mK

Harre FE, Lee KL, Pollock BG (1988) Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst 80: 1198-1202. Link: https://bit.ly/3gfrlJT

Meurer WJ, Tolles J (2017) Logistic regression diagnostics: understanding how well a model predicts outcomes. JAMA 317: 1068-1069. Link: https://bit.ly/3aBwdro

Boateng EY, Abaye DA (2019) A Review of the Logistic Regression Model with Emphasis on Medical Research. Journal of Data Analysis and Information Processing 7: 190-207.Link: https://bit.ly/324Fg02

Yoshinaga T, Hagiwara A, Tsukamoto K (2001) Why do rotifer populations present a typical sigmoid growth curve?. Hydrobiologia 446: 99-105. Link: https://bit.ly/34bQW3Q

Kobayashi S (2020) Differential geometry of curves and surfaces. Springer doi: 10.1007/978-981-15-1739-6

Schot SH (1978) Aberrancy: Geometry of the third derivative. Mathematics Magazine 51: 259-275. Link: https://bit.ly/2CHvrwA

Christopoulos DT (2016) On the efficient identification of an inflection point. International Journal of Mathematics and Scientific Computing 6. Link: https://bit.ly/3iPJ389

Herişanu N, Marinca V (2016) Approximate Analytical Solutions to Jerk Equations. In: Awrejcewicz J. (eds) Dynamical Systems: Theoretical and Experimental Analysis. Springer Proceedings in Mathematics & Statistics, 182. Link: https://bit.ly/2Q02O0D

Peng CYJ, Lee KL, Ingersoll GM (2002) An introduction to logistic regression analysis and reporting. The Journal of Educational Research 96: 3-14. Link: https://bit.ly/3iRWSTA

Steyerberg EW, Eijkemans MJ, Harrell FE, Habbema JDF (2001) Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. Medical Decision Making 21: 45-56. Link: https://bit.ly/2Q37sLg

Carter JV, Pan J, Rai SN, Galandiuk S (2016) ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery 159: 1638-1645. Link: https://bit.ly/3kXgbNp

Obuchowski NA, Bullen JA (2018) Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Phys Med Biol 63: 07TR01. Link: https://bit.ly/3kVGQdu

Grigoryev SG, Lobzin YV, Skripchenko NV (2016) The role and place of logistic regression and ROC analysis in solving medical diagnostic task. Journal Infectology 8: 36-45. Link: https://bit.ly/2YaZSCQ

Bokov A, Perlmutter O, Aleynik A, Rasteryaeva M, Mlyavykh S (2013) The potential impact of various diagnostic strategies in cases of chronic pain syndromes associated with lumbar spine degeneration. Journal of Pain Research 6: 289-296. Link: https://bit.ly/34c6ox0