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Introduction

Quadratic poisson brackets, their compatibility and rela-
ted algebraic structures

Let (A+°%#) be a finite-dimensional a nonassociative and
noncommutive algebra of dimension N=dimA <Z, over an
algebraically closed field K. To the algebra A one can naturally
relate the loop algebra A of smooth mappings u: s'—-A and
endow it with a the suitably generalized natural convolution
<45 > on A*xA-K, where A* is the corresponding adjoint to A
space.

First, we shall consider a general scheme of constructing
nontrivial ultra-local and local [1], quadratic Poisson structures
[2-7], on the loop space A, compatible with the internal
multiplication in the algebra A. Namely, let fe;cA: s=1,N} be a
basis of the algebra A and its dual fuS e A*: s=1,N} with respect
to <~ on A*xA, thatis <uf ej»:== 5ij for all i,j=1,N, and such
that for any

ux)= Y uS(xu)es e A, xe st,

s=1,N

the quantities uS(xu):=<uS(x),u~ € K forall s=1,N,xes!. Denote by

noncommutive algebras, compatible with their multiplicative structure. Their relations both with
differentiations of the symmetric tensor algebras and Yang-Baxter structures on the adjacent Lie algebras
are demonstrated. Special attention is payed to the quadtatic Poisson brackets of the Lie-Poisson
type, the examples of the Novikov and Leibniz algebras are discused. The nonassociated structures of
commutative algebras related with Novikov, Leibniz, Lie and Zinbiel algebras are studied in details.

A*AA*:= Skew(A* ® A*) andlet g*: A* A A* - Symm(A*®A*) bea

skew-symmetric bilinear mapping. Then for linear on A functions
a(u):=<a,u~ and b(u):=<b,u>, defined by elements q,be A* the
expression

fa(u),bw)}:=< $* (arb),u®u s (1.1)

defines an ultra-local quadratic skew-symmetric pre-Poisson
bracket on A*. Since the algebra A possesses its internal

« 1
o

multiplicative structure the important problem [3,4],
arises: Under what conditions is the pre-Poisson bracket (1.1)
Poisson and compatible with this internal structure on A ?
To proceed with elucidating this question, we define a co-
multiplication A:A* > A* ® A* on an arbitrary element ¢ €A” by

means of the relationship

< AC,(W®V) =1=<C,WoV > (12)

for arbitrary w,v <A Note that the co-multiplication
A:A* 5 A* ® A*, defined this way, isa homomorphism of the tensor

algebra TY(4*) into T*(A") and the linear pre-Poisson structure

£, (1.1) on A* is called compatible with the multiplication “° ” on
the algebra 4, if the following invariance condition

Aa), b} = {aa(w), Ab(w)} 3

holds for all a,b A* and arbitrary u<A. Now, taking into account
that multiplication in the algebra A can be represented for any
i,j=1,N by means of the relationship

gioeji= X ojes, (1.4)

- ozs |
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where the quantities ”ijEK for all i,j and k=1,N are constants,

the co-multiplication A: A* - A* ® A* acts on the basic functionals
ud e A*s=1,N, as

Sy = Sul @ u

Alu?) > opu Oul.

- 1.5
i,j=1,N (1.5)

Additionally, if the mapping 9*: A* A A* - Symm(A* ® A%) is

given, for instance, in the simple linear form

g (ui ® Uj _ Uj ® ui) - Zi(clslk - CIJJS)US ® Uk. (1.6)
s,k=1,N

The quantities Clsk €K are constant for all ij and sk=1,N
and chosen to be symmetric in their below indices. Then for the
adjoint to (1.6) mapping 9:Symm(A® A) » A~ A one obtains the
expression .

9:(eg ®ey +eg Veg) —> chk ej nej.

ij=LN 7

Recall that a linear mapping D: A — B from an algebra A to the
A-bimodule B is called a derivation, if for any 4,ucA there holds
the Leibniz property:

D(A- u) = D(A)u + AD(). (1.8)

The following theorem [3], gives an effective compatibility
criterion for the multiplication in the algebra A.

Theorem 1.1: The pre-Poisson bracket (1.2) is compatible
with the multiplication (1.4) if and only if the mapping
9:Symm(A®A) > AAA is a differentiation of the symmetric

algebra Symm(A® A).

Proof. The idea of a proof consists in checking the relationships
on the corresponding coefficients following both from the equality
(1.2) and from equality

HA- 1) = 9 A+ 29(u) (1.9)
for basis elements 4,z e Symm(A ® A).

Observe now that the pre-Poisson bracket (1.1) can be
equivalently rewritten as

<anb,fueul ~=<arb,ueu) >, (1.10)

giving rise, owing to the arbitrariness of elements a,b < A%, to the
following tensor equality:

fueul=9u®u) (1.11)

with the derivation (1.9). As was remarked in [3,4], the following
natural commutator expression,

9(2):=[r,2] (1.12)

for any 1eSymm(A®A) and a fixed skew-symmetric constant
tensor re A® A isaninner derivation of the algebra Symm(A ® 4).
Thus, one can consider a class of pre-Poisson brackets (1.11) in
the following commutator tensor form:

{fueut=[r,u®ul (1.13)

and pose a problem of finding conditions on the tensor re A® A

under which the pre-Poisson bracket (1.13) becomes a Poisson
one.

If the algebra A is noncomutive and associative, the adjacent
Lie algebra £z ~A makes it possible to construct the related
formal Lie group Gj:=1+4, whose tangent space at the unity
can be identified with the Lie algebra £4 of the right-invariant
vector fields on G4- For a fixed element U<G4 one can denote by
Awéu LA > Tu(GZ) the differentials of the right and left shifts

on G4 respectively. Let P&k,éﬁiTJ(GA)ﬁLE be, respectively, dual
mappings. Then, the following theorem, stated in [7], holds.

Theorem 1.2: The following bracket

1), b} =< (), R(p (@) - =< GOV RE@) = 4 4

for any a,beT;(G5) is Poisson, if the homomorphism R:4 - 4,
naturally related with the tensor reAx4, is skew-symmetric and

satisfies the modified Yang-Baxter relationship:
R([a)Rﬂ]Jr[Ra)ﬂ])[Ra)Rﬂ] +[ayﬁ] (1_15)

for all @#<£Lj subject to the Lie commutator structure in £4-

If to take into account that in this case there hold the expressions

pu(c) = Axc(u), &)= Aqc(u) (1.16)

for any ceA*, where the mappings A1and 22 mean the
convolutions of the co-multiplication A:A > A®A with the first
and the second tensor components, respectively, that is

< AGU® a =< C,Uoa === Arc(U),a =,

< AGa ®U =< Cya o U === Axc(U),a - (1.17)

for any o < 4, the bracket (1.14) will become
fa(u),b(w)} =< b,R(Aza(u)) cu > —<bueR(Aza(w)) »  (1.18)

for any a,beTj(GZ), which can be easily enough computed, if to
take into account the relationship (1.5).

The following result [5,7], is a simple consequence of Theorem
1.2 in the case of the matrix associative algebra A and is almost
classical.

Theorem 1.3: Let the algebra A be matrix associative with
respect to the standard multiplication, and endowed both with
the natural commutator Lie structure ,1 and with the trace-type
symmetric scalar product {,-):=Tr(--). Define also for the tensor

ri= Y rijei®ejeA®A,

i,j=1,N

the related ® -homomorphism

Ra:= Y. rijei<ej,a> (1.19)

i,j=,N '

for any «<A. Then the pre-Poisson bracket (1.18) is Poisson, if
the R -homomorphism (1.19) is skew-symmetric and satisfies the
modified Yang-Baxter relationship (1.15). Moreover, the Poisson
bracket (1.18) can be equivalently rewritten in the following
simplified form:

027
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{a(u),b(w)} =< ub, R(ua) - - < bu,R(au) - (1.20)

forany qg,be A*.

Remark 1.4: The Yang-Baxter relationship (1.15) is basic for
finding the corresponding internal multiplication structure of the
algebra A, allowing the the quadratic Poisson bracket (1.18).
If for example, to assume that the adjacent loop Lie algebra i
allows splitting into two subalgebras, 4= Cjz\ ®LEs then the
homomorphism R P.-P- solves the relationship (1.15), where,
by definition, the mappings P::Lj ﬁﬁiACEA are the suitable
projections. If to assume, that the adjacent loop Lie algebra “a is
generated by the associative multiplication “*” of the Balinsky-
Novikov loop algebra A, then the related Lie structure is given by
the commutator

la,pli=a*p-fxa (1.21)

for any «,p<A, giving rise to the ultra-local quadratic Poisson
bracket (1.18). To the regret, we do not know whether the Lie
structure

[a,ﬂ]IZ(ZODXﬂ*ﬁODX(Z (1.22)

for any «,pcA and all xes', suitably determining the adjacent
loop Lie algebra £4i» can be generated by some associative
multiplication on the loop Balinsky-Novikov algebra, with respect
to which the Lie structure (1.22) could entail the local quadratic
Poisson bracket (1.18).

Problem 1.5: Concerning the algebraic structures discussed
above the interesting problem arises - to classify associative
Balinsky-Novikov loop algebras A, whose adjacent Lie algebras £3
allow splitting into two nontrivial subalgebras subject to the Lie
structure (1.21).

Remark 1.6: In the case of the basic Leibniz loop algebra A, it
is well known that the usual commutator structure (1.21) does not
generate the adjacent loop Lie algebra 4 yet the following inverse-
derivative Lie structure

[, 8):= a = Dx}B - p-Dyla, (1.23)

suitably determined for any «,p<A and all xesl, already does
the adjacent loop Lie algebra £4- Yet, we do not know whether
the Lie structure (1.23) can be generated by some associative
multiplication “*” on the loop Leibniz algebra A.

Quadratic Poisson Structures
The lie-poisson type generalization

Assume as above that (4+°%) is a finite dimensional algebra
of the dimension N=dimA<z, (in general nonassociative and
noncommutive) over an algebraically closed field K. Based
on the algebra A one can construct the related loop algebra A
of smooth mappings u: s' A and endow it with the suitably
generalized natural convolution <+~ on A*xA K, where A* is
the corresponding adjoint to A space.

First, we will consider a general scheme of constructing
nontrivial ultra-local and local [1], Poisson structures on the

adjoint space A", compatible with the internal multiplication
in the loop algebra A. Consider a basis {eseA: s=1,N} of the
algebra A and its dual {e’ ¢ A*: s=1,N} with respect to the natural

convolution <+> on A*x4, thatis <ee H::é}] for all i,j=1,N,
and such that for any
u)= Y ug(x)es e A%, x esl,

s=1,N
the quantities Us®W=<t0es~ e K for all s=1N,xes’. Denote by
AnA:= Skew(A®A) and let 9*:AAA— A:=Symm(A) be a skew-
symmetric bilinear mapping. Then the expression

fu(a) ,u(b)}:= < u(x),9*@~b) » 2.1)

defines for any abeA an ultra-local linear skew-symmetric pre-

Poisson bracket on A*. If the mapping *:AAA —Symm(A) is

given, for instance, in the simple linear form
3*:(ei®ej—ej®ei)—> ;(cisj—cﬁi)es, (2.2)

s=1,N

where quantities ¢j<¥ are constant for all i,j and s=1N, then

for the adjoint to (2.2) mapping ¢:A* - A* AA* one obtains the

expression

. oS S _cS)el @el
) (Cij Cji)e ®el. (2.3)

i,j=1,N
For the pre-Poisson bracket to be a Poisson bracket on
A%, it should satisfy additionally the Jacobi identity. To find
the corresponding additional constraints on the internal
multiplication “°” on the algebra 4, define for any u(x) e A*,x es?,
the skew-symmetric linear mapping

Hu): A — A¥, (2.4)
called [8], by the Hamiltonian operator, via the identity

< d(u)a,b =< $-u,anb > (2.5)
for any @b <A, where the mapping 9: A* » A* A A* is determined
by the expression (2.3), being adjoint to it. Then it is well known
[8], that the pre-Poisson bracket (2.1) is a Poisson one iff the

Hamiltonian operator (2.4) satisfies the Schouten-Nijenhuis
condition:

([9(),9()]]=0 (2.6)
for any u(x)e A™.

Having observed that the following action

Hu)ej = zi(cisk - clsq.)us(x)ek

s,k=1,N (2.7)

holds for any basis element e; € A,i=1,N, the resulting pre-Poisson
bracket (2.1) becomes equal to
{u(a) ,u(b)} =< 9(u)a,b =
=y . Z (Cisj —C%)a'b}us(x) =< u(x),. .L(Cisj —c}i)albles -
s=1,N1,j=1, lv}:]-vN
(2.8)

for any u<4" and all ab<A. If now to define on the algebra A the
natural adjacent to the algebra 4 Lie algebra structure

leisejl=cjej-ejoej:= %(61'51' ~jides 2.9)

s=1,
028 |
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for any basis elements €¢j € A,i,j=1,N, the expression (2.8) yields
forall g,be A the well known [9,10], classical Lie-Poisson bracket

{u(a),u(b)} =<u,[a,b] ~. (2.10)

Concerning the adjacent Lie algebra structure condition (2.9),
it can be easily rewritten as the set of relationships,
S_ S _.S_ .S

%~ %5i TG i 2.11)
whose evident solution is
S_ s
Gj = % (2.12)

for any 5j,5=1,N. As the bracket (2.10) is of the classical Lie-
Poisson type, for the Hamiltonian operator (2.7) to satisfy the
Schouten-Nijenhuis condition (2.6) is enough to check only the
weak Jacobi identity for the loop Lie algebra £4» adjacent to the
algebra A via imposing the Lie structure (2.9), taking into account
the relationships (2.12). For instance, if the commutator of the
adjacent loop Lie algebra £4 is given by the expression

[a,b]=a-Dyb-boDya, (2.13)
the corresponding algebra A coincides with the well known

Balinsky-Novikov algebra, determined by means of the following
relationships

[a,b]=aoDyb-boDya, (2.14)

where, by definition, Rgb=boa=Lpa for any a,be A. If, for instance,
the commutator of the adjacent loop Lie algebra £4 is given by
the expression

[a,b)=a-Dy'b-b-Dyla (2.15)

for a suitably determined the inverse-differentiation mapping
Dy':A— A, the corresponding algebra A coincides with the well
known right Leibniz algebra, described by the relationships

[Rq)Rp]1=Rgob, [RqRpl=0 (2.16)

for any abecA. As a consequence of reasonings above one can
formulate the following generalizing theorem.

Theorem: The linear pre-Poisson bracket (210) on A* is Lie-
Poisson on the adjoint space 4 iff the internal multiplicative
structure of the algebra A is compatible with the weak Lie algebra
structure on the adjacent loop Lie algebra -

The same way one can consider a simple ultra-local quadratic
pre-Poisson bracket on A* in the form

{u(a), u(b)}:=<u(x) ®u(x), 9"(arb) - (2.17)

for any aobeA, where the skew-symmetric mapping ¢*:4A4
— Symm(A ® A) is given for any i,j =1V in the quadratic form

R0 R0 = ks _ ks
9 (ej ®ej-ej@ej):= Zi(cij -G )ey ® eg +eg ®ey).
k,s=1,N (2.18)
In particular, if to assume that the coefficients C,kjs :Uf;as for

some constant numbers cr,-’)‘- and «°ek for all i,j and ks=1,N,

where, by definition, the multiplications

. k
ekoesi= 3 ojek (2.19)
k=1,N
coincide with those of the algebra 4, then the pre-Poissson

bracket (2.17) yields for any a,bc A a very compact form
{u(a), u(b)}:=<u(x)®u(x), a ®a,bl+[a,bl®a », (2.20)

generalizing the classical Lie-Poisson expression (2.10) and
parametrically depending on the constant vector

a:= z ases e A.

s=1,N

Thus, for the pre-Lie-Poisson bracket (2.20) one can formulate
suitable constraints on the algebraic structure of A. For instance,
if the weak algebraic structure on the adjacent Lie algebra %A
is given, respectively, either by the Lie commutator (2.13) or by
(2.15), then the corresponding multiplicative structures of the
algebra A are generated, respectively, by the Balinsky-Novikov
(2.14) and Leibniz (2.16) algebras relationships, augmented with
the following common tensor multiplicative constraint

Rq®Ry =0=R, ®Ry, (2.21)

which holds for any a<A and a fixed element 4 <A. So, one can
formulate the following theorem.

Theorem 2.2: The quadratic pre-Lie-Poisson bracket (2.20) on

A* s Poisson iff the internal multiplicative structure of the algebra

A is compatible both with the weak Lie algebra structure on the

adjacent loop Lie algebra L4 and with the tensor multiplicative
relationships (2.21).

In these cases there arises an interesting problem of describing
the Balinsky-Novikov and Leibniz algebras, whose multiplicative
structures additionally satisfy the tensor relationships (2.21).
Such and related algebraic structure problems are planned to
be studied in detail elsewhere. In the Section below we proceed
to studying general algebraic structures related both with
generalized Balinsky-Novikov and Leibniz algebras and so-
called Zinbiel algebras, having diverse important applications in
communications technology.

Balinsky-Novikov Type Algebraic Structures
and Their Main Properties

Let (A,+) be an associative commutative algebra over a field
K of any finite or infinite dimension (with the addition “+ ” and
the multiplication “*”) and & its derivation, i.e. s:A—>A isa K
-linear map satisfying the Leibniz rule. Then

A% = (A,+%)

is a Balinsky-Novikov algebra (so-called the ¢ -adjancent or &

“w,»

-associated Balinsky-Novikov algebra of A) with respect to “*
defined by the rule

axb=a-s(b)+&-a-b

(where ¢ is a fixed element of A) and so
(axb)xc=(a*c)=b

and

(axb)xc—a*(bxc)=(bxa)*c-b=(ax*c)
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for all a,b,c € A . Balinsky-Novikov algebras were introduced in
connection with the so-called Hamiltonian operators [8] and
Poisson brackets of hydrodynamic type [11]. Note here, that the
term “Balinsky-Novikov algebra” was given by M. Osborn in [12].
Moreover,

A5,L = (Ay + [_y _])

is a Lie algebra (so-called the ¢ -adjancent or J -associated Lie
algebra of A) with respect to the Lie bracket “ —,—]” defined by the
rule

[a,b]=a*b-b=*a

for any abeA (see [13-15] and [16, p.~285]). A triple (Z,+°) is
called a Zinbiel algebra (or a dual Leibniz algebra) if

¢ (Z,+) is an Abelian group,
e (Xoy)oz=xo(yoz)+x0(z0Yy),
e (x+y)ez=(xoz)+(yoz) and xo(y+2z)=(Xxoy)+(xoz)

forall x,y,z e Z. As a consequence,

(xoy)oz=(xo0z)oy.

XOQY=Xoy+YyoX

for all X,y eZ, then (Z,+,0) is an associative commutative algebra
(so-called the adjancent or associated associative algebra zA of a
Zinbiel algebra Z). Zinbiel algebras were introduced by J.-L. Loday
in [17,18] and are very popular in the control theory (in context
of “chronological” algebras (see e.g. [19-22])) and in the theory of
Leibniz cohomology [23].

Let (D,+,9) be a (Lie, Balinsky-Novikov, Zinbiel or associative)
algebra with the derivation algebra DerD, @=Ac DerD and 6 € DerD .
Then D is a Lie algebra. If [ is an ideal of D and 6(I) < I, then we say
thatlis a @ -ideal of D. Recall that D is called:

e A -simpleif DoD=0 and any A -ideal I of Dis O or D,

e A-prime if, for any A-ideals B,C of D, the condition
BoC =0 implies that B=0 or C=0,

e A-semisimple if, for any A -ideal B of D, the condition
BoB =0 implies that B=0.

Every A -prime algebra is A -semisimple and every A -simple
algebra is A -prime. If A={6} and D is a A -simple (respectively
A -prime or A -semisimple), then we say that D is @-simple
(respectively @ -prime or 6 -semisimple). Moreover, if A={0}
, then a A-simple (respectively A -prime or A -semisimple)
algebra is simple (respectively prime or semisimple).

Some interesting properties of Zinbiel algebras were obtained
by A.S. Dzhumadildaev, K.M. Tulenbaev [24,25] and B.A. Omirov
[26]. In particular, A.S. Dzumadil’daev [25], has proved that any
finite-dimensional Zinbiel algebra over the complex numbers field
is nilpotent. We prove the next result.

Theorem 3.1: Let Z be a Zinbiel K -algebra and & = A c DerZ .
Then the following hold:

e if zA is a A -simple (respectively A -prime or A
-semisimple) algebra, then the Zinbiel algebra Z is the
ones,

e If charK#2 and Z is a 2 -torsion-free a A -simple
(respectively A -prime or A -semisimple) Zinbiel algebra,
then Z** is a A-simple (respectively A -prime or A
-semisimple) associative commutative algebra.

The purpose of this paper is also to study relationships

between associative commutative algebras A, their ¢ -associated
Balinsky-Novikov algebras 29, and & -associated Lie algebras

A%L . Connections between properties of an associative
commutative algebra A and its J -associated algebra A%L have
been investigated by P. Ribenboim [27], C.R. Jordan, D.A. Jordan

[13,14] and A. Nowicki [15]. X. Xu [28], found some classes of
infinite dimensional simple Balinsky-Novikov algebras of type

A%¢ . C. Bai and D. Meng [29], have proved that, if A is a finite

dimensional associative commutative algebra and 0# & € DerA |
then A%0 is transitive (i.e.

rq:As3x-x*xa=x-5(a)eA

is a nilpotent right transformation operator of A% forany (a < A)
and A%L isasolvable Lie algebra [30]. In [31, Proposition~2.8] it
is proved that the Balinsky-Novikov algebra A% s simple if and
only if an associative commutative ring A is § -simple. As noted
in [32], there exists a conjecture: the Balinsky-Novikov algebras
N can be realized as the algebras A%0  where A is a suitable
associative commutative algebras, and their (compatible) linear
transformation. Recall that a binary operation G; : NxN — N ofa
Balinsky-Novikov algebra (N,+*) is called its linear deformation
if a family of algebras (ngq) , where

gq(a,b)=a+b+qGy(a,b)

are still Balinsky-Novikov algebras for every 4€N _ If Gy is
commutative, then it is called compatible.

As noted in [32], a “good” structure theory for algebraic
systems means an existence of a well-defined radical and the
quotient by the radical is semisimple. Our first result in this way
is the following

Theorem 3.2: Let A be an associative commutative algebra
with 1, char K#2, 0+ & e DerA and & € A, Then the following are
equivalent:

e A isasemisimple (respectively prime or simple) algebra,

e A% isa semisimple (respectively prime or simple)
Balinsky-Novikov algebra,

A%L s a semisimple (respectively prime or simple) Lie
algebra.

Any unexplained terminology is standard as in [18,21,33,34].
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An Associative Commutative Structure of a (1) Clearly that a<Z is a subgroup of the additive group (Z,+)
Zinbiel Algebra and

(@acz)ot=ao(zot)+ao(toz)eaoZ.
Recall that a (Zinbiel or associative) algebra (A,+,0) is called

reduced if the implication Hence a-Z isarightideal of Z.

aa=0=a=0
(2)If uerann(a- Z) , then

istrue forany ae A . (@oz)o(tou)=((acz)ot)ou—(aocz)o(uot)=—(aoz)o(uot)
Lemma 4.1: (see [35 Theorem~3.4]) If (Z,+,°) is a Zinbiel what gives that

algebra, then (Z,+,0) is an associative commutative ring, where “

© ”is defined by the rule (aez)o(tou)=o0
aob=asb+beoa and

forany a,beZ. uet=touerann(aoZz).
An additive subgroup I of a Zinbiel algebra Z is said to be @) If bjel, then

an associative ideal of Z if I®Z <1, It is easy to see that I is an

to(i+zoj)=toi+to(zoj)=toi+(toz)oj—to(joz Zol)+1
associative ideal of Z if and only if it is an ideal of zZA. Wz )) Hhe(ze)) Htoz)e] Gez)elZe)+

Lemma 4.2: Let Z be a Zinbiel algebra, @ #Ac DerZ and and
a e Z . Then the following hold: (i+zoj)ot=iot+(zoj)ot=iot+(zot)oje(ZoI)+L

. aoZ:={a-zl|lzelZ} i i i
{acz|zeZ} is arightideal of Z, (4 We see that

. the right annihilator 0=(ioca)ot=io(aot)+io(toa)=io(aot)

rann(a-Z):={teZl(a-Z)-t =0} .
forany iel, aerannl,

of a-Z is an associative ideal of Z, O=iot)oa=io(toa)+io(aoct)=io(toq)

e if Iisaright A -ideal of Z, then 1+(z-1) isa A -ideal of Z, and so toa=0 and a-t erannZ . Moreover,

e if I is a A-ideal of Z, then the right annihilator o0=d(ioa)=d(i)ca+i-d(a)=iod(a)
rannl:={teZ|I-t =0} and the annihilator
annl:={teZ|Iot=0=t-]} are A-ideals, the left and so d(a) erannl forany d e A If belannl , then

annihilator lannl:={ue Z|u.I=0} isaright A -ideal of Z, (bot)eiz=bo(to)sbe(iot)=0

. i iati A i ity e
the associated associative algebra Z“* has the identity and bot elannl

ifand onlyif a=eca+a-e forany aeZ,
(5) Indeed,
e if charK=2, then Z is reduced if and only if zZA s azacezeca<sad=eod+doe.
reduced,

o If ZA has the identity € and I is an ideal of Z such that (6) It follows from

ecl,then [=Z, ZoZ=0<2ZG0Z=0.
o if charK#2 and I,J are commutative ideals of Z, then (7)Infact, z=zoe+eozel andso [=Z.
Io]JcannZ,

(8) Assume that ieI and jeJ.Then
e if K isanassociative A -ideal of Z, then
(fez)ej=io(zo)+ic(joz)=(zof)ei+(joz)ei=
S(k):=ta=Kla- 2Kl =ze(io )+ zolio )+ jo(zei)+jotioz)

. . . and from this
is aright A -ideal of Z,

2zo(ioj)=—jo(zoi). 4.1
o if I,] are A-ideals of Z,that I°] is the ones, P=- (+.1)
A : : . . By other hand,
o If Z“* has identity, then every proper ideal of a Zinbiel
algebra Z is contained in its maximal ideal. jo(zoi)=(zoi)oj=zo(io)+zo(joi)=2Z0(i0j). (4.2)
Proof, Let z,teZ . Then Egs. (4-1) and (4.2) imply that
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jo(zei)=0=(zoi)oj=zo(io)).
(9) If ue S(A), then
(Uot)oz=uo(toz)+Uo(zot)z=uo(t®z)cuoZ c A.
(10) Straightforward.
(11) It follows in view of the part (7).

Lemma 4.3: Let A be an associative A -ideal of a Zinbiel
algebra Z,where @+ AcDerZ..If Ao A=o0, then

So(A)=S(A)+Z-S(A)
isa A -ideal of Z such that So(A)°Sg(A)=0

Proof By Lemma 4.2,(9) and (3), So(A) is anideal of A. Let
a,beS(A) and ZteZ Then 0=boa=boa+asb and we have
that aeb=-boa . Since (zeb)eca=z-(boa)=0,

ao(zob)=(acz)ob-ao-(boz)=
=(aoz)ob+(boz)oca=(aob)oz+(boa)ez=(a®b)oz=0

and
(toa)o(zob)=to(ao(zob))+to((zob)oa)=
=to(ao(zob))+to(zo(b®a))=to(a-(zob))=0,

we conclude that So(A)°Sg(A)=0.
Proof of Theorem 3.1: If A< DerZ then Ac Der(z4)

Proof for simplicity. Since every A -ideal of Z is a A -ideal of zA ,
the simplicity of zZA implies that Z is simple.

Proof for primeness. Let ZA bea A -prime algebra and LJ A
-ideals of Z such that I°J=0,Then I,J and J°I are A -ideals
of Z# and

(JeDe(JeDcIeoJ=o0.

Since JeD)©(J°I)=0, we conclude that J°I=0_ But then
I®J =0 and consequently I=0 or J=0,

(1) Proof for semisimplicity. By analogy as in the prime case.

(2) Proof for simplicity. Let Z be a A -simple Zinbiel algebra and
A a A-ideal of Z2 Then, by Lemma 4.2 (9), S(A) jsa right A
-ideal of Z and, in view of Lemma 4.2 (3), S(A)+(Z-S(A)=Z
Since A>z®s-soz=zos forany Z€Z and SES(A),we obtain
that A=Z.

Proof for primeness. Let Z be a A -prime Zinbiel algebra and I,J

be A-ideals of Z2 such that ©J=0_ Then i°j=-jel for any

iel and j€J and
(icz+zoi)oj=—jo(ioz+zol)=—jo(ioz)—jo(zoi)=
=—(joi)oz+jo(zol)=jo(zoi)=~(joi)oz=(icf)oz

and

(icz+zoi)oj=(ioz)oj+(zoi)oj=(i0j)oz+(z0oi)o]
for any z € Z what forces that (zoj)oi=(zoi)°j=0 This means

that (ZeI)eJ=0_ By the A-primeness of Z, ZoI=0 (and so
I=0)or J=0,

Proof for semisimplicity. Assume that Z isa A -semisimple Zinbiel
algebra and A is an associative A -ideal of Zsuch that A© A=0.By
Lemma 4.3, So(4) is an ideal of Z such that So(A)-Sg(A)=0 and
S0 Sg(A)=0.If acb =0 for some a,be A, then

(aob)oz=ao(boz)cAcAcC A

forany zeZ.Hence A-AeS(A), a contradiction. Thus A=0.

As usual
§0 =idy
is the identity map of A.

Lemma 4.4: Let Z be a Zinbiel algebra and @ # A c DerZ .
Then the following conditions are equivalent:

e forany A-ideals IL,J of Z the implication
IeJ=0=1I=00rj]=0

is true (i.e. Z is A -prime),

e for any elements a,beZ, integers k>1, Mj=0 and
derivations &j €A (i=1,...,k) the implication

(5{”1...5;21k(a)oz)@b:o:>a:0 orb=0
is true.

Proof. (1) =(2) Since Z is A -prime, zA s A -prime by Theorem
3.1. Assume that a,be Z and

(5{'11...5link(a)02)®b:0. (43)
Then
& my Mg
=% Y &ty ez
k=1 mg=0
51,...,5k€A

is a right A -ideal. Moreover, I+(Z-I) is a A-ideal of Z by
Lemma 4.2 (3) and

(i+zoj)ob=(ob)+z-(job)=0

for any i,jel and zeZ. This means that berann(I+(Z-1I))
. Inasmuch as rann(I+(Z-1I)) is a A-ideal of Z by Lemma 4.2
(3) and Io(rann(I+(Z-1)))=0,we conclude that I =0 (and then
a=0)or rannl=0 (andso b=0).

(2)= (1) Assume that I°J=0 for some A-ideals I,J of Z.
Then (JoI)o(JoI)=0 and consequently Jol= O This gives that

Eq. (4.3) istrue forany ael and beJ.Hence a=0 or b=0If
b#0 forsome be], then I=0,

Lemma 4.5: Let Z be a Zinbiel algebra and @ # A c DerZ
Then the following conditions are equivalent:

. for any ideal I of Z the implication
Ie-lI=0=1=0
is true (i.e. Z is A -semisimple),

e for any elements a,beZ, integers k>1, Mj>0 and
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derivations 4 €A (i=1,...,k) the implication
(6715 K(@eZ)ma=0=a=0
is true.
Proof. By the same argument as in the proof of Lemma 4.4.
The Balinsky-Novikov Properties

As noted in [8,36][31, Lemma~2.3], [37, Proposition~2.4],
[27], the following lemma holds.

Lemma 5.1: If A is an associative commutative algebra,
SeDerA and £€ A, then A%S isa Balinsky-Novikov algebra.

Lemma 5.2: Let A be an associative commutative algebra,
& e DerA and b,é € A. Then we have:

o d e DerA%¢ ifand only if [d,s)(b)-d(¢)-beannA,

eif 1c A, then deDerA%¢ ifand only if [d,51(b)-d(¢)-b=0,
e deDera%0 ifand onlyif A-[d,s1=0,

eif 1c A, then d < DerA%© ifand only if [d,s]=0.

Proof, (1) Forany a,be A and de DerA%¢ we have

d(a)-5(b) +a-d(5(b)) +d(&)-a-b+&-d(@)-b+&-a-db)=d(a-5(b))+&-a-b=
=d(a*b)=d(a)*b+a*d(b) =

if and only if- d(a). 5(b) + £ - d(a)-b +a- 5(d(b)) + & -a-d(b)

a-[d,s1(b)+d(¢&)-a-b=o0.

(2) - (4) The rest follows from the part (1) .

Lemma 5.3: Let 5§ be a surjective derivation of an associative
commutative algebra A with 1. If 1 is a right ideal of a Balinsky-
Novikov algebra A% then I is an ideal of A.

Proof. Indeed, if ieI and a€ A, then
Isi*a=i-s(a)+¢&-i-a

and therefore i*1=¢-iel, Since & is surjective, we have that
i-s(@)=i*a-¢-i-ael

andso i-Acl.
It is easy to see that €*e=0 for any idempotent e2=ecA.

Lemma 5.4: Let A be an associative commutative algebra,
5 eDerA and & €A . Then the following hold:

« [15 Lemma~3.1]if chark #2 and U isa Lieideal of A%l
,then [U,U]=0 or U contains a nonzero ¢ -ideal of A,

e if I isa o -ideal of A,then I is anideal of Aﬁ"f,

e if K isan additive J -group of a Balinsky-Novikov algebra
ASS ,then K containsa ¢ -ideal

IA(K)={keK|k-AgK}

of A,

eif 1e¢ A and B is anideal of A5'§,then £-B,5(B)c B,

eif 1e A and C is a left ideal of a Balinsky-Novikov algebra
A%0 then 6(C) cI14(C),

e if I is 6 -ideal of A, then I isan ideal of A5’L,
e if e isanidempotent of A,then eec rannA%0 |

« thekernel kers={ae A%9|5(a)=0} of 5 isaleftideal of
0,0
A9,

o if 5(a)ea-A,then a-A isanideal of A%,

e if B is an ideal of a Balinsky-Novikov algebra A%S , then
B is an ideal of the Lie algebra AL,

o if S isanideal of a Balinsky-Novikov algebra A% , then
Ta(S)={seS|s+AcS}
is an ideal of A%L and Ta(S)<S$,

e if1cA and I isanideal A%L then s(I)<I and I-A isa
o -ideal of A,

e if W is an ideal of a Balinsky-Novikov algebra A% | then
sw)-¢-welp(W) forany weW,

o if charK =2 and a-a=0,then a-A isarightideal of a%¢.
Proof. (1) For proof see [15].

(2)Infact, i*a=i-s(a)+<¢-i-ael and a*i=a-5()+<&-i-ael
forany iel and acA.

(3) Assume that kela(K) and xeA.Then
(x-k)-A=k-(x-A)ck-AcK
what implies that I4(K) is an ideal of A Since

S(k)-A+k-5(A)=5(k-A)cs(K)cK

and k-8(A)cK, we conclude that &(k)-AcK. Hence
s(Ia(K))cIa(K).

(4) We see that B>b*1=b-6(1)+&-b=¢-b and
B>1*b=5(b)+¢-b forany beB.Consequently §(B),£-Bc B.

(5) Forany ge A and ceC we have C3a*c=a-6(c) what
implies that 5(C) = 14(C).

(6) Forany il and ac A
[i,al=i-o(a)-a-s@i)el

what yields the result.
(7) Since 5(e) =0, we have A*e=A-5(e)=0,

(8)If uekers and ac A, then s(@*u)=45(a-5(u)) =0 Hence
a*uekers.
(9) Forany t,be A

[a-t,b]=(a-t)*b-b*(a-t)=a-t-5(b)-b-s(a)-t-b-a-5(t) =
=a-[t,p]-b-s(a)-tea-A.
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(10) Since B¥* A< B, A*B < B, we deduce that [B,A]c B.
(11) Let a,x € A and seT4(S). Then
(s*x)*a=s*(x*a)-x*(s*a)+(x*s)*a and therefore
[s,x]¥a=s*(x*a)-x*(s*a)eS.Forany iel
Io[LA)s(,1)=i*1-1*i=i-6(i)-1-6() = -5(i).
By the part (10), W is an ideal of the Lie algebra A% and so
Wow*a=w-s(@)+¢&-w-a

and
Walwal=w*a-a*w=w-s(a)-a-s(w)

forany weW and ae A .Then
Waw*a-[w,al=(&-w+sw))-a
Hence 6(w)+&-welp(W),
(1) Wehave
0=6(a-a)=2a-s5(a),a*a=a-s(a)+¢&-a-a=0

and
(a-A)*(a-A)>a-b-s(a-c)+&é-a-b-a-c=
za-b-s(a)-c+a-b-a-s(c)=o0

forany b,ce A,
If xe A, then

IX:A5"§ Sam x+ac A%

is a left transformation operator of the Balinsky-Novikov algebra
6,5
A% .

Lemma 5.5: Let A be an associative commutative algebra,
& e DerA and X,& € A . Then the following hold:

o if &eZ(DerA):={ueDerA| .6 =6uforany 6 e DerA} then
DerA c A90

o fx € DerA®® if and onlyif A*(A*X)=0,
« Ly €DerA% i ang only if (A* A)*x =0,
o [rg,’p1=0 forany a,be A%s,

« llglb) =l p) for any a,be A%

o L(A%¢) ={lglae A} isa Lie algebra.

Proof. (1) If & € Z(DerA)  then

d(a*b)=d(a-5(b))=d(a)-5(b)+a-d(s(b)) =
=d(a)-5(b)+a-s5(d(b))=d(a)*b+a*d(b)

forany a,be A%0.
(2) If Ty € DerA%0  then

a-s5(b)-s(x)=(a*b)*x=ry(a*b)=ry(a)*b+a*ry(b)=
=a-5(x)-5(b)+a-s(b)-5(x)+a-b-5%(x)

and so

a-(5(b)-6(x)+b-52(x)) = 0.

This is equivalent to

a-s(b-s(x))=o0.

Hence a*(b*x)=0,

By the same argument as in the part (2).
(4)-(6) Evident.

V.N. Zhelyabin and A.S. Tikhov [38], asked: is true that an
associative commutative algebra (A,+,) with a derivation 5 is &
-simple in the usual sense if and only if its corresponding Balinsky-
Novikov algebra (Av+*) is simple?

Lemma 5.6: Let A be an associative commutative algebra,
SeDerA and £€A. Then A isa & -simple algebra if and only if
A% is a simple Balinsky-Novikov algebra.

Proof. For proof see [31, Proposition~2.8].

Corollary 5.7: Let A be an associative commutative algebra
with 1, 5 e DerA and $ €A If A is a field, then A% isa simple
Balinsky-Novikov algebra.

In the next we need the following

Lemma 5.8: Let A be an associative commutative ¢
-semisimple algebra with 1, charK =2 and seDerA If I isa &
-ideal of A and §%*(I)=0, then 5()=0 and I-5(A)=0.

Proof If iel, then
0=62(i-i) = 5(2i - 5(i)) = 25(i) - 5(1) + 2i - 52 (i) = 25(1) - 5(i)

and therefore 6(1)-53i)=0. Then (5()-A)2=0 and so 6(i)=0.
Moreover,

0=5()=6(I-A)=6(I)-A+1-6(A)=1-5(A).

Lemma 5.9: Let A be an associative commutative algebra with
1, 025cDerA and $€A. Then A is a S -prime algebra if and
only if A%¢ isa prime Balinsky-Novikov algebra.

Proof. (=) Let I and J be ideals of A%% such that
I*]=o0.
This means that
i-6(j)+&-i-j=0

forall iel and jeJ.ByLemma 5.4 (4),
¢-Ls(Mcland &-1,6(J) .

Moreover, annl and ann(annl) are &-ideals of A,
I c ann(annl) and

£-i+6(j)eannl. (5.1)

Assume that I=0. Then annl=0 and 6(J)=-¢-J for any

Citation: Artemovych 0D, Balinsky A, Prykarpatski AK (2019) The quadratic Poisson structures and related nonassociative noncommutative Zinbiel type algebras.

Ann Math Phys 2(1): 026-037. DOI: https://dx.doi.org/10.17352/amp.000007



™ PeertechzPublications Inc.

jeJ.Asaconsequence, £-]-]J=0.Since J-A isa 9 -ideal of A,
we conclude that ]2 #0.Then £=0 and, in view of (5.1),

s(J)=o. (5.2)
In as much as
J*n*(J*nci*j=o,

we obtain that

J-8(1)-5(1)-6(J)+J-J-6(1)-6%(I) =0

and by (5.1) and (5.2),
J-J-8(D)-5%(I)=o.

a) 1If ann(J-J)#0, then J-Jcann(ann(J-J))=0. Hence
(A-])-(A-])=0 and we deduce that J =0

b) Assume that ann(J-J)=0. Then (5(I)-A)-(6*(I)-A)=0 and,
by Lemma 5.8, 5(I) =0 . Asa consequence, I-5(A)=0.This means
that §(A) c ann(I- A) what forces that 6(A) =0 a contradiction.

(<) Let A%¢ bea o -prime Balinsky-Novikov algebra. Assume
that X and Y are ¢ -ideals of A such that X-Y =0. By Lemma
5.4(2), X and Y are ideals of A%¢ and X+Y=0. Thus X=0
orY=o.

Lemma 5.10: Let A be an associative commutative algebra
with 1, 0= & eDerA and § € A.Then A isa & -semisimple algebra
ifand only if A%¢ is a semisimple Balinsky-Novikov algebra.

Proof. By the same argument as in the proof of Lemma 5.9.

Lemma 5.11: (see [39]) Let (N,+,*) be a Balinsky-Novikov
algebra. Then Z(N) and [N,N] areideals of N and Z(N)*N,N]1=0

Lemma 5.12: Let A be an associative commutative algebra
with 1, charK =2, 0=5eDerA and §€A.If A is a & -prime
algebra, then Z(A%¢)=0.

Proof By Lemma 5.11,Z(A%%)*[A%¢ A%¢)1=0. If

[A%¢ A%¢]=0, then
a-o(b)=b-s5(a)
forall a,be A Then
a-s(a)-b+a-a-s(b)=a-s(a-b)=a-b-s(a).

This gives that 4-@-6(b)=0 and so a-a<ann(s(A)-A). Since
ann(5(A)- A) is a 9 -ideal and 6(A)#0, we obtain that a-a=o0.
Then (a+b)-(a+b)=0 forany a,be A and a-b=-b-a.Thisyields
that A-A =0, a contradiction. Consequently (4%¢,4%¢1%0 and
thus Z(Aé'é:) =0.

Itis known [31], that not all simple Balinsky-Novikov algebras
have nonzero idempotents. Let A be a commutative associative
ring with 1, 0% 6 eDerA and S€A . If A isathen ec A% isan
idempotent if and only if 5(e)=-¢-e.

Proof. Let eze*ee A% . Then e(s(e)=-¢-e)=0.1f e-a=o0 for
some aecA, then §-5(a)ee-Aand §(e) -acann(e-A). Hence
(5(e)-a)* =0. Since (a_0)=a_0 A "2(e) a +a_0 A (e) a= -e (a) a

ag =s(e)a

Recall that a nonzero ideal S of A is called minimal if, for any
nonzero ideal P of A, the implication

Lemma 5.13: Let A be an associative commutative algebra
with 1, £ € A and 6 € DerA | If S(A) L P for any minimal & -prime
ideal P of A, then:

e every abelian ideal I of the Lie algebra A%L is contained
in the & -prime radical Ps(A),

o A%L isnot solvable.

Proof. (1) Let I be anonzero abelian ideal of the Lie algebra AL
If I¢P5(A), then there exists a minimal & -prime ideal of P of
A such that I £ P, Obviously that

A:A[/P>a+Prs(a)+PecA/P

is a nonzero derivation of the quotient algebra A/P. Since A /P
isa A -prime algebra, then (A/ PYM where n=¢+P isa prime
Lie algebra. Hence (I+P)/P is zero, a contradiction.

(2) It follows in view of the part (1) .
The Lie Properties

Lemma 6.1: [15 Theorem~3.3] Let A be an associative
commutative algebra with 1 and 0= &5 eDerA. Then A isa 6
-simple algebra if and only if A%S is a simple Lie algebra.

Proof. By the same argument as in the proof of Lemma 5.9.

Lemma 6.2: Let A be an associative commutative algebra
with 1, charK#2 and 0= 5 <DerA, If 1 is an abelian Lie ideal
of a semisimple Balinsky-Novikov algebra A%, then s(I)=0. If,
moreover, ASL is prime, then 1=0.

Proof. a) Let I be a Lie ideal of A%L such that
[I,I1=o0.

Then 0 =[u,vl=u-5(v)-v-5(u) forany Vel If xe A, then

0 =[u,[v,x]1=u-5([v,x]) - [v,x]-6(u) =
=u-[6(v),x]+u-[v,6(x)]1-[v,x]-6(u) =
=Uu-((W)*x-—x*s(v))+u-(v*s(x)-o(x)*v) -
—-(v*x-x*v).6(u)=

=u-(6(v)-o(x)-x- 52(v)0 —v-8(x)-5)+x-5(v)-o(u)
=x-(-u-52(v) + 5(v) - 5(u)) +

+0(x)-W-s(v)-v-os(u))+u-(v- 62(x) -5(x)-8(v)) =
=u-[v,6(x)].

This means that

[I,6(A)lc I Yannl=0 (6.1)

because annl isa & -ideal of A.If Y€ A, then
0=[u,6(x-y)1=[u,6(x)-y+x-5(y)1=
=u-5(5(x)-y)-u-5(x)-5(y) - 6(x)- y-o(u) +
+u-§(x)~(y)+u~x-§2(y)—x-§(y)~5(u)=2u-§(x)-§(y).
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Hence &(A)-6(A)cannl. Then o) -6(I)c(annl)nI=o0.
Since anns(I) is a 9 -ideal of A and 5(I) c anns(I), we conclude
that §(I)=o0.

b) Now assume that A% s prime. In view of (6.1),

0=[I,6(A)] =1 -5%(A).

Then 5%(A)=0 and, by Lemma 5.8, §=0, a contradiction.
Hence I=0.

Lemma 6.3: Let A be an associative commutgtive algebra
with 1, charK =2, 0= & eDerA and ¢ €§AL' Then A ¢ is a prime
Balinsky-Novikov algebra if and only if A”" is a prime Lie algebra.

Proof. (=) Assumethat I and J are nonzero ideals of ASL such
that

(5,J1=o0.

By Lemma 6.2, [[,]#0 and [J,J]1#0. Then I (respectively
J) contains a nonzero & -ideal 0 (respectively Jo) of A
. Since [In],In]J]=0, we have Iy-JogclpnjgcIn]=0, a
contradiction. Hence A%L isa prime Lie algebra.

(<) Suppose that B and C are & -ideals of A such that
B-C=0.By Lemma 5.4(6), B and C are ideals of A%L . Then
[B,C]1=0 and therefore B=0 or C=0.

Lemma 6.4: Let A be an associative commutative algebra with
1, charK#2, 0= 5 eDerA and € A. Then A% isa semisimple
Balinsky-Novikov algebra if and only if ASL is a semisimple Lie
algebra.

Proof. (=) Let I be an ideal of the Lie algebra A%L such that
[I,I1=0.By Lemma 6.2, 5(I) =0 . Then

I3i,a]=i-8(a)-a-s(i)=i-s(a)=ixa
forany iel and ae A and
AxI=A.s5(I)=o0.

Hence I is an ideal of the Balinsky-Novikov algebra A%
Since I*I=0, we obtain that I =0. Thus the Lie algebra A5’L
is semisimple.

(<) Assume that B is a & -ideal of A such that B2 =0. By
Lemma 5.4 (6), B isanideal of A%L and [B,B]=0. Consequently
B=0.Hence A% isa semisimple Balinsky-Novikov algebra.

Proof of theorem 3.2: It follows from Lemmas 5.6, 5.9, 6.1,
6.3 and 6.4.

Conclusion

We have shown that quadratic Poisson brackets generated
by nonassociative noncommutive algebras and carrying
many interesting algebraic properties compatible with their
multiplicative structure. Their relations to the Yang-Baxter
structures on the adjacent Lie algebras proved to be instructive
when studying compatible Hamiltonian operators, generating

integrable dynamical systems on functional spaces. It was
demonstrated the importance of the quadratic Poisson brackets
of the Lie-Poisson type, there were constructed Balinsky-Novikov
and Leibniz algebras and investigated their internal algebraic
structures. The nonassociative structures of commutative
algebras related with Balinsky-Novikov, Leibniz, Lie and Zinbiel
algebras were described in details.
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