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Introduction

Within modern mathematical physics the investigations
of completely integrable dynamical systems of nonlinear field
models or solvable nonlinear partial differential equations
are an active area [1-4], of research since the discovery of
the inverse scattering method and application of differential-
geometric, algebro-geometric and spectral methods [3-9],
to their studying. Such nonlinear field models are in a sense
universal since they show up in many areas of physics such
as solid state, nonlinear optics, hydrodynamics, plasma
physics and other both theoretical and applied research fields.
Simultaneously integrable models are linked to many areas of
mathematics and characterized by beautiful structures behind
them.

In present review we are mainly interested in analyzing
geometrical structures, which characterize classical integrable
dispersionless dynamical systems, being important for
describing both their exact solutions and related mathematical
structures, responsible for their properties and diverse

the inverse first Shabat reduction heavenly equation, the first and modified Plebanski heavenly equations,
the Husain heavenly equation, the general Monge equation and the classical Korteweg-de Vries dispersive
dynamical system. We also investigated geometric structures of a class of spatially one-dimensional
completely integrable Chaplygin type hydrodynamic systems, which proved to be deeply connected with
differential systems on the complexified torus and the related diffeomorphism group orbits on them.

applications. We investigate the Lie algebraic structure and
integrability properties of a very interesting class of nonlinear
dispersionless dynamical systems of the heavenly type,
which were initiated by Plebanski [10], and later analyzed in
a series of articles [11-21]. The work is organized as follows:
In Section I we review or at least introduce some basic notions
and mathematical constructions, which lie in a background of
the Lie differential-geometric approach to studying integrable
Lax-Sato type dispersionless differential equations. In
Section II we describe the related Lie-algebraic structures
and integrable Hamiltonian systems, generated by orbits of
co-adjoint actions of loop groups on their cotangent spaces.
The Lax-Sato type integrable multi-dimensional heavenly
type systems and related conformal structure generating
equations are presented in Section III. As it was appeared,
amongst them there are present important equations for
modern studies in physics, hydrodynamics and, in particular,
in Riemannian geometry, being related with such interesting
conformal structures on Riemannian metric spaces as
Einstein and Einstein-Weyl metrics equations, the first and
second Plebanski conformal metric equations, Dunajski
metric equations etc. What was observed, some of them were
generated by seed elements [ e G*, meromorphic at some
points of the complex plane C, whose analysis needed some
modification of the theoretical backgrounds. Moreover, the
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general differential-geometric structure of seed elements,
related with some conformal metric equations, proved to be
invariant subject to the spatial dimension of the Riemannian
spaces under regard, that made it possible to describe them
analytically. We analyzed the Einstein—Weyl metric equation,
the modified Einstein—Weyl metric equation, the Dunajski
heavenly equation system, the first and second conformal
structure generating equations, the inverse first Shabat
reduction heavenly equation, the first and modified Plebariski
heavenly equations, the Husain heavenly equation, the general
Monge equation. Short Section IV is devoted to constructing
superconformal analogs of the Whitham heavenly equation.
The algebraic Lax-Sato type vector field representation of the
classical Korteweg-de Vries dynamical system is analyzed in
Section V. And the last Section VI is devoted to investigation
of geometric structures related an one-dimensional completely
integrable Chaplygin hydrodynamic system, which proved to be
deeply connected with differential systems on the complexified
torus and the related diffeomorphisms group orbits on them.
This geometric structure made it possible to find an additional
relationship between seed differential forms on the torus
and describe a new related infinite hierarchy of integrable
hydrodynamic systems. These systems, as it was demonstrated
in [22], are closely related with a class of completely integrable
Monge type equations, whose geometric structure was also
recently analyzed in [14], using a different approach, based
on the Grassmann manifold embedding properties of general
differential systems defined on jet-submanifolds. The latter
poses an interesting problem of finding relationships between
different geometric approaches to describing completely
integrable dispersionless differential systems.

Vector fields on the complexified torus and the related
Lie-algebraic properties

Consider the loop Lie group G:= ﬁﬁ(ﬂr@), consisting [23],
of the set of smooth mappings {C!-s! »G: = Diff(T"3,
extended, respectively, holomorphically from the circle
stcc! on the set D! of the internal points of the circle
Sl, and on the set D! of the external points AeC\ﬁ}r.
The corresponding diffeomorphisms Lie algebra splitting
G:=G, ®¢_, where §,:= diff(T"), < r(I$5T(T})) is a Lie
subalgebra, consisting of vector fields on the complexified
torus Tg ~TMxC, suitably holomorphic on the disc D},
G_:= diff(1})_ < T(T;T(TY)) is a Lie subalgebra, consisting
of vector fields on the complexified torus Tg ~T"xC, suitably
holomorphic on the set DL. The adjoint space ¢*:=GF @ g,
where the space Qicr('ﬂ‘g;T*('ﬂ‘g)) consists, respectively,
from the differential forms on the complexified torus Tg,
suitably holomorphic on the set C\ﬁ}r, and the adjoint space
G < I(T(;T*(T1)) consists, respectively, from the differential
forms on the complexified torus ’Jl‘(g, suitably holomorphic on

the set D!, so that the space G} is dualto G, and G* is dual

to G_ with respect to the following convolution form on the

product ¢*x§:
dla):= res/lj'Tn <la>dx (2.1)

for any vector field d:=< a(x),% >e( and differential form

[:=<I(x),dx>cG* on 11‘(8, depending on the coordinate

is the usual

and =
0X

is the usual gradient vector. The Lie

x:=(4;x)eT!, where, by definition, <. >
scalar product on the Euclidean space EM*!
0 90 0  OhT
o1’ oxq "oy ax
algebra G allows the direct sum splitting =G, ®G_, causing
with respect to the convolution (2.1) the direct sum splitting

G*=G;®G". 1f to define now the set I(G*) of Casimir

invariant smooth functionals h:G* >R on the adjoint space

G* via the coadjoint Lie algebra ¢ action
ad* -1=0 (2.2)

at a seed element [ e &*, by means of the classical Adler-

Kostant-Symes scheme [4,11,24,25], one can generate
[17,20,26,27], a wide class of multi-dimensional completely
integrable dispersionless (heavenly type) commuting to each
other Hamiltonian systems

di /dt:= -ad*

vh, (T)l ) (2.3)

forall he 1(G*), vh(l):=vh,(l)@vh_(I)eG, ®G_, on suitable
functional manifolds. Moreover, these commuting to each other
flows (2.3) can be equivalently represented as a commuting
system of Lax-Sato type [17], vector field equations on the

functional space CZ(T(E;C), generating an complete set of first
integrals for them.

The Lie-algebraic structures and integrable Hamiltonian
systems

Consider the loop Lie algebra §, determined
above. This Lie algebra has elements representable as

D omeali )L S e )Lt ()L e
a(x; ) :=< a(x,/l),aX >= Elaj(x,/i) o +a0(x,ﬂu)a/1 eG for some

holomorphic in 1eD} vectors a(x;4)eExE" for all xeT",
where i:: E,L,L,“.,L)T
10).4 OA 0Xq 0Xo 0Xn

Euclidean vector gradient with respect to the vector variable

is the generalized

x:=(1,x) e 'ﬂ‘g. As it was mentioned above, the Lie algebra ¢

naturally splits into the direct sum of two subalgebras:
G=G,®4_, (3.1)
allowing to introduce on it the classical R -structure:

(bl :=[Ra,b)+([a,Rb) (3-2)

for any a,b g, where
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R:=(P, -P.)/2, (3-3)
and

P.G:=Gy cG. (3.4)

The space G* z[\l(’]l‘(g %, adjoint to the Lie algebra G of
vector fields on Tg, is functionally identified with § subject

to the metric (2.1). Now for arbitrary f,geD(G*), one can
determine two Lie—Poisson type brackets

{f,g%:=(0,Ivf(),vg(D]) (3.5)
and
if,g3r =, Ivf(D),ve(DIR), (3.6)

where at any seed element [ eG* the gradient element Vf(l)

and Vg(i) e§ are calculated with respect to the metric (2.1).

Now let us assume that a smooth function y e I(G*) is a
Casimir invariant, that is
ad®* .1=o0 3.7)
vy(l)

for a chosen seed element [ eG*. As the coadjoint mapping
ad;f(i):é* —¢G" for any feD(G*) can be rewritten in the

reduced form as

« [0 L 0
ad 1D <&,0Vf(l)>l . ]zl <<t 2 vf >dx> (3.8)

where, by definition, Vf(i)::< Vf(l),%» For the Casimir

function y e D(G*) the condition (3.7) is then equivalent to the
equation

1<i w(l)> +<w(1),§>1+ <1,(%wu>)> -0, (3.9)

x’
which should be solved analytically. In the case when an

7 5% . . .
element [eG is singular as | 1> «, one can consider the

general asymptotic expansion

vy =vP) o 4P 3 v},(,P)[J' (3.10)
jez.,

for some suitably chosen peZ,, and upon substituting (3.10)
into the equation (3.9), one can proceed to solving it recurrently.

Now let h(y),h(t) e I(G") be such Casimir functions for

which the Hamiltonian vector field generators
V= (v, PV, vhO@:= (vl Gay
are, respectively, defined for special integers Py:Pt € Zy. These

invariants generate, owing to the Lie—Poisson bracket (3.6),
the following commuting flows:

ol ot =— <%,ovhg)(1)>l - <l,(%vhg)(l))> (3.12)

and
il oy=-( 2P0~ (L wnPy) G13)

where y,teR are the corresponding evolution parameters.
Since the invariants h(y ),h(t e I(G*) commute with respect
to the Lie—Poisson bracket (3.6), the flows (3.12) and (3.13) also
commute, implying that the corresponding Hamiltonian vector
field generators

= vDp), -2 ~lon W 2
Avhgrt) —<Vh+ (l)yax>) AVhEry)_<Vh+ (I)’6X> (314)

satisfy the Lax compatibility condition

0 bl B
@Avh@ - aAvhgy) = [Avhg) ’Avh@] (3.15)

for all y,teR. On the other hand, the condition (3.15) is
equivalent to the compatibility condition of two linear equations

b 0
(c?tJrAth)]W =0, [@+Avh£y)jy/ =0 (3.16)

for a function y e Cz(]R2 x ’JI‘('};C) forall y,teR and any 1eC.

The above can be formulated as the following key result:

Proposition 3.1: Let a seed element be [e G* and h(y),h(t) IS
I(G*) be Casimir functions subject to the metric (-1-) on the loop
Lie algebra G and the natural coadjoint action on the loop co-
algebra G*. Then the following dynamical systems
oy = -ad* 1, al /ot
0)

are commuting Hamiltonian flows for all y,teR. Moreover,
the compatibility condition of these flows is equivalent to the

al / = —ad* N (3.17)
vh{D (i)

vector fields representation (3.16), where y GCZ(RZ xT(g;(C)
and the vector fields Ath}’)’Avhgf) eg are given by the

expressions (3.14) and (3.11).

Remark 3.2 As mentioned above, the expansion (3.10) is
effective if a chosen seed element 1 eG* is singular as | A |- . In
the case when it is singular as | 1 |- 0, the expression (3.10) should
be replaced by the expansion

vy~ 2P S v, Py (3.18)

jez,
for suitably chosen integers peZ,, and the reduced Casimir
function gradients then are given by the Hamiltonian vector
field generators

vh ()= 2PV e, PV 0y

(3-19)
vhO(1):= 2(17Pt 1y, P 1))

for suitably chosen positive integers py,p;<Z, and the

corresponding Hamiltonian flows are, respectively, written as
* I.

vhO)(7)

It is also worth of mentioning that, following Ovsienko’s

ol [ ot =ad* _l,0l/oy=ad
vh®(j)
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scheme [26,27], one can consider a slightly wider class
of integrable heavenly equations, realized as compatible
Hamiltonian flows on the semidirect product of the

holomorphic loop Lie algebra ¢ of vector fields on the torus
'JI‘(S and its regular co-adjoint space G*, supplemented with
naturally related cocycles.

The Lax-Sato type integrable multi-dimensional heaven-

ly systems and related conformal structure generating
equations

Einstein—Weyl metric equation:

Define ¢* = C/ﬁﬁ('ﬂ‘é )* and take the seed element

I= (uxﬂ — 2UyVy —uy)dx + (12 ~VyA+vy + Vg |dA,
which generates with respect to the metric (2.1) the gradient of
the Casimir invariants h(pf),h(py ) e I(G*) in the form

vhPO) ~ 22(0,1)T + (-uy,vx) " 2+ (uy,u-vy) " +0™),

VhPYH0 = 400,07 + Gt )+ g,y 571+ 002)
(41)

as |Al>w at py=2, py=1 For the gradients of the

Casimir functions h(t),h(y ) e I(G*), determined by (3.11) one

can easily obtain the corresponding Hamiltonian vector field
generators

_ (t) 0\ _(,2 0 0
Avhg) = <Vh+ (l),&> = (A% + Avy +u—vy)&+(—,1ux +uy)a,

A - Vh(y)l £>= 2 9 40

Vhs_y) < + ( )y oxX ( + Vx)ax UX 5},’ (42)
satisfying the compatibility condition (3.15), which is equivalent
to the set of equations

Uxt +Uyy +(Uly )y +Vyxlixy —Vylixy =0,

Vxt +Vyy +Uyxx +VxVxy —VyVxx =0,
(4.3)
describing general integrable Einstein—Weyl metric equations

[16].

As is well known [19], the invariant reduction of (4.3) at
v=0 gives rise to the famous dispersionless Kadomtsev—
Petviashvili equation

(ug +uuy)y +uyy =0, (4.4)

for which the reduced vector field representation (3.16) follows
from (4.2) and is given by the vector fields

(2.0 L 9
Avhg) =(1 +u)6x+( Ally +uy)m,

2 o

A (y) 4=, ~Ux—=;
) T T X

Vh X (4.5)

satisfying the compatibility condition (3.15), equivalent to the

equation (4.4). In particular, one derives from (3.16) and (4.5)
the vector field compatibility relationships

oy .2 oy oy
—+ (A% +u)—+(-Auy +uy)=——=0
at ( )6x (-t l’)az

oy oy oy
——+A—-Uy—=0
v T Xa (4.6)

satisfied for y e C2(R% x ’Ir(é;(C) and any y,t e R,(x,1) e ’]I‘é.

The modified Einstein—Weyl metric equation: This
equation system is

Uxt = Uyy +UxUy + uFwy + Ulyy +UyyWy +Uxxd,
Wyt = UWyy +UyWy + WyWyy +aAWxy —dy,
(4.7)
where ay :=uywy - wyy, and was recently derived in [28]. In
this case we take also G = afﬁ‘ (11‘(1:), yet for a seed element
[ G we choose the form
I=[4%uy + (2uxwx +Uy +3utly )/1 + Uy Oy Uy Wy, + 2uy0x Uy +

Uy Wy + 2UyWy + Ul Wy +2Uly + 3uuy - 2auy Jdx +

022 + (wy +3U) 4 +20% uywy + zf&luy + Wy +3uwy +3u% —aldi,

(4.8)
which with respect to the metric (2.1) generates two Casimir
invariants }/(]) e 1I(G%), j=1,2, whose gradients are

V;/(Z)(l) ~ 12[(u,(,—1)—r +(uuy + Uy,~U+ wx)—'—ﬂf1 +

+o,uwy —a)" 2721+0(27Y),

VAW ~ a1+ 0,w) " 771+ 007Y, (4.9)
as |Al»o at py=1,p;=2. The corresponding gradients of

the Casimir functions h(t),h(y ) e I(G"), determined by (3.11),

generate the Hamiltonian vector field expressions
VA =7, D)1, = (ugd, -2 + wy) T,

thf) = V}/(Z)(l) l,= (ux/i2 +(uuy + uy)/i,—ﬂz +(wy —U)A +uwy - al.
(4.10)
Now one easily obtains from (4.10) the compatible Lax
system of linear equations

oy oy oy

—— 4+ (A +Wy)—+UyA—=0

ay+( +")ax+"az ’
a—'//+(—/12+(wx—u)/1+uwx—a)a—l//+(uX/12+(qu+u WY o,
at ox Y7

(4.11)
satisfied for y e CZ(R? x Té;(C) and any y,teR, (4,X)e ’]I‘é.

The Dunajski heavenly equation system: This equation,
suggested in [15], generalizes the corresponding anti-self-dual
vacuum Einstein equation, which is related to the Plebaniski
metric and the celebrated Plebariski [10,29], second heavenly
equation. To study the integrability of the Dunajski equations

2 _
Uyt +Uyxy +UxgxgUxyXy ux1x2 v=o0, (412)
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Vgt T Vx5 y tUxgxg Vg xg ~2Ux x5 Vxixg =0
O (2 22 . ) .
where (u,v) e C*(R* xT;R*), (),t;Xq,X5) e R“ x T, we define
G* = (ﬁﬁ(’ﬂ‘é )* and take the following as a seed element [ € G*

(4.13)

With respect to the metric (2.1), the gradients of two

functionally independent Casimir invariants nPy ),h(p v .

I(G*) can be obtained as | 2|» « in the asymptotic form as

vhPY) ()~ 21,0,0T + (g iy -vy) T +OG),

VhPE) (1) ~ 4(0,-1,0)T + (ty, ey Uiy xp 1V, )| +OGETY),
(4.14)

at pt=1=py. Upon calculating the Hamiltonian vector field
generators

Vh_(,_y) . Vh(Py) 0= —Ux; Xy Uxgxq17VXg )T,

(0 .- yuP) - i T
Vhy = VRPET (1) ] = Uy, xy s =4 = Ux x5 0V ) s (4.15)
following from the Casimir functions gradients (4.14), one
easily obtains the following vector fields

0 Ly, 2,
0Xo, 204
Avny) =< thy)’& >=(2-txyx, )% Tlax % ' %’
(4.16)
satisfying the Lax compatibility condition (3.15), which is
equivalent to the vector field compatibility relationships

(t) <Vh() > ux2x20 -(A+u X1x2)

oy oy —(

oy oy _
ot TUxaxa g TV haxe) o PV 5y =9
oy oy Oy . Oy _
—+((1-u =0
oy ( xlxz)ax x5, TV, T (4.17)
s 22 . 2
satisfied for yeC*(R“xT;C), any (yt)eR and all

(l;xl,xz)e’ﬂ‘é. As was mentioned in [12], the Dunajski

equations (4.12) generalize both the dispersionless Kadomtsev—
Petviashvili and Plebariski second heavenly equations, and is
also a Lax integrable Hamiltonian system.

First conformal structure generating equation:
Uyt + uxth - utuxy =0.

The seed element [ € G* = c?if?('ﬂ‘é)’k in the form

[=lu2(- 2471 +up?a0a-1)dx, (4.18)

where u e C2(R% xTLR), xGTl, AeC\{0,1} and "d" denotes

the full differential, generates two independent Casimir

functionals y(l) and 7(2) e 1(G*), whose gradients have the
following asymptotic expansions:

VD) ~uy +0(u?),

as |ul»0, p:=2-1,and

v/2)(1) ~ g +0(22),
as | 1l- 0. The commutativity condition

xW xMy=¢ (4.19)
of the vector fields

X =7y + vRO@), x® =570t + vaO(D), (4.20)
where

V(@)= (v Dy L= -2

10x’

ut 0
A ox’ (4.21)

leads to the heavenly type equation

vh®O(d):= - v,/ D))= -

Uyt + leth - nyut =0.

Its Lax-Sato representation is the compatibility condition for
the first order partial differential equations

oy Yy ov_

oy A-10x

oy Ut oy _

ot A (4.22)

where y e C2(R2 x T(é;(c) .

Second conformal structure generating equation:

Uyt +UylUyy —Uylyy =0

For a seed element [ € §* = (Tiff(’]l‘é)* in the form
I=[uf + 2ux(uy ra) by ux(3uy +4auy + A 2)dx, (4.23)
where ueC2(T!xR2;R), xeT!, iec\{o},and «,feR,

. - , (1 ;
there is one independent Casimir functional y e IEGH
with the following asymptotic as |i|>0 expansion of its
functional gradient:

V;/(l)(l) ~ cougl + (—couy + cl)ugli + (—cluy + cz)u}112 + 0(23),

where ¢, €R, r=1,2. If one assumes that cy=1, ¢; =0 and

¢y =0, then we obtain two functionally independent gradient
elements

WM (iy:= (2 1v, (D 0
vV (1) := -2 7w, V(D) L=~ /w X
Vh(t)i :=(1 2y (l)i |_= ;—u—y —.
( ) ( V4 ( )) ﬂzux lux oX (424)

The corresponding commutativity condition (4.19) of the
vector fields (4.20) give rise to the following heavenly type
equation:

Uyt +Uylyy —Uyllyy =0, (4-25)
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whose linearized Lax-Sato representation is given by the first
order system

oy 1 9y _,

y  Auy x

oy 11 Y v _,
ot Azux Auy | ox (4.26)
of linear vector field equations on a function y e c2 (RZ X ’Jl‘é;R).

Inverse first Shabat reduction heavenly equation: A seed

*

element [ e G* = diff (’Iré) in the form
[ = (aguy®uz (2 +1)7! + aguy + aquz2)dx, (4-27)

where ueC2(T!xR2;R), xeT!, 1eC\{-1}, and aq,q <R,

generates two independent Casimir functionals ;/(1) and

7(2) e I(G"), whose gradients have the following asymptotic
expansions:

VW ~ uyurt - uytigtu +0G2), (4.28)
as lul»o0, p:=21+1,and
v/ ~upt +0(172), (4.29)

as | 1|— « . If we put, by definition,

W0y:= (v, Dy = A Yy o
VRV (1) := (v (D) = A1 Uy X
®dy-= v 2], =22
vht (1) := v\ 2 (D)1, = L o (4.30)

the commutativity condition (4.19) of the vector fields (4.20)
leads to the heavenly equation

Uxy +Uylipy —Ugylly =0, (4.31)
which can be obtained as a result of the simultaneous changing
of independent variables Rsx —teR, R>y — xeR
and R>t — yeR in the first Shabat reduction heavenly

equation. The corresponding Lax-Sato representation is given
by the compatibility condition for the first order vector field
equations

o AW oy, (4.32)

where v € CZ(R2 x Tl ;R).

First Plebanski heavenly equation and its generalizations:

The seed element [ e G* = anf(Té)* in the form
I= /l_l(uyxldxl +Uyy, d¥y) = A Yduy, (4-33)

where ueC2(T2xR%R), (x1,X)eT2, ieC\{o} and "d"
designates a full differential, generates two independent

Casimir functionals }/(1) and y(z) e I(G"), whose gradients

have the following asymptotic expansions:

V}/(l)(l) ~ (7qu2 )uyxl v)T + O(;L)a

v 2y ~ (ugx, »Utx, )" +0(2), (4.34)

as |1l 0. The commutativity condition (4.19 vector fields
(4.20), where

Yyxa o Uyxq 2

W (iy-= (1w, D] =
vhWY) () := v, \ V(1) = e h ey

Utxy 8 N Utx; o

Vh(t)(i)::(A_IV;/(Z)(T))L:— 2o 1 g (4.35)

leads to the first Plebanski heavenly equation [13]:

Uyx, Utx, —Uyx,Utxg = 1- (4.36)

Its Lax-Sato representation entails the compatibility condition
for the first order partial differential equations

oy _Uyxp oy Uyxy oy _

0,
ﬁy A aXl A 6)(2

87y/_utx2 6l+ Utxq oy _
ot A Xq A 0xy

where y € C*(R2 x Té;(c).

Taking into account that the determining condition for
Casimir invariants is symmetric and equivalent to the system of
nonhomogeneous linear first order partial differential equations
for the covector function l:(ll,lz)T, the corresponding seed
element can be also chosen in another forms. Moreover, the
form (4.33) is invariant subject to the spatial dimension of the
underlying torus T", what makes it possible to describe the
related generalized conformal metric equations for arbitrary
dimension.

In particular, one easily observes that the asymptotic
expansions (4.34) are also true for such invariant seed elements
as

[=27(duy + dup).

The described above Lie-algebraic scheme can be easily
generalized for any dimension n =2k, where ke N, and n>2.

In this case one has 2k independent Casimir functionals y() )

I(G*), where ¢*=diff(T2K)*, j=1,2k, with the following

asymptotic expansions for their gradients:

VDD ~ (upxy gy 0,0 T +0(2),

2k2

VA2 ~ Cugyy ey 0,.,0) T +0(2),
2k 2
v, 3 ,0) | +0(2),

2k4

N(O O UyXA,UyX3

V7(4)(1)N(00 utx47utx3y y- 0) +O(ﬂ)y ceey
zk 4
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VAZKDD) ~ (0,0, -ty Uy )" 00,

Zk 2
(Zk)(z)w(o 20, Uy Upyy 1) +O(0).
%2
If we put

vhO(@):= 6w DD +...+ v, 2Dy =

_ i Uyxom & UYyxomq @
- b
m=1 A 6X2m,1 A 6X2m

vhO(@y:= 1w/ (D) + ..+ v, K@) =

:_i Uxom o0 Uxomq 0 ’
m=1 A 6x2m_1 A 6x2m

the commutativity condition (4.19) of the vector fields (4.20)
leads to the following multi-dimensional analogs of the first
Plebarniski heavenly equation:

k
2 (Uyxoym 3 Utkom ~UyxomUtxom 1) =1

Modified Plebanski heavenly equation and its

generalizations: For the seed element [ G* = diff(T2)* in the
form

f_(;-1
= (A7 ug, y +Ux x; ~Uxgx, +A)dXg +
-1 -
+( Uxyy +Uxyxy ~Uxyxy * A)dxy =
= d(A‘luy +ly, —Uy, + AXq +AXy). (4.37)

where di=0, ueC2(T% xR2;R), (Xl,xz)e’ﬂ“z,ﬂe@\{o}, there

exist two independent Casimir functionals ;/(1) and 7(2) €
I(G*) with the following gradient asymptotic expansions:
VOO ~ -ty )T +0(),
as | 1l» 0, and
Vi) ~ (0,7 + iy, slixgxy) T AT H0(A72),
as [ 1l- «. In the case, when

W7y (=10, (D] = VX2 o UYyxg o
VRV (1) := (v (1) 1L Tiag i g

vh®():= (v, 20y, = Uy x5, %“”Xﬂ‘z _ﬂ)é’

the commutativity condition (4.19) of the vector fields (4.20)
leads to the modified Plebanski heavenly equation [13]:

Uyt ~UyxyUxyxy HUyxylxyxy =0 (4.38)

with the Lax-Sato representation given by the first order
partial differential equations

oy _Uyxp oy Uyxg oy
ay A 6x1 A 8x2

oy _u oy
ot X*2X25x

:0,
Y i+ (u x1x2—/1) V;-O

for functions y e Cz(R2 x ’]1‘2 ;0).

The differential -geometric form of the seed element (4.37) is
also dimension invariant subject to additional spatial variables
of the torus T, n> 2, what poses a natural question of finding
the corresponding multi-dimensional generalizations of the
modified Plebanski heavenly equation (4.38).

If a seed element [ &* = diff(T2K)* is chosen in the form
(4.37), where ue Cz('ﬂ‘zk xR2:;R), we have the following

asymptotic expansions for gradients of 2keN independent

Casimir functionals }/(j)e I(G*), where G*:c/ﬁff(TZk)*,

j=1,2k:
VD0 ~ (uyyy gy ,0,.,0) T +0(2),
Zk 2
v3(1) ~ (0,0, Uy liyxg )00 Lol +ow), ..,
2k A
VA ZKDD) ~ 0,0, -ty Uy )T 00,

2k 2
as |Al»o0,and

V2D ~(0,-1,0,.,0) + (i s tixg 1y 0-50) 47 +0(27),
2k 2 2k 2
V}/(A)(I)N(OyoruxAXZ;Ux3x2»0,--~;0)T171+O(/172)y ceey
2k—¢4
VA0 ~ (0,0, Uyt tixgge_yp) 270072,
k2
as | Al « . In the case, when

vh (@)= -2 1w, D@y + ...+ v, kDD |_=

- % Yyxom o0 UYyxomq 0 ]
ml A Xoma 2 Xom )
VRO = (v D0y +... + v (2R (i), =

=-Ux,x i+(Uxx */I)ifg UxomX: L*Ux X L,
242 oX1 142 0Xy me 2m#2 Xom—1 2m-142 0Xam

the commutativity condition (4.19) of the vector fields (4.20)
leads to the following multi-dimensional analogs of the
modified Plebanski heavenly equation:
k
tye = 2 WyxymUxoXom_1 ~Uyxom_qUaxom) = ©-

Husain heavenly equation and its generalizations: A seed
element [ e G* = diff(T?)* in the form

. d(u +1u) d(uy, —iug) z(idu du)
([t A S y_ 1 (4-39)

A1 A+i /12_‘_1

017
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2

where i“=-1, di=o, (Xl,XZ)ETZ,

AeC\{-i;i}, generates two independent Casimir functionals

ueC2(T% xR2;R),

}/(1) and 7(2) €
expansions:

I(G*), with the following gradient asymptotic

V}’(l)(l) ~ %(*nyz fiutxz,uyxl +iutxl Y+0(w), wi=a-i,
as | ul-o0, and

v/ @)~ %(*”yxz Filipg Uy, —ilpx,) +08), &= 2+,
as | £l 0. In the case, when

v (@)= (v, (D(0) + £ 2v,2)(0)) |_=
= i[(—uyx2 —lugy, )% + (uy,(1 +iuty, )%] +

L (~u +iu )i+(u -iu )i =
28 125 tXZ 6)(1 VX1 tX]_ aXZ

_ Utxy —Hlyxy o Alyx, ~Utxy o ,
21 ! 21 X2

vh® (i) := (cuLivy D) + e vy D)) =

:i(—u +iu )i+(u —iu )i+
2l X2 T TYX g T TEYX Ty

F 1 Uy ity )2+ (Upy, + ity )2 | =
2& 2 Yzaxl 1 Y1ax2

_qu2+’th2i+ nyl-#ﬂutxli
21 X 241 )

the commutativity condition (4.19) of the vector fields (4.20)
leads to the Husain heavenly equation [13]:
Uyy +Ugt +Uyx, Upx, —Uyx,Utx; =0, (4.40)

with the Lax-Sato representation given by the first order
partial differential equations
oy, Uty ~Myxy oy . Allyxy Uty oy _
5 21 X i1 X

’

oy quZ +/1Utx2 6l+ nyl +/1utxl dy

:O,
ot 2241 X 2241 X

where y e C2(]R2 x'ﬂ‘é;(c).

The differential-geometric form of the seed element (4.39)
isalsodimension invariant subject to additional spatial variables
of the torus T", n> 2, what poses a natural question of finding
the corresponding multi-dimensional generalizations of the
Husain heavenly equation (4.40).

If a seed element | e¢* = diff(T2K)* is chosen in the form

(4.39), where ueC2(T2kKxR2;R), we have the following
asymptotic expansions for gradients of 2keN independent

Casimir functionals }/(j)e I(G*), where é*:c?i\ff(TZk)*,

j=1,2k:
(1)(l)~—( Uyx, —ilfx uyxl“utxlr o) T+ 0(u),
2k 2
(3)(l)~—(0 0,~Uyx,, ~ lutXA,ny3+lutx3 yo.30) | +0(u),

2k—4

VA2 1)(I)N*(° 0 Uyog ~ g tyxyge_y +igge_y) '+ 00,
2k 2

as |ul-»o, and

(2)(1)~7( Uy, + iy Uyxy ity 0,0 +0(),
Zk 2
(4)(l)~7(o 0,-Uyx, +'UtxA,ny3 lutx3 o [:)) +0(¢),

0y

V;/(Zk)(l)~—(0 50, =Uyxop + il s Uyxsp 1 — iUt 1) +0(8),
2k

as | £|- 0. In the case, when

k
vh(@y:= 3 (u v, Cm-D () 4 g1y, 2M)(0y) | =

m=1
k - _
- Uoom ~Myxom 0 Myxomy “Momq o |
m=1 A2 +1 Xam-1 A%+ Xam

k
vhO(@):= Y i-u v/ 2D () v, 2 (i) | =
m=1

k
-y Uyxom Mo, 8 L YXom- FAUOma @ ’
2241 Xam-1 2241 Xom

m=1

the commutativity condition (4.19) of the vector fields (4.20)
leads to the following multi-dimensional analogs of the Husain
heavenly equation:

k
Uyy + Ut + Zl(”yxszﬂtxzm “UyXomboXam-g) =0
m=
The general Monge heavenly equation and its

generalizations: A seed element [ e §* = aﬂ‘f(’ﬂ‘é)*, taken in the
form

[ =duy + 271 (dxy +dxy), (4-41)

where ueC2(T4 xR2;R), (X1,X2,X3,%4) € T4 , AeC\{o}, gen-
erates four independent Casimir functionals ;/(1), 7(2) , y(3)

and 7(4) e I(G*), whose gradients have the following asymp-
totic expansions:

v/ W)~ (0,1,0,0)" +

5 -1 -1 T 2
+(Flyxy —(0xy —0xy ) Uyxyxq2(0xy —0x ) Uyxyxq10,0) A +0(2%),
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v/ (1)~ (1,0,0,0)" +

+(Oxy —0xy) Miyxyxy -Uyxy — (g —Oxy) Mliyxyxy10,0) T 2+0(22),
V3~ (0,0,-uy, uyxy) " +0022),
Vy(4)(l) ~ (0,0,—utx4 ltxs )+ (ny3utx4 ~Uyx,, Utx3,0,

2
Uyx Utxy —Uyxy Utx,, Uyxy Uteg ~ uyx3utx1) A+0(2%),

(4.42)
as [1l- 0. In the case, when
vh(D):= 2 (v, D)+ v, 3D L=
o0 10 My oo Yyxz oo
X Adxy A X3 A oxg
vhO(@y:= (v, D) + v~ B0y L=
10 o Ux, o5 Uxg o
oy Cog 2 g 2 o (4-43)

the commutativity condition (4.19) of the vector fields (4.20)
leads to the general Monge heavenly equation [14]:

Uyxy +Upxy +UyxzUix, ~Uyx, Utxg =0, (4.44)

with the Lax-Sato representation given by the first order
partial differential equations

oy, 1ov WX ow T%3 0y
oy AdXy A X3 A X4
oy 1oy Mx4 ooy U3 0y _
ot Aoxy A Xz A axy

where y/eCZ(szTé;R) and 1eC\{o0}.

Taking into account that the condition for Casimir
invariants is equivalent to a system of homogeneous linear
first order partial differential equations for a covector function

1=(y,lp,13,1, )T, the corresponding seed element can be chosen

in different forms. For example, if the expression
I =dug + A1 (dxq +dxy)

is considered as a seed element, one obtains that it generates

four independent Casimir functionals ;/(1), ;/(2), y(3) and

7(4) e I(G"), whose gradients have the following asymptotic
expansions:

1 T
v/~ (0,1,0,0) +
+(-Utx, —(0x, —0x, )_lutxlev(axz ~0xq )_lutxle ,0,0)" 2+0(22),

v/2)(1) ~ (1,0,0,0)7 +

-1 -1 T 2
+((6X1*6X2) Utxlxz,*utxlf(ﬁxlfaxz) Utxlxzyoyo) A+0(27),

v, 3y ~ (o,o,—ut,(4 g )+ (O,thx3uyx4 ~Utx, Uyxz)

Urx, Uyxy ~UtxyUyxy Uiy Uyxg ~UtxsUyxy )T 4+0042),
&)y ~ _ T 2
V}/ (l) (anv qu4)qu3) '*'O(/1 )r
as | A|- 0. If a seed element has the form
[ =duy +dug + 271 (dxy +dxy), (4-45)
the asymptotic expansions for gradients of four independent

Casimir functionals y(l),y(z),yB) and 7(4)6 I(G*) are

written as
g T (- -
vy (D) ~(0,1,0,0) " +((uyy, +Utx,)
-1
= (0xy =0x; ) (Wyxyxy +Utxyxq )

(axz - a)(1 )71(qu2X1 + Utxle ),O,O)T/l + 0(12)’
V() ~ (1,0,0,0) + (o, 0, ) gy +Uixyxy )s
= (uyy, +Upx, ) - (0x; —0x, )_l(uyxlxz +Utxgx, ),0,0)" 2+0(2%),
V7/(3)(1) ~ (O,O,—U_VXA ,ny3 )T + (OyutX3qu4 - utX4 qu3!
Utx, Uyxy ~Utxy Uyx, Utxy Uyxg ~Utxgllyx, ) 4 +0(4%),
V7/(4)(l) ~ (0,0,—Utx4 7utX3 )T + (nygutx4 - qu4utX3 10,

Uyx, Utxy ~UyxUtxy sUyxg Utxz ~Uyxltxy )T 2+0(22),
as [1l>o.
The above described scheme is generalized for all n=2k,
where keN, and n>2. In this case one has 2k independent
Casimir functionals ) c1(G*), where &*= aifvf(ﬂrék)* ,

j=1,2k, whose gradient asymptotic expansions are equal to

the following expressions:

VDD~ (0,1,0,..,0) "+ (uyx, + i, )
2k 2

- -1 - -1
=(0x5, = 0xy ) (Uyxyx; +Utxyxg ) (@xy = 0x; ) Wyxyx; +Utxyxg )

0" 2+0(2%),
IR
2k-2
v/ 2 )~ 1,0,0,. 0.0 0,,0) " + (@, ~ x5 Wyayxy +Uxyxy )
2K-2

= (uyy, +Upx, )= (9%, —0x, )71(ny1x2 +Ux ),0,0) " 1+0(22),

vy(3)(1) ~ (0,0, Uyx,,» ”yx3m ,0)" +(o, UtxzUyx, ~Utx, Uyxs»
2k—4,

2
Ux, Uyxy ~UtxyUyx,, Utxy Uyxg ~UtxzUyxy 00 00T 1+0(12),
2k 4
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0) +(ny3Utx4 ny4utx3))

VW ~ (0,0,-tty, U ,0,...,0
2

00T 2+0(12),
2k 4

Uyx g, Utxy ~Uyxg Utxy sUyxq Utxg ~UyxgUtxy 1950

v (2k- 1)(1)N(o 10,0,0,~Uyx 1 s Uyxsp_ 1)T+
2K 4, ~4

* (0%’,'(‘;’0’0’”txzk71 Uyxap ~UtxokUyxak-1
2k-4

.
Ut Uy, ~Uty Uyogeo g Uyiok g ~Utkg_qUyxy) | 4 +002),
2k
v, (2K (1) ~ (0,.+/0,0,0, Uity Utxype 1) +
2k -4

+ (07’~(~ ~)01qu2k_1 ut)(zk - qu2k uthk_l )0,
2k-4

UyxopUtxy ~Uyxq Utkog Uyxq Utkog 1 ~Uyxok—1Utxg ) 2+0(2),
when a seed element [ € * is chosen as in (4.45). If

VR (@)= (1w D@y + vy B0y + ...+ v 2K D(iyy) =

aXl A 6X2 A 5X3

Uy 0 Yyxopq o
A 5X2k_1 A 6X2k

010 S o

TUoxg Adxy =

Ui o
6)(2)'_1 A 6)(2}' !

vh®O@):= G UV, D D)+ vy B ) + ...+ v, 21y |_=

10,0 Ux, o Utxg o

A 6)(1 8X2 A 6X3 A 6)(4

U 0 +Utx2k_1 o _
A aXZk_l A 6X2k

k
_ 10 +oi72 Uxog 8 Uopg @

A oxg A Xk i o))

j=2

the commutativity condition (4.19) of the vector fields (4.20)
leads to the following multi-dimensional analogs of the
general Monge heavenly equation:

k
Uyxy *lUtxy * ]le(“yxz jo1ltgj ~Uyxg g g ) =0

Superanalogs of the Witham heavenly equation

Assume now that an element [e<g*, where

G:= ifiﬁ(’lrélN) = Ei]‘ﬂ(?l‘éw) ® z?in_(TélN) is the loop Lie algebra
of the superconformal diffeomorphisms group diff ('JI%'N )

of vector fields on the 1|N -dimensional super-torus

TélN = T(é x A11V (see [30]), imbedded into a finite-dimensional
Grassmann algebra A:=Ag®A; over C, Ag >R, admits the

following asymptotic expansions for gradients of the Casimir

invariants h(l),h(z) e IEY):

vhD () ~ wy, +0(2) (5.1)

as |Al»o0,and

Ry~ 1- w1 0(272) (5.2)
as |Alo>«. Then the commutativity condition for the
Hamiltonian flows

dijdy=ad* 1, Vi) = IvhlD)_ = -wyi ™,

vh(_y )0
dijdt=- vhO @) = —(avh@W), = 4+ wy,

h“)() (5.3)

naturally leads to the heavenly type equation
1 N
Wyt = WxWyy —WyWyx —EZ(Dlgiwx)(Dlgiwy), (5.4)
i=1

where we CZ(]R2 x’lTllN;AO) and Dlgi :=0/08 + 90/ ox,i= 1,N,
are superderivatives with respect to the anticommuting
variables 4 e A, i=1,N.

This equation can be considered as a super-generalization
of the Whitham heavenly one [17,18,31] for arbitrary N e N. The
compatibility condition for the first order partial differential
equations

1 1 N
vy+s Wyyx +§i_z‘i(Dl9iWy)(D19il//) =0,

N
wi+(=A+Wy)yy + %i:zl(Dlgiwx)(D,giW) =0,

where y e CZ(R2 x T((l:lN;AO) and 1eC\{o}, give rise to the
corresponding Lax-Sato representation of the heavenly type
equation (5.4).

Moreover, based on easy calculations, one can obtain from
the Casimir invariant equation the corresponding seed element
[:=1dx e *, which can be written in the following form for an

arbitrary NeN:
4-N

I=Ca 2 , a:=vVh(),

where a scalar function C=C(x;9) satisfies a linear
homogeneous ordinary differential equation

Cy =<DC,Q>,

N
Q=(01,---,0QN), Qi=%(Dlgilna), in the superspace

p2N-IpN-1 N1 5N

~Ap x A% . Moreover, Ce C°°('J1‘1|N;A1), if
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N is an odd natural number, and suitably C e C°°(’]1‘1|N iAg), if

N is an even integer. In the case of N =1 one has

13
1=C1(ox'Dg,a 2)a 2,

where C; eR is some real constant.

If N=1 and C;=1, the corresponding seed-element

[eg* related to the asymptotic expansions (5.1) and (5.2),
can be reduced to

13
[= 02710y Do, wy 2wy, 2 + & [ 2+ 64 (2uy + 1)ldx,

where w:=u+6¢, ueC®(R?xs!Ag) and & eCP(R2 xs;A,).

The Lax-Sato vector field integrability structure of the
Monge type dynamical systems

Letus consider onafunctionalmanifold M c C*(R / 27Z;R%)
the following commuting to each other nonlinear dispersionless
Monge type dynamical systems:

uy = —(u? +2V)y, (6.1)
vy = w2 - 2uV)y
with respect to the evolution parameter y e R, and

uf = (%v2 —6uv -ud)y,

—(_v3 _ 22 2 5.2
vt = (=v2 = 3uv + 3uv® - 3v<)y (6.2)
with respect to the evolution parameter teR, (u,v)e M.
Choose now, by definition, a seed element [eG* in the next

form:

= (ux/l2 +(v +u2)x/1)dx + (A2 12l +v+uZ)da =

:d[%i3+uﬂz +(v+u2)i) (6.3)
and calculate the vector fields on the complexified torus T([l:
0 0
vh(¥) := ya(D) o= (2 0) = —uxi =, (6.4)

Vh(t) = Vh(z) l=( 22 our+v+ uz)aiX - (uxi2 +VyA+ 2uuxﬂ)%,
o

corresponding to the Casimir functionals h) e 1G"),j=1,2,

and satisfying the determining relationships

ad* ,. _1=0,j=1,2, for all (x,/l)eﬂl‘é, for which there hold
vl ()
the following asymptotical expansions

vh(®) =( ! ]/11 +[uj/1°+0(f1),

Vh(z):( 1 ]224{ 2u j11+[v+u2]ﬂo+0(ﬂl)

—Uy —Vy —2Uly 0 (6.5)
as |il>«. As a result of the last relationships one easily

obtains that

[Lvh(w,zwh(t)}:o, (6.6)
oy ot

that is the vector fields (6.4) on ’H‘é are commuting to each

other, thus presenting their Lax-Sato type integrability
representation. As a consequence we have stated that the
Monge type dispersionless dynamical system is a completely
integrable flow on the functional manifold M.

The Lax-Sato type integrability of the classical Kor-
teweg-de Vries dynamical system u; +6uuy +uyyy =0

We start from the following well known proposition.
Proposition 7.1: The system of two vector fields

ox 2iu/1—4i/13—uy 4/12u+2iuyi—uyy—2u2

—= X (7.1)
at 2w - 422 4i23 +uy - 2iu

and

ox (-iA u

ninl 2
S (72)

on the complexified torus 11‘(% :=T2®C with respect to
the real evolution parameters t,yeR and local parameter
X eTé, depending on a complex parameter 1eC, generates
the following equivalent system of linear vector fields on the

functional space c2 (R2 x qré;c A

X([) = % + {(ziul - 4i/13 - uy)xl + (4/12u + 2iuy/1 —Uyy - zuz)xz}%

422 i23 1 uy - 2i }i
2U - 4A7)x iA2 +uy —2iul)x
+[( LA7)Xq +(4iA° + y )Xo, gy’
0 . 0 . 0
X = C 4 (Ciaxg +uxg ) =2+ (iAxo — X1 )=
oy (-i3x Z)axl (4% 1)ax2’
and commuting to each other, that is

[x(f), X(y)} -0 (7.4)

(7-3)

forall t,yeR.
The vector field generators
vh®O (i) : =< viO (1), 1 ox >, vAD () :=< VA W), 0/ ox >, (7.5)

where, by definition,

Vh(t)(l) - /1() *uyxl - (Uyy + 2[12))(2 . j{l 2iUX1 + ZinXZ .
2Uxy +UyXp -2iuxy

+22 (AUXZJ +i3 [_4i"1}
—4)(1 [|.iX2 ’
v () = 40[”"2} al [‘.i"l] (7.6)
X1 ixy )

are holomorphic sections of F(T(R%)). The latter can
be naturally interpreted as elements of the holomorphic

(in 1eD, on the unit disc D, = C) subalgebra G, of the

holomorphic loop Lie algebra &:= (TU‘]‘(R%):(L@@_ of
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the holomorphic loop diffeomorphisms group ﬁﬁ(R%)

on C, related with some its smooth Casimir invariants

h(t),h(y)el(é*), g*cAl(Ré):Al(R2)®C on the finite-

dimensional invariant adjoint space G*, calculated at some
point [ < G*, where

ji=<l,dx>= .ziljdx)', (7.7)

j=1,2

whose coefficients l] e (T* (R )),j=1,2, can be taken in the
following polynomial form:

= % Y a(]r; s2™, (7.8)

m=0s=1,2

for some set of matrix valued functions {e() e C2(R2;End
€2 :m=0,N}. Casimir functionals h e I(G) satisfy at the point

1eG* the following invariance equation

"
adzl =0 (7.9)

where ¢::Vh(f):< vh(l),6/ox> eG are vector fields,

coinciding with ones generated by vector expressions (7.6).
The determining equation (7.9) has a general vector field
solution

L
Pi= D 0j = (7.10)

whose coefficients, as |1|> «, allow for every j=1,2 the
asymptotic expansions

9ji= 2 Zga(.m)Xk/l m (7.12)
m=0k=1

and satisfy for every k=1,2 the following differential

relationships
)y *(fpﬂk% > 1% gi=o. (7.12)
k= 126 ! i=1,2 Mk

If now to define the matrices

o(m) = {co(’,ﬁ) Hhk=1,2ha(m) = a1 s =1,2} (7.13)
for every m=0,N, as a result of simple calculations, one
obtains a system of the matrix algebraic equations

N N N
2 Am)IEAmp) * 2 Am)Amep) * 2 O, p)m) =©
0 m=0 m=0

(7.14)
for p e Z,, where by definition, the trace tro(m) := > j:ﬁw(}% )

and whose solution, a set of matrices {¢(;;;)  End c2:m=0,N},
generates the searched for seed element (7.7).
For solving a system of the matrix algebraic equations

(4.22) we put the degree N=2 and solve successively the
following three matrix algebraic equations:

2 2 2
Z a(m)tro(m) + Z Am)P(m) + Z (p{m)a(m) =0 (7.15)
m=0 m=0 m=0
at p=o0,
2 2 2
2 Am)tAme1) * 2 Am)Ame1) + 2 Pmq)®m) = O
m=0 m=0 m=0
(7.16)
at p=1, and
2 2 2
2 Am)trome2)+ 2 Hm)Am+2)+ 2 ) m) O
m=0 m=0 m=0
(7.17)

at p=2. For example, a p=2 they naturally reduce to the
following matrix equation

A(0)tA(2) +#(0)A(2) + #)%(0) = O (7.18)

whose general solution gives rise to an exact expression for
the seed element (7.8), and thus to the representation of the
Korteweg-de Vries dynamical system as a Hamiltonian flow

al / ot = —ad* 1,
“Con®

exactly equivalent to that on the functional manifold M. More
detailed properties of the matrix equation (7.18) and analysis
of its solutions is planned to be presented elsewhere.

(7.19)

The group orbit structure of the Chaplygin hydrodyna-
mical system

Consider the following Chaplygin [32-35], hydrodynamic
system

up = Uty —kvyv 3, (8.1)
ve =—~(uv)y,

where k ¢ R isaconstantparameter, (u,v)e M c C*(R/ ZﬂZ;Rz)

are 27 -periodic dynamical variables on the functional
manifold M with respect to the evolution parameter teR.
To describe the geometric structure of the system (8.1),

let us define the loop Lie algebra G :=3if7(11‘(1:) on the one-
dimensional complexified torus 11‘((1: and take a seed element

I € G* in the following form:
= [( ay Uiy )A+ = uleﬂdx +[ (a +4u2) +%u12 + 14}14,

(8.2)

where we have put «:=kv 2 +u?, and calculate asymptotic

expansions of gradients for some Casimir functionals v ),h(t)
and h(®) e 1(G*):

vh®y:= va2 1), vA ) := val&) 1), v 1y := va(0) (), (8.3)
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where

(2574 0
8.
d (8.4)
vh(6)(1) = (72]/16 +[ 0 J’ls +[73u]14 N
0 Uy 0

+[ 0 j/13+ ~af4-1/20*] 2

ay [ 4+uuy 0

0 1 (ua/8) o -1

J{—(Ua)x/S]i +[ o ]/1 +0(27). 8.5)

as A — « . The corresponding Lax-Sato vector field generators
are, by definition, equal to the expressions

vh{D():= (vh2y) I, = [_OZV +[u0 Jﬁl +(”]‘°’

X 0

vE ()= (vh B ) 1, = [‘:jﬁ .
+( 0 jﬂ} +(—4u]12 +( 0 Jil +[a]&0,
Luy 0 ay 0 (8.6)

and

vh():= (RO @)1, = [_02]16 * [uo ]15 !

X

+(_3UJ/14 +[ 0 ]/13 +
0 ay [ 4+uuy

—alb-1/2u%],2 Y 1 (ux/8) o
+[ 0 J/l +[—(U0¢)x/8}1 +[ o ji , (8.7)

as 12— . Based now on the gradient expressions (8.6) and
(8.7), one can calculate successively the following evolution
flows:

2 -2
ol Jot=—ad* . 1~Ut=-WU"-kv )x’} (8.8)
vhO () vt = —(uv)y,

with respect to the evolution parameter t € R, being equivalent
to the hydrodynamical system (8.1),

SoUy= —[uv(uz + kv’z)]X

ol [ oy = —ad* I~ (8.9)
ViD= LW k2l
with respect to the evolution parameter y e R, and
; LU= 7(73112 + 4u4) /12
ol [os=-a l X (8.10)

@ (™
Vh+ ) Vg = —[(u2 + kVﬁZ)UV]X /3

with respect to the evolution parameter seR. Insomuch, by
construction, all these flows are commuting to each other, that
can be rewritten as the following set

[0/ ot + VD), 0/ oy + vEY 1)1 = 0,

(oot +vhiD),a /8y + v M=o,

[0/ ot +vhO),0 /2y + vAY 1= 0, (8.11)

of commuting to each other Lax-Sato type vector fields on the
complexified torus Té for all parameters t,y and seR, giving

rise to three new compatible systems of integrable heavenly
type dispersionless differential equations. The obtained above
result can be formulated as the following theorem.

Theorem 8.1: The Chaplygin hydrodynamic system (8.8) is
equivalent to the completely integrable Hamiltonian system (8.10)

on the adjoint space G* to the loop Lie algebra G =~ (ﬁ'ﬁ(ﬂl‘é) of vector
fields on the complexified torus Té. The related Casimir functionals

on G* generate an infinite hierarchy of commuting to each other
additional both Hamiltonian systems, like (8.9) and (8.10), and Lax-

Sato type vector fields on 'Jl‘é, resulting in some new heavenly type
dispersionless equations.

As it was demonstrated in [22]. Chaplygin hydrodynamic
system (8.8) is closely related with a class of completely
integrable Monge type equations, whose geometric structure
was also recently analyzed in [14], using a different approach,
based on the Grassmann manifold embedding properties of
general differential systems defined on jet-submanifolds. The
latter poses an interesting problem of finding relationships
between different geometric approaches to describing
completely integrable dispersionless differential systems.

Conclusion

Whithin the review we described the Lie-algebraic
approach to studying vector fields on the complexified n
-dimensional torus and the related Lie-algebraic structures,
which made it possible to construct a wide class of multi-
dimensional dispersionless integrable systems, describing
conformal structure generating equations of modern
mathematical physics. There was also described a modification
of the approach subject to the spatial dimensional invariance
and meromorphicity of the related differential-geometric
structures, giving rise to new generalized multi-dimensional
conformal metric equations. There have been analyzed in detail
the related differential-geometric structures of the Einstein-—
Weyl conformal metric equation, the modified Einstein—Weyl
metric equation, the Dunajski heavenly equation system, the
first and second conformal structure generating equations,
the inverse first Shabat reduction heavenly equation, the first
and modified Plebanski heavenly equations and its multi-
dimensional generalizations, the Husain heavenly equation
and its multi-dimensional generalizations, the general Monge
equation and its multi-dimensional generalizations and
superconformal analogs of the Whitham heavenly equation.
We also investigated geometric structures of a class of spatially
one-dimensional completely integrable Korteweg- de Vries
and Chaplygin type hydrodynamic systems, which proved to be
deeply connected with differential systems on the complexified
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torus and the related diffeomorphisms group orbits on them.
An interesting inference from the construction, presented
in the work, is the existence of dual seed elements and the
related compatible hierarchies of the integrable Chaplygin type
hydrodynamic evolution systems, whose generating Casimir
functionals are related to each other via a simple affine shifting
symmetry.
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