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Abstract

A generalization of Poisson’s summation formula is derived – in a non-rigorous way – allowing evaluation of sums from 1 (or any fi nite integer) ∞ instead of the 
usual range -∞+∞. This is achieved in two ways, either by introducing a converging factor in a geometric series of exponential functions and letting it approach zero in a 
controlled way or by applying a Hilbert transform to the series. Several examples illustrate its usefulness in the evaluation of series and specifi c applications.  
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1. Introduction

The Poisson summation formula (see, e.g., Ref. [1], ch. 5.4) 
gives a relation between the continuous Fourier transform and 
the Fourier series coeffi cients (of the periodic summation) of a 
function F(x)  

  1
=  ( )exp 2 .

= =
x

F m dx F x in
m n

 
 

      
 
 
    (1.1)

Here   > 0  is a free parameter. Examples 41 – 43 in Ref. [1] 
demonstrate how it can be used to accelerate the convergence 
of an infi nite sum or give closed expressions of it. It is also 
widely employed in many applications in physics, one example 
being given by the world line variational approach in Ref. [2].

In the following Poisson’s formula will be written as  

  1
= exp 2

= =
x

x m in
m n

  
 

 
  

 
 
 
 

           (1.2)

With Dirac’s delta distribution as a generalized function. 
The left-hand side of Eq. (1.2) is also called a “Dirac comb” [3]. 
Due to the well-known relation (see, e.g. Ref. [4], eq. (A.18))  

   1
( ) = w ( ) = 0, ( ) 0

| ( |
g x x x ith g x g xm m mm g xm

   


 
                  (1.3)

It may be written as  

  = tan .
=

x
x m

m
 

  
 





  

    
             (1.4)

Eq. (1.2) is particularly useful if multiplied by a test function 
with fi nite support and integrated over because then the left-
hand side reduces to a few terms in which the -”functions” 
have become active whereas the right-hand side still has the 
infi nite sum over Fourier components. In this way, Poisson’s 
summation formula can be used to evaluate infi nite sums. 
However, some care has to be exercised in this procedure: if the   
-”functions” have their singularity right on the edge of the 
integration range they only contribute with a factor 1/2 as they 
are symmetrical across the borderline. This is seen in Example 
1 of Section 4 and more generally for  

( ) =: ( ) ( )F x x f x               (1.5)

 Which = 1  leads to the usual form of Poisson’s 

summation formula  
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 1
(0) ( ) =  ( ) 2  ( )cos 20=1 =12
f f m dx f x dx f x nx

m n


     
 

                (1.6)

 (eq. 1.8.15 in Ref. [5]).

In general, however, I will proceed with the usual sloppiness 
of theoretical physicists who want to get reasonable results – 
even with questionable methods1. Here this is exemplifi ed by 
the handling of distributions or in the neglect of conditions for 
the test functions.

2. Poisson’s Ha lf-Summation

What about Fourier sums (which I will call “half-sums”) 
like  

2( ) :=
= 1

inxS x e
n

  
           (2.1)

arising in various applications ( /x x   gives the general 

form)? Can they also be expressed similarly? 

The answer is YES and takes the form  

  12( ) = = P. .cot ,
==1 2 2 2

iinxS x e x m V x
mn


 

        
                 (2.2)

 i.e. a constant term and an imaginary principal value (P.V.) 
has to be added for the half-sum. 

Since  

  12 *( ) := ( ) = P. .cot
== 1 2 2 2

iinxS x e S x x m V x
mn


 

          

                 (2.3)

The full Poisson summation formula is recovered 
immediately:  


 2( ) ( ) = =0 = =

=1

inxS x S S x e x m
n m

  
       

Which is Eq. (1.2?) with =   

Note that variants of Eq. (2.2) where the summation starts 
at some integer N ≥  1  can be derived easily since  

1 12 2 2 2= = ( )
= =1 =1 =1

N Ninx inx inx inxe e e S x e
n N n n n

            

               (2.4)

 (empty sums are to be set to zero). Compared to the 
original “half-summation” formula only fi nite sums are to 

be evaluated additionally. Alternatively, one may shift the 
summation index to obtain  

( = 1) 2 ( 1) 2 ( 1)2 2= = ( ).
= =1

n n N i N x i N xinx in xe e e e S x
n N n

          
 

              (2.5)

3. Proof of Eq. (2.2)

To  prove Poisson’s half-summation formula I will evaluate 
the Fourier series as a geometric series2 regularized with a 
factor exp( 2 )n  0   to make it convergent:  

  exp( 2 ( )) 1( ) = exp 2 ( ) = = [exp(2 ( )) 1]
=1 1 exp( 2 ( ))

i x i
S x in x i i x i

n i x i


 


         

(1 ) cos 2 1 (1 ) sin 2
= 2 24(1 )sin

2 2= 1 and using cos 2 = 1 2sin

x i x

x

with e x x

   

 

 

 

 



22(1 )sin= 2 22 24(1 ) 4(1 )sin sin
(1 ) sin 2

:= ( ) ( ) ( ).1 2 32 24(1 )sin

x

x x

x
i S x S x S x

x




   


  

 

 

   



               (3.1)

Let us now discuss the different   in the limit . → 0: Taking 
into account the representation of the -function (see, e. g. Ref. 
[4], eq. (A15c))  

1
( ) = lim0 2 20 ( )0
y y

y y





  



               (3.2)

The fi rst term tends to the Dirac comb  

 
0

(2 sin ) = .1 =2
S x x m

m


  
 
 




            (3.3)

as the extra factor 1+4 doesn’t matter in the limit →0. The 
second term vanishes exactly at x = 0 but approaches the 
constant  

0 1
( )2 2

S x

 


              (3.4)

for decreasing  nearly everywhere (see Figure 1). Thus for 
smooth test functions, Eq. (3.4) certainly holds.

Finally, the last one tends to Cauchy’s  principal value 
distribution  

--------------------------------

1In Oliver Heaviside’s spirit: " Shall I refuse my dinner because I do not 
fully understand the process of digestion? " [6] and in a broader sense of  
Experimental Mathematics [7].

--------------------------------

2Supporting the joke/observation that theoretical physicist only can sum 
exponential and geometric series...
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0 sin(2 ) cos
P. . = P. . = P. .cot .3 2 2 sin 24sin

x x i
S i V i V V x

xx


   


 

                 (3.5)

defi ned by  

 P. .  ( )cot :=  ( )cot  ( )cot .limV dx f x x dx f x x dx f x x     


  
                 (3.6)

Although this is not immediately obvious, a closer 
inspection of the integral near x = 0 taken with a smooth test 
function  

(1 ) sin 2
=  ( ) =3 2 24 4(1 )sin

2 2 ( ) ln 4(1 )sin
4

i x
S dx f x

x

i d
dx f x x

dx

  
 

    
 




 

  

  2 2= ( ) ( ) ln 4(1 ) )sin
4

2 2 ln 4(1 ) ) ( )sin
4

i
f f x

i
dx x f x

     

  

 
 

 
 

   

  
            (3.7)

Reveals that the -regularization used in Eq. (1) takes away 
the diverging contribution in a similar way as in Cauchy’s 
defi nition, viz.  

0

3 c . ln 0S onst


   


               (3.8)

If the test function is smooth and regular at the 
origin. Outside the -interval around the singularity, the 

regularization parameter  can then be set to zero without 
impunity. Additional evidence for the correctness comes from 
Example 3 which shows explicitly that (at least for some 
specifi c test functions) this procedure indeed regularizes the 
otherwise divergent integral and gives the correct result.

Altogether this yields Poisson’s half-summation formula 
(2.2). 

An alternative proof starts from Poisson’s full summation 
formula (1.2)  = π. Taking the real part3 gives  

   1 2 cos 2 =
==1

nx x m
mn

  
 

  


           (3.9)

which leads to Eq. (1.6). Now it is well known that the  Hilbert 
transform of a cosine function is the negative of a sine function 
(Ref. [8], eq. 3.722.8 or eq. 15.2.47 in Ref. [9])  

     
1 cos( )

[cos( )]( ) := P. . = sin | |
x

x y V dx y
x y


 


 



 

              (3.10)

and (up to a sign) vice versa. This can be easily obtained by 
standard contour deformation in the integral  

 
1 exp( ) 1

= 2 ( )exp( ).
i x

dx i i y
x y i


  

 
 

             (3.11)

and the Sokhotski-Plemelj formula (Ref. [4], eq. (A15.e))  

 1 1
= P. . .lim

0
V i x y

x y i x y
 

    
         (3.12)

Therefore  

    cos( ) ( ) sin( ) ( ) = sin(| | ) s ( )cos( )x y i x y y i gn y       
 

               (3.13)

where s ( ) = 2 ( ) 1gn     is the sign function. Equating the 
real parts one obtains Eq. (3.10). This allows transforming the 
sum over positive integers  

      1
sin 2 = cos 2 ( ) = [ 1 ]( )

=1 =1 =12
ny nx y x m y

n n m
  

  
      

  
 

 
               (3.14)

and to use the real part (3.9) of Poisson’s summation 
formula. As is well known the Hilbert transform of a constant 
vanishes:  

-1.0 -0.5 0.0 0.5 1.0
x / 

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

  S
2(x

)

-1.0 -0.5 0.0 0.5 1.0
x / 

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

  S
2(x

)

-1.0 -0.5 0.0 0.5 1.0
x / 

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

  S
2(x

)

-1.0 -0.5 0.0 0.5 1.0
x / 

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

  S
2(x

)

 = 0.02

 = 0.06 ----->

 = 0.2  --->

 = 0.5

Figure 1: The function 
22 2( ) = 2(1 ) / [ 4(1 ) ]sin sin2S x x x       

from Eq. (3.1) for different values of the regularization  parameter  . It is seen that 

it can be replaced by the constant -1/2 nearly everywhere.  

--------------------------------

3Taking the imaginary part gives the trivial relation  0 =0 since the l.h.s. is 
real and the sum over positive and negative values of the argument of a 
sine-function vanishes on the r.h.s. If the sum only extends over positive 
integers this does not hold anymore.  = 
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lim  
0

lim
0

c c
[c ]( ) = =

c {ln | | ln | | }

R

R

onst onsty Ronst y dx dxyR x y x y

y Ronst x y x y yR







     

   

 
 
 







 




 

lim
0

= c {ln ln | | ln | | ln } =

c ln = 0.lim

R

onst R y R y

R y
onst

R R y




    



 


 

 
              (3.15)

 Thus  

     1 1
sin 2 = ( ) = P. .

= ==1 2 2
ny x m y V

m mn y m


 


  
   

  
  

1 1 2 1 1
= P. .  = P. .cot2 2 2 2=12 2/

y
V V y

my y m 


 



 
 
 

 
              (3.16)

where in the last line eq. (1.421.3) in Ref. [8] has been used. 
Combining Eqs. (3.9) and (3.16) one indeed has  

   12( ) = = [cos(2 ) sin(2 )] = P. .cot .
==1 =1 2 2 2

iinxS x e nx i nx x m V x
mn n


 

           
               (3.17)

Note that Eqs. (2) and (12) allow writing this in the compact 
form  

1
( ) = 1 lim

2 tan0

i
S x

x i
   

 
  

          (3.18)

4. Tests and examples

1) An even discontinuous integral

Consider the test function 2 2( ) = ( )F x y x  . Then  

  ( ) := ( ) = exp( 2 ).1 =1
y yI y dxS x dx ixny yn

                 (4.1 )

Its exact value is obtained from Ref. [8], eq. 1.441.1 after 
performing the x-integration  

  sin(2 ) 1
( ) = = 2 0 < 2 < 2 .1 =1 2

ny
I y y for y

n n
 




 
             (4.2)

 With Poisson’s half-summation formula (2.2) we have  

1
=

=0,=1, 0< < =0

1( ) = ( ) 2 P. . cot = !
2 2 2 2

y y

y y
m

integrand is oddif y onlym contributes

iI y dx x m y V dx x y correct



  
  

 


     


 

                                (4.3)

Note that the integral is discontinuous (sawtooth-like) as 

a function y. For example, if = 0y    (meaning that y is 

infi nitesimally smaller than  ) Eq. (4.2) gives 1 / 2I  

. However, for y = π  (where Eq. (4.2) cannot be applied) one 
sees that in Poisson’s half-summation now also the terms with  
m = ±1  contributing but only with a factor 1/2. This is because4  

1
( ) ( ) = (0) ( ) = ( ).

2
x x x x                       (4.4)

Thus eq. (2.2) gives  

 
1 1 1

( ) = 1 2 = 01 2 2 2 2
I


   

 
  

0.3 ( = 1) 0.7 ( = 0) 0.7 ( = 1)cm m cm m cm m 

which is correct since  
sin(2 )

= 0=1
n

n n
 . Finally, for 

= 0y    the terms with m = ±1   now contribute fully 

and therefore 1 / 2I    which is the correct value since 

1( )I y  is a periodic function of y with period π and therefore 

( 0 ) = (0 ) / 21 1I I    .

2) An odd discontinuous integral

Consider now the test function 2 2( ) = ( )F x x y x  . Then  

2( ) :=  ( ) = .2 =1
y y inxI y dx xS x dxxey yn

                (4.5)

After integration the exact value is obtained from eqs. 27.8.1 
and 27.8.6 in Ref. [10]  

--------------------------------

4Of course, this is only a rough calculational rule, as neither   exists nor 
does the product of two distributions. However, for ϐinite regularization 
any representation of Dirac’s distribution like (3.2) gives  ½  when 
integrated up to yo  but 1  when integrated over the full interval. I assume 
that this property also holds in the limit  . For a more detailed discussion 
how products of distributions may be handled see Ref. [11]. 
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 sin(2 ) cos(2 )
( ) = 0 < <2 2=1 =12

= ln(2sin )= (2 )

i ny ny
I y iy for y

n n nn
yf yC


 

  




 

                (4.6)

where  

 
sin

( ) = ln 2 sin =0 2=12
t n

f dtC n n




 
 
 
             (4.7)

is Clausen’s integral, a special dilogarithm (see ch. 25.12 in Ref. 
[5]).

Posson’s half-summation gives  

1 2( ) =  ( ) |  cot2 =2 4 2
=0

=0,  0< <   =0 

iyy yI y dx x x m x dx x xy yym

if y only m contributes


 



        

 

                (4.8)

Integration by parts in the last integral yields the correct 
result  

( ) =  cot =  ln(2 sin ) |  ln(2 sin )0 02 0

= ln(2 sin ) (2 ).
2

yy yI y i dx x x ix x i dx x

i
iy y f yC

   

   
                (4.9)

3) A check of the principal value prescription

In Example 1 the (assumed) principal value integral did 
not contribute since the test function was symmetric over the 
symmetric interval whereas in Example 2 the singularity of 
the integrand at x= 0 was removed. In both cases, the Cauchy 
principal value prescription of the diverging integral was 
not tested. The simplest way to do so is to integrate over the 
singularity in an asymmetric interval, e.g.  

   2 21 1 22, :=  ( ) =3 1 2 1 =12
0 < < < .1 2

iny inyy
I y y dx S x e ey ni
with y y 

 
 

 
              (4.10)

 The exact value is obtained from the summable series (see, 
e.g. Ref. [10], eq. 27. 8. 6)  

 exp( )
= ln 2 sin 0 < < 2

=1 2 2
in i

n n
 

   
 

  
  

      

                               (4.11)

as  

    sin1 1 2, = ln .3 1 2 1 22 2 2 sin 1

y
I y y y y

i y

  

 
  
   

              (4.12)

Poisson’s half-summation formula gives  

   1 2, = P. . cot3 1 2 1 2 12 2 2

yi
I y y y y V dx xy

 
     

              (4.13)

Where the last integral would be divergent  x= 0 since 

3cot = 1 / / 3 ( )x x x O x   at small values of x. However, with 

Cauchy‘s principal value prescription, we have to evaluate Eq. 
(6), i.e.  

2 2P. . cot = cot cot .lim1 10

y y
V dx x dx x dx xy y

      


 
 



 

              (4.14)

The indefi nite integral is standard (see, e.g. Ref. [12], eq. 
453.11)  

   
cos 1

 cot = = (sin ) = ln | sin |
sin sin
x

dx x dx d x x
x x

            (4.15)

so that  

22P. . cot = ln | sin | ln | sin |lim1 10

yy
V dx x x xy y

   
 
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


       = [ln sin ln sin ln sin ln sin ]lim 1 20
y y  


 



sin 2= ln ,
sin 1

y

y

 
  
 

            (4.16)

i.e. the divergent parts have been canceled and the correct 
result is obtained.

Summary

I have “derived” (for a mathematician only “made 
plausible”) a Poisson-like summation formu la that allows 
evaluation (or rather transformation) of “half-sums”, i.e. sums 
from n =1 (or some fi nite integer) to ∞. Simple examples were 
used to validate its outcome. Still, some (mostly mathematical) 
questions remain, e.g. about the allowed class of test functions 
and the correct treatment of singularities. These are outside 
the scope of this short note.

Another question is whether the “half-summation” form 
(2) has already appeared explicitly in the literature. While 
this is unknown to me – the older “Handbook” [11] does not 
contain the Poisson summation formula at all, whereas the 
newer one [5] only lists the standard form in eq. 1.8.14 – it may 
be quite possible given the long history of the subject. In any 
case, the extension discussed here should be a useful addition 
to the toolbox of the theoretical physicist.
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