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Abstract

We investigate spontaneous U(1) symmetry breaking and the associated phase transitions in rotating interacting Bose gases. Using a theoretical framework that 
combines mean-fi eld analysis with rotational dynamics, we analyze how rigid rotation modifi es the condensate structure, critical behavior, and low-energy excitation 
spectrum. We identify the emergence of Goldstone modes (massless rotons and massive phonons) in the symmetry-broken phase and clarify their role in mediating low-
energy excitations—fi ndings that remain robust at low momentum regardless of rotation. A key result is the angular velocity (Ω) dependence of the critical temperature 
(Tc) for U(1) phase transition, where Tc scales as Ω^(1/3), distinct from the Ω^(2/5) (nonrelativistic) and Ω^(1/4) (ultrarelativistic) scaling observed in noninteracting 
rotating Bose gases. Rotation also alters the temperature dependence of the thermodynamic potential minima, changing the characteristic factor from (1 - t) (t = T/Tc for 
nonrotating systems) to (1 - t³) for rotating gases. We further demonstrate that rotation preserves the second-order nature of the phase transition, while modifying the 
critical exponents and reducing the discontinuity in heat capacity with increasing Ω. Additionally, we defi ne a σ meson dissociation temperature (Tdiss) characterized by 
mσ(Tdiss) = 2mπ(Tdiss), showing that Tdiss is always lower than Tc. Thermal mass corrections are shown to ensure the validity of Goldstone’s theorem in the rotating 
frame, even in the chiral limit. These results deepen our understanding of the interplay between symmetry, rotation, and many-body interactions, with implications for 
interpreting extreme conditions in heavy-ion collisions and compact astrophysical objects, while advancing the theoretical framework for phase structures in rotating Bose 
systems.

PACS: 05.30.Jp;11.30.Qc;67.85.-d;64.60.-i

I. Introduction

One of the primary goals of modern Heavy Ion Colli- 
sion (HIC) experiments is to study matter under extreme 
conditions and its transitions through various phases. In 
Quantum Chromodynamics (QCD), these phases range from 
the deconϐined quark-gluon plasma to the conϐined hadron 
phase, which consists of mesons and baryons. Mesons, as 
composite particles made up of a quark and an antiquark, 
are often regarded as (pseudo-)Goldstone bosons arising 
from the spontaneous breaking of chiral symmetry. Key 
questions related to the phase transition of matter created 
in HIC experiments focus in particular on the order of the 
phase transition and the location of the critical endpoint 
[1-5]. Answers to these questions provide valuable insights 
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into astrophysical and cosmo- logical models of the early 
universe [6,7]. Both of these properties are affected by 
external conditions, such as ex- ternal electromagnetic ϐields 
and rotation. Intense mag- netic ϐields are believed to be 
generated in the early stages of noncentral HICs. Depending 
on the initial conditions, the strength of the magnetic ϐields 
is estimated to be ap- proximately B ~ 1018 - 1020 Gauß in 
the early stages after these collisions [8,9]. In recent years, 
several stud- ies have explored the QCD phase diagram 
in the presence of magnetic ϐields. Novel effects, such as 
magnetic and inverse magnetic catalysis are associated 
with the effect  of constant background magnetic ϐields on 
the nature of the chiral phase transition and the location 
of the critical point [10-12]. Recently, several studies have 
investigated the effect of rotation on quark matter created 
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in HIC experiments. This matter is believed to experience 
ex- tremely high vorticity, with an angular velocity reaching 
up to 1022 Hz [13,14]. Extensive research has focused on 
how rotation inϐluences the thermodynamic properties 
of relativistic fermionic systems [15-20]. One notable ex- 
ample is the chiral vortical effect, which is related to the 
transport properties of the quark matter produced after 
HICs and provides insights into the topological aspects of 
QCD [21]. When examining the thermodynamic proper- ties 
of rotating Fermi gases using ϐield theoretical meth- ods, it 
is advantageous to assume rigid rotation with a constant 
angular velocity [22,23]. The impact of rigid rotation on 
QCD phase transitions, including chiral and conϐinement/
deconϐinement, has been studied with and without 
boundary conditions, e.g., in [15,24]. In [24], it is shown 
that at ϐinite temperature the phase diagram of a uniformly 
rotating system exhibits, in addition to a conϐining and a 
deconϐining phase at low and high tem- peratures, a mixed 
inhomogeneous phase at intermediate temperatures.

Several studies have also explored both relativistic 
bosons [25-35] and the linear sigma model with quarks 
[36-39] under rigid rotation. In [26], a spin-one gluon gas 
under rigid rotation is analyzed, revealing that at tem- 
peratures below a certain supervortical temperature, the 
moment of inertia of a rotating spin-one gluon plasma 
becomes negative. This phenomenon indicates a thermo- 
dynamic instability and is associated with the negative 
 �Barnett effect, where the total angular moment of the 
system opposes the direction of its angular velocity. For 
spin-zero bosons in the presence of imaginary rotation, 
ninionic statistics arise, modifying the standard Bose- 
Einstein distribution with a statistical angle. Under spe- 
ciϐic conditions, these bosons exhibit fermionic-like be- 
havior and display fractal thermodynamics that depend 
on the angle of imaginary rotation [27]. A separate study 
in [28] investigated the thermodynamics of spin-zero 
com- plex scalar ϐields under rigid rotation, revealing that 
ther- modynamic instabilities emerge at high temperatures 
and large coupling constants. These instabilities include 
neg- ative moment of inertia and heat capacity. Finally, in 
[30], the Bose-Einstein (BE) condensation of a free Bose 
gas subjected to rigid rotation is investigated in both 
rel- ativistic and nonrelativistic limits. It is demonstrated 
that rotation not only modiϐies the equation of state of 
the system but also impacts the transition temperature 
for BEC and the fraction of condensates. Speciϐically, it is 
shown that the critical temperature of a rotating Bose gas 
is lower than that of a nonrotating gas; however, as the 
angular velocity increases, the critical temperature of the 
rotating gas also rises. Additionally, an analysis of the heat 
capacity of a nonrelativistic rotating free Bose gas indicates 
that rotation alters the nature of the BEC phase transition 
from continuous to discontinuous. The present paper aims 

to extend these ϐindings to an inter- acting Bose gas under 
rigid rotation.

We begin with the Lagrangian density of a complex 
Klein-Gordon ϐield φ that includes a self-interaction term 
λ(φ⋆ φ)2 with a coupling constant λ. To introduce rigid 
rotation we use a metric including the angular velocity Ω. 
In the ϐirst part of this paper, we introduce a chem- ical 
potential μ corresponding to the global U(1) sym- metry 
of the Lagrangian. For later analysis, we expand the 
Lagrangian density around a classical conϐiguration |⟨φ| 
≡ v. Following standard methods [40,41] and utiliz- ing 
an appropriate Bessel-Fourier transformation [29,30], we 
derive the free propagator of this model. This propa- gator 
is subsequently employed to compute the thermo- dynamic 
potential as a function of μ, Ω, and the energy dispersion 
relation ϵ±k. As it turnss out, the spontaneous breaking of 
U(1) symmetry occurs for m < μ. In this regime, we ϐind two 
distinct energy branches; one corre- sponding to a massive 
phonon and the other to a massless roton. It is noteworthy 
that the rotation does not alter ϵk at low momentum, and 
the results are similar to the nonrotating case [42].

In the second part of this paper, we explore the im- pact 
of rotation on the spontaneous breaking of U(1) symmetry, 
focusing speciϐically on the case of zero chem- ical potential. 
Our primary emphasis is on the T and Ω dependence of the 
critical temperature of the corre- sponding phase transition, 
as well as two masses m1 and m2, which are identiϐied with 
the masses of the σ and π mesons, respectively. We begin 
by considering the ther- modynamic potential discussed 
in the ϐirst part of this paper. Apart from a classical part, 
it consists of a ther- mal and a vacuum  contributions. 
By employing a novel method for summing over the 
quantum number ℓ related to rotation, we perform a high-
temperature expansion. Combining the classical and the 
thermal parts, we de- rive an analytical expression for the 
critical temperature of U(1) phase transition Tc, which is 
found to be pro- portional to Ω1/3. 

Furthermore, we show that the min- ima of this 
potential are proportional to (1 - t3), where t ≡ T/Tc is the 
reduced temperature. This contrasts with the behavior 
observed in a nonrotating Bose gas, where the minima are 

described by the factor  21 0t  with t0 ≡ T/Tc(0).(Here, sub- 
and superscripts zero correspond to nonrotating Bose gas.) 
We also demonstrate that when sub- stituting these minima 
into m1 and m2, they become imaginary in the symmetry-
restored phase, analogous to the behavior in a nonrotating 
Bose gas. This issue is addressed by adding the thermal 
masses that arise from one-loop perturbative contributions 
to m1 and m2. By following this method, we conϐirm that the 
Goldstone theorem is satisϐied in the symmetry-restored 
phase.
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We then compute the vacuum part of the potential by 
adding the appropriate counterterms and performing 
dimensional regularization. Our ϐindings extend the re- 
sults from [43], where the vacuum contribution to the 
effective action for a λφ4 theory was computed. We add this 
potential to the classical and thermal parts of the potential, 
minimize the resulting expression, and exam- ine how the 
minima depend on temperature T for ϐixed angular velocity 
Ω. We show that, similar to the behav- ior observed in a 
noninteracting Bose gas [30], rotation reduces the critical 
temperature of the phase transition, which then increases 
as Ω rises. Additionally, by plug- ging these minima into the 
corresponding expressions to m1 and m2 (or equivalently 
mσ and mπ), we investigate the T dependence of σ and π 
meson masses for ϐixed Ω. As expected, in the symmetry-
restored phase, we ϐind mσ = mπ. This equality indicates 
that at Tc the min- ima of the corresponding potential 
vanish, suggesting a second-order phase transition, even in 
the presence of rigid rotation.

Finally, we focus on the nonperturbative ring con- 
tribution to the potential described above. We present a full 
derivation of the ring potential in the presence of rotation. 
Based on the ϐindings in [43], we expect that the addition 
of the ring potential will alter the order of the phase 
transition. Our results indicate that when rotation is absent 
(Ω = 0), a discontinuous phase transition occurs at a speciϐic 
temperature. In contrast, when rotation is present (Ω  0), 
the phase transition remains continuous. Furthermore, we 
deϐine a σ disso- ciation temperature, denoted by Tdiss, 
which is charac- terized by mσ (Tdiss) = 2mπ (Tdiss) and 
show that Tdiss is less than the critical temperature.

The organization of this paper is as follows:  In Sec. II, 
we introduce the rigid rotation in the Lagrangian density 
of a complex scalar ϐield in the presence of a ϐinite chemi- 
cal potential. We derive the corresponding free propaga- 
tor, determine the full thermodynamic potential of this 
model, and explore how rotation affects the spontaneous 
breaking of global U(1) symmetry. In Sec. III, we focus on 
the special case of μ = 0 and systematically deter- mine the 
full thermodynamic potential, which consists, apart from 
the classical part, of a thermal and a vacuum contribution. 
After examining the effect of rotation on the Goldstone 
theorem, we add the nonperturbative ring contribution 
to this potential, which is explicitly derived for the case of 
a rotating complex scalar ϐield. In Sec. IV, the numerically 
solve the corresponding gap equation for the full potential 
with and without the ring potential. We investigate the 
T dependence of the corresponding min- ima for ϐixed Ω. 
Additionally, we determine the T and Ω dependence of 
mσ and mπ, along with the σ dissoci- ation temperatures. 
Section V concludes the paper with a compact summary 
of our ϐindings. In Appendix A, we present the high-
temperature expansion in the presence of a rigid rotation. 

Notably, we apply a method intro- duced in [30] to sum 
over ℓ. Appendices B and C contain derivations of formulas 
(III.27) and (III.34), while the derivation of (III.44) is 
detailed in Appendix D.

From a broader physical perspective, this study 
bears important implications for understanding rotating 
quantum ϐluids—covering systems like the high-vorticity 
quark-gluon plasma in heavy-ion collisions and the 
superϐluid cores of neutron stars (where interactions 
dominate quantum behavior). By clarifying how rotation 
regulates U(1) symmetry breaking, critical temperatures, 
and Goldstone mode dynamics in interacting Bose gases, we 
provide a theoretical framework to interpret experimental 
signatures of rotation-induced phase transitions (e.g., 
modiϐied condensate fractions or excitation spectra in 
quantum gas experiments). Additionally, the Ω-dependent 
scaling of Tc (Ω^(1/3)) and the preservation of second-
order phase transitions under rotation offer new insights 
for controlling quantum coherence in rotating systems—
relevant for quantum simulations of extreme astrophysical 
environments or the design of rotation-tunable BEC-
based devices. Ultimately, this work bridges fundamental 
ϐield theory, condensed matter physics, and astrophysics, 
advancing our understanding of the collective behavior of 
strongly interacting quantum ϐluids.

II. Interacting charged scalars under rigid 
rotation

A. The free propagator

We start with the Lagrangian density of a charged scalar 
ϐield φ

L = gᵘᵛ ∂ᵘ φ⋆ ∂ᵛ φ − m² φ⋆ φ − λ(φ⋆ φ)²        (II.1)

with the metric

2 21 0
1 0 0

0 1 0
0 0 0 1

r y x
yg
x

    
 


  



 
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 
 
 

               (II.2)

describing a rigid rotation. Here, m is the rest mass and 0 < 
λ < 1 is the coupling constant, describing the strength of the 
interaction. The spacetime coordinate is described by xμ = (t, 
x, y, z) and r2 ≡ x2 + y2. More- over, Ω is the constant angular 
velocity of a rigid rotation around the z-axis. The above 
Lagrangian is invariant un- der global U(1) tran sformation

φ(x) → e⁻ⁱᵅ φ(x), φ⋆(x) → eⁱᵅ φ⋆(x),          (II.3)

with α a real constant phase. Plugging the metric into (II.1), 
we obtain

L = |(∂₀ − iμ − iΩL_z)φ|² − |∇φ|² − m²|φ|² − λ|φ|⁴           (II.4)
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where the chemical potential μ corresponding to the 
global U(1) symmetry (II.3) is introduced. The z- component 
of the angular momentum, Lz, is deϐined by Lz = i(y∂x − x∂y). 
To investigate the spontaneous breaking of U(1) symmetry, 
we rewrite L in terms of real ϐields ϕ1 and ϕ2 appearing in  

ϕ = 1/√(ϕ1+iϕ2) and perform the shift φi → Φi + φi with 

 and2

0
v 

   
 

 v = const. We arrive at

4

0

  ,i
i

                (II.5) 
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The classical part of the Lagrangian, L0, deϐines the clas- 
 sical (zero mode) potential

cl( )v  ≡ 2 2 2 4
0

1
( )

2 4
m v v               (II.7)

The free propagator arises from the quadratic term 
L2 in the ϐluctuating ϐields φ1 and φ2. To derive the free 
propagator in the momentum space, we use the Fourier- 
Bessel transformation

( )
( ) ( ) ( )

, ,

i k zznx e J k r ki in kV

   
 

 
  

 
       (II.8)

with  i = 1, 2. The cylindrical symmetry is implemented 
by introducing the cylinder coordinate system described 
by xμ = (t, x, y, z) = (t, r cosϕ, r sinϕ, z), with r the ra- dial 
coordinate, ϕ the azimuthal angle, and z the height of the 
cylinder. The conjugate momenta, corresponding to these 
coordinates at ϐinite temperature T, are given by the bosonic 
Matsubara frequency ωn = 2πnT, dis- crete quantum number 
ℓ, which is the eigenvalue of Lz, continuous momentum 

kz, and  x yk k k
1/22 2

   k
 

in cylindrical coordinates. The 

Bessel function Jℓ (k⊥ r) captures the radial dependence in 
this transformation and τ ≡ it. Plugging (II.8) into L2 and 
performing an integration over cylindrical coordinates, 
according to

2 2

0 0 0

,
X
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

 
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we arrive after some manipulations at
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 with the free propagator
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         (II.11)

Here, ωᵢ² ≡ k² + mᵢ², i = 1, 2, with m₁²(v) ≡ 3λv² 
+ m² and m₂²(v) ≡ λv² + m², the corresponding masses 
to two ϐields φ 1 and φ2. In cylinder coordinate system, 
we have Z.k2 2 2

 k k . In Sec. III, we break the global U(1) 
symmetry by choosing m2 = −c2 with c2 > 0 and show that 
after considering the quantum corrections, φ2 become a 
massless Goldstone mode.

A comparison with similar results for a nonrotating 
charged Bose gas at T and μ shows that while ℓΩ is said 
to play a role analogous to that of the chemical potential 
μ [23], the manner in which it is incorporated into the 
free propagator and the thermodynamic potential differs 
signiϐicantly (as discussed below).

B. The thermodynamic potential

To derive the thermodynamic potential V, corre- 
sponding to this model, we follow the standard procedure 
 and deϐine this potential by

ln ,
T Z
V
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(II.13), we arrive ϐirst at
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Following standard steps, it is possible to show that
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Performing the Matsubara sum with
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we arrive at
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where the summation over k is replaced with the 
inte- gration over k in the cylinder coordinate system,
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Her e, k⊥ ≡ |k⊥ |. Using (II.12), the thermodynamic po- 
tential V is given by

V = Vvac + VT,         (II.21)

with the vacuum part
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and the matter (th ermal) part
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Adding V with Vcl (v) from (II.7), to include the zero 
mode contribution, we obtain the full thermodynamic 
potential Vtot,
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C. Spontaneous breaking of global U(1) symmetry

Let us consider the classical potential (II.7). Assum- ing 
m2 > μ2, the coefϐicient of v2 in this expression is positive 
and, as it turns out, Vcl possesses one single min- imum at 

0 0   and the system is in its symmetric phase.

In this case, m v o m v o m M o2 2 2 2
1 2( ) ( ) ,      and 

k
  is

given by

2 2 .k k m             ( II.25)

Here, m is a mass gap and k k 1
2

2



   k   . In Figur

a1( ),

k e is plotted for generic mass m=1MeV and chemical 

potential MeV m0.6 ( )   .

In the symmetry-broken phase characterized by m2 < μ2, 
however, extremizing VĈđ yields a maximum at va = 0 and 
two minima at

2 2
1

5 .
m




 

The masses m v b m2 2 2
1 ( ) 3 2     and m v b2 2

2( )   . We 
thus have M2 = 2μ2 − m2 and δM2 = μ2 − m2 leading to

2 2 2 2 2 2 2(3 ) 4 (3 ).k k m k m         

           (II.26)

In Figure b1(  ), 
k
 is plotted for generic MeV1.1   and 

m MeV m1 ( )  . As it is shown, whereas k is quadratic 

in k o| |,


 k k  for k o . This behavior indicates the 

presence of a massless Goldstone mode. By expanding  
k

in the orders of k o , we obtain

2 2
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5
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
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


      (II.27)

According to these results, 
k and k correspond to 

phonon and roton modes in the symmetry-broken phase 
m  , respectively.

As it is shown in this section,   appears in the ther- 
mal part of the effective potential  VT from (II.23) and does 
not modify neither k o| |,



 k k  nor the energy dispersion 

Figure 1: (color online). The k dependence of the energy dispersion ϵ k
±k from (II.25) 

and (II.26) in the U(1) symmetric phase (panel a) and the symmetry-broken phase 
(panel b), characterized by μ < m and μ > m, respectively. As demonstrated, in the 
symmetry-broken phase, there is a massless Goldstone mode. These fi ndings 
remain unchanged regardless of any rotation.
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

k . Hence, a comparison with analogous results for 
nonrotating bosons [42] shows that rigid rotation has no
effect on the behavior of 1;j   at k o .

D. Two special cases

In what follows, we consider two special cases 0, 0    
and 0, 0   :

Case 1: For the special case of noninteracting rotating 
Bose gas with 0   and 0  , we have m1=m2=m,

kE m2 2 2 k , and M o  . We thus have

2 2

0, 0k m
 



 
   k ,       (II.28) 

and therefore
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                          (II.29)

with μ eff ≡ μ + ℓΩ. This potential is exactly the same 
potential arising in [30]. Using this potential, the effect of 
rotation on the BE condensation of a relativistic free Bose 
gas is studied.

Case 2:  Another important case is characterized by

λ  0 and μ = 0. In this case, 


k  are given by

2 2
2 2,m     

2
2
1 .

k
k m 


              (II.30)

Plugging  (II.30) into (II.24) and choosing μ = 0 and m2 
= —c2 with c2 > 0, the total thermodynamic po- tential is 
given by

Vtot |λ  0,μ=0 = Vcl + Vvac + VT,       (II.31) 

with the classical part
2 2 4

,
2 4ci
e v 

            (II.32) 

the vacuum pa rt

v 1 2
1

( ),
2ac dk   



         (II.33 ) 

and the thermal part

1
( ),

2T i i
i 

   



          (I I.34) 

where
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   



           (II.35)

Here, ωi, i  = 1, 2 are given in (II.30). Let us notice that in 
(II.35), the ℓ = 0 contribution is excluded, because the zero 
mode contribution is already captured by Vcl from (II.32). 
It is possible to limit the integration over ℓ

in VVVVVV II.35). Having in mind that the arguments 
of ln(1-e-β(ωi ℓΩ)) are to be positive, the summation over ℓ in 
ln(1-e-β(ωi -ℓΩ)) is over ℓ ∈ (-∞, -1] and in ln(1 - e-β(ωi +ℓΩ)) is 
over ℓ ∈ [1, ∞) [30]. Performing a change ℓ → -ℓ, we thus 
have

 Ù( )

1

ln 1 .l
i i

l

T dk e  


  
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Hence, the ϐinal form of VT from (II.34) reads

 Ù( )
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
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III. Spontaneous breaking of global U(1) 
symmetry in a rigidly rotating bose gas

A. The critical temperature of U(1) phase transition; 
Analytical result

In this section, we study the effect of rigid rotation on 
the spontaneous breaking of global U(1) symmetry in an 
interacting charged Bose gas. Before starting, we add a new 
term

~
2

0 0 1
1

( ) ,
2

Z n v v           (III.1)

to L from (II.5). This leads to an additional mass 
term in the classical potential Vcl. We deϐine a new mass 

2 2 2
0a c m  , which replaces c2 in (II.32). Minimizing the 

resulting expression, the (classical) minimum of Vcl is thus 
given by

2
2
0 .

av


               (III.2)

At this minimum, the masses of m v v c2 2 2
1 ( ) 3   and 

m v v c2 2 2
2( )    are given by

   m v a c m v a c2 2 2 2 2 2
1 0 2 03 ,    

    (III.3)

For m0 = 0, we have m2 = 0 and φ2 becomes a massless 
Goldstone mode. The position of this (classical) mini- mum 
changes, once the contribution of the thermal part of the 
thermodynamic potential, VT, is considered. To show this, 
we ϐirst deϐine Va ≡ Vcl + VT and use the high-temperature 
expansion of VT by making use of the results presented in 
Appendix A. Considering only the ϐirst two terms of (A.13) 



227

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics

Citation: Wenming S. Spontaneous U(1) Symmetry Breaking and Phase Transitions in Rotating Interacting Bose Gases. Ann Math Phys. 2025;8(6):221-239. 
Available from: https://dx.doi.org/10.17352/amp.000168

and plugging the deϐinitions oof m v2
1 ( )  and m v2

1 ( )   into it, the 
high-temperature expansion of Va read s

2 2 3 4

2 2

5 2 3

2 2

2 (3)
( , , ) 1

2 4

2 (5) (3)
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           (III.4) 

Setting the coefϐicient of v2 equal to zero, the critical 
tem- perature of global U(1) phase transition is determined,

 Tc
1/32 2

  
2 (3)
a 


 
  
 

         (III.5) 

In [30], the BE transition in a noninteracting Bose gas 

under rigid rotation is studied. It is shown that in nonrel- 
ativistic regime Tc ∝ Ω2/5 and in ultrarelativistic regime Tc 
∝ Ω1/4. In the present case of interacting Bose gas, similar 
to that noninteracting cases, the critical temper- ature 
increases with increasing Ω.

Introducing the reduced temperature t = T/Tc, with Tc 
= Tc (Ω) from (III.5), and minimizing Va from (III.4) with 
respect to v, the new nontrivial minimum is given by


minv T t t

t

2
2 '(  , ) (1 3) 1,

(0, 1

a

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

         (III.6)

When comparing with a similar result for a nonrotating 
charged Bose gas [40], it turns out that the power of t in 
(III.6) changes once the gas is subjected to small rotation. 
In Sec. IV, we numerically study the effect of rotation 
on the spontaneous breaking of global U(1) symmetry. 
For this purpose, we employ a phenomenological model 
that includes and  mesons, replacing φ1 and φ2  ϐields 

in the above computation. We set  2 2 231 0 0m v v c  

m2
  and  m v v c m2 2 2 2

2 0 O     with  V0 the classical minimum 

from (III.2). Moreover, we choose mo in (III.1) equal to m. 

For meV and meV, we obtain

c = 
2 23

2
m m  

 
 

1/2 ≃ 225 MeV.                (III.7)

Moreover,  a c m MeV
1/22 2652    . We also choose 0.5  . 

Using these quantities the function

∆Va ≡ Va (v, T,Ω) — Va (0, T,Ω)

= — 
2 2

2
a v  (1 — t3) + 

4

4
v ,                           (III.8) 

is plotted in Figure 2 at t = 0.6, 0.8 in the symmetry-
broken phase and t = 1.2 in the symmetry-restored phase. 

At t = 1 a phase transition from the symmetry-broken 
phase to a symmetry-restored phase occurs. Let us notice, 
that the effect of rotation consists of changing the power 
of t in (III.6) and (III.8) from t2 to t3. This is apart from the 
Ω dependence of the critical temperature Tc from (III.5) 
(Figure 7).

The result indicates a continuous phase transition from 
a symmetry-broken phase at t < 1 to a symmetry- restored 
phase at t ≥ 1. To scrutinize this conclusion, let us consider 
the pressure P arising from Va from (III.4).

It is given by P = —Va. Denoting the pressures below 
and above Tc with P< (v, T,Ω) and P> (v, T,Ω), we have P< 

P vmin T t t

P T
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3 6
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                            (III.9)

Here, we have added a term —a4 /4λ to P< and P> in 

order to guaranteeP
22

 ,0, 0minv

 
   

 
 and P< = P> at the 

the transition temperature Tc. At T = Tc, the pressure is 
given by

                     

2
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For  m0 = 0 (or a = c), the ϐirst two terms cancel, resulting 
in an increase in pressure as Ω increases. Moreover, 
whereas the entropy (dP/dT) is continuous at

T Tc
Tc Tc

,
dP dP

dT dT
           (III.11)

the heat capacity  d P dT2 2/  is discontinuous

Figure 2: (color online). The v dependence of ∆Va from (III.8) is plotted at t = 0.6, 
0.8, 1, 1.2. At t < 1 the global U(1) symmetry is broken and ∆Va possesses nontrivial 
minima at v2

min = a2 (1 - t3)/λ. At t = 1 the symmetry is restored and at t ≥ 1 a single 
minimum at vmin = 0 appears (see (III.6)).
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Hence, according to Ehrenfest classiϐication, this is 
a sec- ond order phase transition. In comparison to the 
non- rotating case [40], although rotation alters the critical 
temperature, the order of the phase transition remains 
unchanged. It is noteworthy that the discontinuity in the 
heat capacity decreases with increasing Ω.

Plugging at this stage, v
2

 min from (III.6) into 

m v v c2 2 2( ) 31    and m v v c2,2 2( )2    we arrive at
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        (III.13)

Hence, as it turns out, at t ≥ 1, after the symmetry is 

restored, m2
1  and m2

2  become negative. Contrary to our 

expectation, for a = c, i.e., in the chiral limit m0 = 0, the 

Goldstone boson ‘2 acquires a negative mass 2 3c t  in 
the symmetry-broken phase at t < 1. In what follows, we 
compute the one-loop tadpole diagram contributions to 
masses m1 and m2. We show, in particular, that by con- 
sidering the thermal mass, the one-loop corrected mass of 
the Goldstone mode ‘2 vanishes in chiral limit m0 = 0.

B. One-Loop Corrections to m1 (v) and m2 (v)

To calculate the one-loop corrections to m1 and m2, let 
us consider L4 from (II.4). Three vertices, corre-sponding to 

three terms in  22 2
1 24 4


    , are to be considered in 

this computation (Figure 3),

'4
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'4
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          (III.14)

They lead to two different tadpole contributions to 

 T x y' '|  1( ) 1( ) |   and  T x y' '|  2 ( ) 2( ) |   that 

correct m1 and m2 perturbatively. They are denoted by  
with the ϐirst index, 1;2i  , corresponds to whether ' 1 or 
' 2 are in the external legs, and the second index 1;2j   to 
whether the internal loop is built from ' 1 or ' 2 (Figure 4 , 
where ij  are plotted). Hence, according to this notation, 

the one-loop perturbative corrections to m2
1  and m2

2  arise 
from

m v m v2 2( ) ( ) 11 12;1 1    

m v m v2 2( ) ( ) 21 222 2     .     (III.15)

At this stage, we introduce 
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 with free boson propagator
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D
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
  

          (III.17)

arising from (II.11) with = 0. Here, k m2 2 2 2! Z  ki i  and  i = 
1; 2. Using this notation, it turns out that

Π 11 = 3Π 1 ; Π 12 = Π2 ;

Π22 = 3Π2 ; Π21 = Π 1.     (III.18)

Hence, the perturbative corrections of masses are given 
by

m v m v2 2( ) ( ) 32 2 2 1    

m v m v2 2( ) ( ) 32 2 2 1             (III.19) 

To evaluate Πi from (III.16), we follow the same steps 
as presented in [30]. The Matsubara summation is eval- 
�uated with

     1
, 1

2
D n nn i b i b in T i

   


            
         (III.20)

where n eb(!) 1 ( 1)    is the BE distribution func- 

Figure 3: Three vertices arising from L4 from (II.4). Dashed and solid lines 
correspond to φ1 and φ2 fi elds, respectively.

Figure 4: The tadpole diagrams contributing to the one-loop corrections of m1
2 and 

m2
2. Dashed and solid lines correspond to φ1 and φ2 fi elds, respectively.
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tion. In what follows, we insert (III.20) into (III.16) and 
focus only on the matter (T and  dependent) part of

 
i  

1 , 02
n emat b idkei i



 

      
 .      (III.21) 

Having in mind that in nb i ‘(! )  , we must have 

e i( ) 1 0      , it is possible to limit the summation 

over. We thus obtain $\Pi_{i}^{\mathrm{mat}}=\sum_{\
ell=1}^{\infty} \int d \tilde{k} \frac{n_{b}\left(\omega_

{i}+\ell \Omega\right)}{\omega_{i}}$.     (III.22) 

Let us notice that in the term including nb (! i  ) 
an additional shift → - is performed. To carry out the 
summation over ` and eventually the integration over k  
and kz , we use
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and arrive ϐirst at
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           (III.24)

Using, at this stage, (A.2), we then obtain
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The summation over ` can be performed by making use 
of (A.4). Assuming Ω < 1 and using (A.5), Πi(mat)i reads
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i
j i

edk
j









 
 


       (III.26)

Following the method presented in Appendix B, we ϐi- 
nal ly arrive at

mat
3

2

(3)
2i
T 


  


          (III.27) 

The ϐirst term in (III.27) is analogous to the thermal 
ma ss λT2 /3 in a nonrotating interacting Bose gas [40] and 
the ellipsis includes higher order corrections of Πi(mat)i in 
βmi.

At high temperature, it is enough to consider only the 
ϐirst term in (III.27), which is independent of mi. We thus 
have

mat mat 3 (3)
1 2 22

T 


  


       (III.28) 

and therefore

P vmin T t t

P T

4 2 3 5 4
3 6

2 2

2 3 5 4

2 2

(3) 2 (5)
( , , ) ,

2 2 4
(3) 2 (5)

(0,  , )
2 4

a c T T a

c T T a

 
   
 

  

      
 

    
 

    (III.29)

with t = T/Tc and Tc from (III.5).

C. Goldstone theorem

Let us consider again the result presented in (III.13). 
Adding the contribution of thermal mass (III.28) to

 m v2 2
 1 min  and  m v2 2

 2 min , according to (III.29), we obtain

 
 

 

   

     

t
     

t

322 3 22 1 3 1 , 1,02 3  1
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2, 1,02
 2 2 3 2 31 , 1,0

tc t m t
m vmin

c t m t t

m
m vmin

c t m t

  
          


  


 
  



   

          (III.30)

where 2 2 2
0a c m   is used. Assuming 0,0 2m m  van- ishes 

at t < 1. This indicates that the Goldstone theorem is valid 

when the thermal mass corrections to 2
1m  and 2

2m  are taken 

into account. Moreover, we observe that m vmin m vmin2 2( ) ( )1 2  

in the symmetry-restored phase at t 1 . In Figure 5, the t 

dependence of 2
1m vmin and 2

2m  vmin from (III.30) is plotted. 

These masses are identiϐied with m2
  and m2

 , respectively. 

We use c GeV0.225  from (III.7) and mo GeV0.140

, as de- scribed in Sec. III B and observe that in the sym-
metry- broken phase, at t m1,    decreases with increasing 
temperature, while m  remains constant. As expected, at 
symmetry-restored phase at t m1,    and m  are equal 
and increase with increasing temperature. It is noteworthy 
that the effect of rotation, apart from affect- ing the value of 

Figure 5: (color online). The t dependence of m1
2 and m2

22 from (III.30) at vm(2)min 
from (III.6) is plotted. These masses are iden- tifi ed with σ and π meson masses. 
In the symmetry-broken phase, at t < 1, mσ decreases with increasing temperature, 
while mπ remains constant. At symmetry-restored phase at t ≥ 1, mσ and mπ are 
equal and increase with increasing t.
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the critical temperature Tc from (III.5), consists of changing 
the power of t in (III.30) from t2 to t3 (see [40]).

D. Vacuum p otential

In what follows, we compute the contribution of the 
vacuum part of the thermodynamic potential, Vvac from 
(II.33) to Vtot. Let us ϐirst consider the summation over ℓ ∈ 
(-∞, +∞) in this expression. This sum is divergent and need 
an appropriate regularization. To perform the summation 
over ℓ, we use

2

0
1 lim x

x
e

 



 

  

 

2

0 0
1

1lim 1 2 1 lim
1

x
xx x

e
e




 


 
      

 



= 1 + divergent term.       (III.31)

Neglecting the divergent term, we obtain

vac
1

1 22 ( )dk   


       (III.32)

The above regularization guarantees that rotation does 
not alter Vvac. To perform the integration over k⊥ and kz, 
let us consider the integral

  1/22 2( )  
2

I m dk m


   k          (III.33) 

with 3 -d. Here, d is the dimension of spacetime and 
  denotes an appropriate energy scale. Later, we show that 
  can be eliminated from the computation. Utilizing

 

 

1
( , , )  

(2 ) 2 2

1 ( /2) 1
  /2 /2( )(4 ) 2

dd k
m d n d n

m

n d
d n dn

m





  


 
 

k

    (III.34)

to perform a d dimension al regularization, we obtain 
for Φ(m,3 - ϵ,-1/2), (In Appendix C, we derive (III.24) in 
cylinder coordinate system).

4 2

2 2

2 3
( ) ln

64 2 4E
m mI m 
  

  
         

    (III.35)

The vacuum part of the thermodynamic potential 
(III.32) is thus given by

Vvac = I(m1) +  I(m2)

4 4 4 2
31 2 1 1
22 2 2

2
ln

64 64 4E
m m m m


   

          
   

4 2
2 2

2 2ln
64 4
m m
 

 
  

 
      (III.36)

In what follows, we regularize this potential by following
the method presented in [43]. To  do this, we ϐirst deϐine 

Vb ≡ Vcl + Vvac + VCT,       (III.37)

with Vcl from (II.32) with c2 replaced with Oa c m2 2 2  and 

Vvac from (III.36). The counterterm potential is given by

CT
2 4

2 4
Av Bv C          (III.38) 

The coefϐicients A and B  are determined by utilizing two 
prescriptions

  
2 2
0 0

2
2
1 020, ( )b b

v v

m v
v v

 
 

 
       (III.39) 

Here, vO
2

 from (III.2) is the classical minimum and 

m vo2( )1  from (III.3). Let us note that the ϐirst prescription 

guar- antees that the position of the classical minimum 
does not change by considering the vacuum part of the 
poten- tial. The term C in (III.38) includes all terms which 
are independent of v. Using (III.39), we arrive at

2 222 2
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        (III.40)

Plugging A and B from (III.40) into VCT from (III.38) and 
choosing

2 2 24 4 4
0 0

2 22 2 2

2 3
ln ln

4 416 64 64
m c mc c cC
    

   
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44

2 2

3
64 32

Ecc 
 

        (III.41)

vthe counterterm potential from (III.38) is determined. 
These counterterms eliminate the divergent terms in the 
vacuum potential, as expected. The total potential Vb from 
(III.37) is thus given by

2 2 2 22 2 4 2 2
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53
2 4 4 8 16

b
m v m va v v c v   
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               ( III.42)

As mentioned earlier, the energ y scale  does not appear 
in the ϐinal expression of Vb. Additionally, a nonzero m0 is 
necessary to speciϐically regularize the last term in Vb from 
(III.42).

E. Ring potential

We ϐinally consider the nonperturbative ring poten- 
tial Vring. As mentioned in the previous paragraphs, the 
Lagrangian is written in terms of φ 1 and φ2, three type of 
vertices appear in the λ(φ⋆ φ) model (Figure 3). We thus 
have four different types of ring diagrams: 

- Type A:  A ring with N insertions of Π2 and N 
propagators Dℓ (ωn,ω 1) propagators, VA

 ring,

- Type B:  A ring with N insertions of Π 1 and N 
propagators Dℓ (ωn,ω2) propagators, VB

ring,

- Type C:  A ring with r insertions of Π2 and s insertions 
of Π 1 with N propagators Dℓ (ωn,ω2), VC

ring.

Here, r ≥ 1 and r + s = N.

- Type D:  A ring with r insertions of Π 1 and s 
inser�tions of Π2 with N p ropagators Dℓ (ωn,ω 1), 
VD

ring.

Similar to the previous case, r ≥ 1 and r + s = N.

Here, Πi (T,Ω, mi) and Dℓ (ωn,ωi), i = 1, 2 are deϐined 

in (III.16) and (III.17), respectively. In Figure 6, these 
different types of ring potentials are demonstrated. The 
�full contribution of the ring  potential is given by

ring ring
{ , , }

I

I A D 

  
          (III.43)

Following standard ϐield theoretical method, it is possi- 
ble to determine the combinatorial factors leading to the 
standard form of the ring potential [40]. In Appendix D, we 

outline the derivation of VI
ring, I = A, ···, D. They are given by
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Here, the notation Di ≡ Dℓ (ωn,ωi) is used. To evaluate

VA
ring and VB

ring, we introduce a simplifying notation

 ring
( , )

, 2

1
2

Ni j
i j

n N

T dk D
N





  


      (III.45)

Here, (i, j) = (2, 1) and (i, j) = (1, 2) co rrespond to Vr(A)

ring and VB
ring, respectively. Plugging Dj from (III.17) into 

(III.45) and focusing on n = 0 as well as ℓ  0 contri- butions 
in the summation over n and ℓ, we arrive ϐirst at 

ring
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            (III.46)

with u k mZ
2 2 2 2 2 2    kj j  . Plugging then
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         (III.47)

into (III.46), the integration over k⊥ and kz can be 
car- ried out by making used of (A.9). To limit the 
summation over ℓ from below, we use the fact that the 
summand is even in ℓ. To perform the integration over 

k⊥ and kz, we use the Mellin transformation of u N2 
 

 j

2 2 2 2 2
1 22 1 ( )

0

1( )
( )
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 

         (III.48)

and (A.9) to arrive ϐirst at

ring
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1
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( )8
j

N N
ii j N m t
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         (III.49)

where
Figure 6: Ring diagrams of Type A, B, C, and D contributing to the nonperturbative 
ring potential Vring. Dashed and solid lines correspond to φ1 and φ2, respectively. 
They are given by the expressions from (III.44).



232

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics

Citation: Wenming S. Spontaneous U(1) Symmetry Breaking and Phase Transitions in Rotating Interacting Bose Gases. Ann Math Phys. 2025;8(6):221-239. 
Available from: https://dx.doi.org/10.17352/amp.000168

2 2

1

( ) tI e






  



        (III.50) 

To evaluate the summation over ℓ, we expand eℓ2 Ω2 t in 
a Taylor expansion and obtain
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with 

the Riemann zeta function2

1

( 2 ), ( )r r z 



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

 . Since 

for r ∈ N, we have ζ(—2r) = 0, the only nonvanishing 
contribution to the summation over r arises from r = o. We 
thus use 1

(0)
2

     to arrive at 

1
2( )I           (III.52)

Plugging this result into (III.49), using
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and performing the summation over N, we arrive at 
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We arrive eventually at
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To evaluate VC
ring and VD

ring, we introduce
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Here, (i, j) = (2, 1) corresponds to VC
ring  and (i, j) = (1, 2) 

to VD
ring . Plugging Di from (III.17) into (III.56) and fo cusing 

on n = 0 and ℓ  0 contributions in the summa- tion over n 
and ℓ, we obtain
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where u2
j

 is deϐined below (III.46). Following, at this stage, 

the same steps as described in previous paragraph, we 
arrive ϐirst at
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To perform the summation over N and r, we use the 
relation
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We thus obtain
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For V (i), the summation over N can be carried out and 
yields
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As concerns V(i,j), we perform the summation over N  and 
arrive at
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where pFq(a;b;z) is the generalized hypergeometric 
function having the following series expansion
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Here, a = (a1, ···, ap), b = (b1, ···, bq) are vectors 

with p and q components.
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Moreover,      a k a k ai/1 1     is the Pochhammer 
symbol. For our purposes, it is sufϐi- cient to focus on the 
contribution at r = 1 in (III.63).

2 3/2 3( , )
1 2 2 3

24
| ( )i j i
r i j i i j

j

TV m m m


             (III.65)

Having in mind that the one-loop contribution to the 
self- energy Πi, which is determined in Sec. III B is of order 
O(λ), the contributions corresponding to r ≥ 2 are of order 
O(λ2) and can be neglected at this stage. We thus have




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D
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           (III.66)

The ϐinal result for Vring is given by plugging Vr(I)ring, 
I = A, ···, D from (III.55) and (III.65) into (III.43),
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Focusing only on the ϐirst perturbative correction to Πi 
and using Πi(mat)i, i = 1, 2 from (III.28), the above results 
is simpliϐied as

mat mat
ring

2
2 3/2 3

1

2 2 3
8

( )i i i
i

TV m m m
 

           

            (III.68)

where mat mat mat
3

1 2 2

(3)
2
T 


   


      (III.69)

F. Summary of Analytical Results in Sec. III

In this section, we summarize the main ϐindings. Ac- 
cording to these results, th e total thermodynamic po- 
tential of a rigidly rotating Bose gas, Vtot, including the 
classical potential Vcl from (II.32) with c2 replaced with a2, 
the vacuum potential (II.33), the thermal part (II.34), �and 

the ring potential (III.43) is given by
Vtot = Vcl + Vvac + VT + Vring,      

with

 

a v v
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Here, a c m m v v cO
2 2 2 2 2 2,  ( ) 31      and m v v c2 2 2( )2   , and 

T  3 2(3) / 2mat      . We notice that the logarithmic terms 
appearing in Vvac from (III.42) are skipped in (III.70).

In the next section, we study the effect of rotation on 
the formation of condensate and the critical temperature 
of the global U(1) phase transition. To this purpose, we 
compare our results with the results arising from the 
full thermodynamic potential of a nonrotating Bose gas. 
�According to [40], it is given by (Subscripts (0) correspond 
to Ω = 0.)

  V V V V V gott cl vac r
(0)0 0      ,0  inT        (III.71) 

where Vcl a nd Vvac are given in (III.70), while VT
(0) and Vr

(0) gread

V
2 4 2 2 2 2(0) ,
45 6 12
T T v c T

T
 

              (III.72)

and

  V m m mi i ir g
i

(0) 2   2  3 0 0    3/24
1

T
in 

      (III.73)

with the one-loop self-energy correction 

T  2 / 3[40]0
mat    and m i2, 1,2i  given as above.

IV. Numerical results

In this section, we explore the effect of rotation on 
 different quantities related to the spontaneous breaking

of global U(1) symmetry. To this purpose, we consider 
different parts of Vtot from (III.69).

In Sec. III A, we derived the minimum of the potential

Va including Vcl and VT. We arrived at v2
min (T,Ω) from

(III.6). Replacing VT with VVVVVV  from (III.72) for a 
nonrotating Bose gas and following the same steps leading 
from ( III.4) to (III.6), we arrive at the critical temperature 
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              (IV.1) 

and the T dependent minima


min
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a
t tv T n
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

 


           (IV.2)

with the reduced temperature t0 = T/Tc
(0) and Tc

(0) from 
(IV.1). In Figure 7, vm(2)min is plotted for Ω = 0 [see (IV.2)] 
and Ω  0 [see (III.6)] as function of the corresponding 
reduced temperature t0 and t. The difference between 
these two plots arises mainly from different exponents of 
the corresponding reduced temperatures t0 and t in (IV.2) 
and (III.6). The reason of this difference lies in dif- ferent 
results for the high-temperature expansion of Tc

(0) for Ω = 0 
[see (III.72)] and VT for Ω  0 [see (III.70)].

Let us consider Vtot − Vring = Vcl + Vvac + VT from 
(III.69). By minimizing this potential with respect to v, and 
solving the resulting gap equation,

min

tot ring 0( )
v

d V V
dv

          (IV.3)

it is possible to determine numerically the T dependence the 
minima, denoted by v-min (T,Ω), for ϐixed Ω. To this purpose, 
we use the quantities a ≃ 0.265 GeV, c ≃ 0.225 GeV, and λ = 
0.5 given in (III.7). In Figure 8, the T/Tc

(0) dependence of 
min is demonstrated for βΩ = 0.1, 0.2, 0.3 (dashed, dotted, 
and dotted-dashed curves). The results are then compared 
with the corresponding minima for a nonrotating Bose gas 
(red solid curve). The latter is determined by minimizing 
the combination  V Vt r

   0     
   
o

ot
in

 
   

 
, according to

V V mint rin
'(0) (0)  0   

d vot ndv
   
 

        (IV.4)

with  Vt
0   ot from (III.71). In both cases, T GeVc

(0)  0.681  
is 

the critical temperature of the spontaneous U(1) sym- 
metry breaking in a non rotating Bose gas. (The critical 
temperature is the temperature at which the condensate 
min  vanishes.)

These results indicate that rotation lowers the critical 
temperature of the phase transition. However, as shown in 
Figure 8, Tc increases with increasing Ω. It is also im- portant 
to note that this same trend is observed in a noninteracting 
Bose gas under rigid rotation [30].

To answer the question whether the transition is con- 
tinuous or discontinuous, we have to explore the shape 
of the potential, the value of its ϐirst and second order 
derivatives at temperatures below and above the critical 

temperature, Tc. Using the numerical values for the set 
of free parameters a, c, and λ as mentioned above, the 
transitions turns out to be continuous not only for Ω = 0 but 
also for Ω  0.

To explore the effect of the ring potential on the tem- 
perature dependence of the condensate v-min, we solved 
numerically the gap equation

min
0

'
tot

v

dV
dv

         (IV.5)

and

min

( )

'

0
0

o
tdV t
dv 

         (IV.6)

for a rotating and a nonrotating Bose gas, respectively. 
The corresponding results are demonstrated in Figure 9. 
Because of the speciϐic form of the ring potentials Vring 
and Vr

(0) in from (III.70) and (III.73), including in particular 

 mat2 3 / 2mi 
, there is a certain value of v below which the 

Figure 7: (color online). The t0 [t] dependence of v2
min (T) and v2

min (T,Ω) for 
nonrotating (Ω = 0) and rotating (Ω 0) Bose gas [see (III.6) and (IV.2)]. For Ω = 
0 and Ω 0, the reduced temperature t0 or t is defi ned by t0 = T/Tc

(0) and t = T/Tc, 
respectively.

Figure 8: (color online). The T/Tc
(0) dependence of Ӄ min is plot- ted for βΩ = 0, 0.1, 

0.2, 0.3. For Ω 0 and Ω = 0, v-min (T) arises by solving the gap equation (IV.3) 
and (IV.4), respec- tively. The temperature T is rescaled with Tc

(0) = 0.681 GeV, the Ω 
independent critical temperature of a nonrotating Bose gas. It turns out that Tc < Tc

(0) 
and for βΩ 0, Tc increases by increasing βΩ.
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potential is undeϐined (imaginary). Let us denote this value 
by ⋆. In both rotating and non- rotating cases v⋆ ≃ 0.319 
GeV. As it is shown in Figure 9, the minima decrease with 
increasing temperature and converge towards ⋆. Let us 
denote the temperature at which min = v⋆ with T⋆ for Ω  
0 and T⋆

(0) for Ω = 0. For Ω = 0, T⋆
(0) ≃ 0.300 GeV, and as it is 

shown in Figure 9, the transition to v⋆ is discontinuous (red 
circles). For Ω  0, however, T⋆ < T⋆

(0) and increases with 
increasing βΩ, similar to the results presented in Figure 8. 
Moreover, in contrast to the case of Ω = 0, the transition to 

⋆ for all values of βΩ  0 is continuous.

In Figure 10, the phase diagram Tc-Ω is plotted for two 
cases:  The blue solid curve demonstrates Tc from (III.5) 
arising from Vcl + VT. Red dots denote the Ω depen- dence 
of Tc arising from the potential Vtot − Vring. A comparison 
between these data reveals the effect of Vvac in increasing 
Tc. Apart from the Ω dependence of Tc, the Ω dependence 
of T⋆ is demonstrated in Figure 10. It arises by adding the 
ring contribution to Vcl + VT + Vvac, as described above. 
According to the results demonstrated in Figure 10, 
considering Vring decreases Tc. But, simi- lar to Tc, T⋆ also 
increases with increasing Ω. It should be emphasized that 
the transition shown in Figure 8 is a crossover, since ⋆  0.

In Sec. III B, the masses mi
2, i = 1, 2 including the one-

loop correction are determined [see (III.29)]. Identi- fying 
m1

2 with mσ
2 and m2

2 with mπ
2, we arrive at

2 2 2 2 3( ) 3 ,

2 2 2 2 3( ) .

m v v c a t

m v v c a t





  

  
         (IV.7)

Using the data for 2
 min  arising from the solution of the 

gap equation (IV.3) and (IV.5), and evaluating  m v2 2
  and 

 m v2 2


 from (IV.7) at 2
 min  for a ϐixed  , the t T Tc/  

dependence of 2
1m  and 2

2m  is determined. In Figure 11(a), 

the dependence of  minm2 2
   and m  2 2   min  with vmin 

arising from (IV.3) on the reduced tempera- ture t T Tc/  
is plotted for ϐixed 0.1  . Here, the contribution of the 
ring potential is not taken into ac- count. Hence, a continuous 
phase transition occurs with the critical temperature 
Tc GeV0.399  for GeV0.1  . In contrast, in Figure b m211(  ),   

and m2
  are determined by plugging the data of 

min arising from (IV.5), with Vtot including the ring potential. 
Hence, the difference between the plots demonstrated in 
Figs. 11(a) and 11(b) arises from the contribution of the 
nonperturbative ring potential. As we have mentioned 
above, when the ring potential is taken into account, the 
data demonstrated in Figure 9 do not describe a true 
transition, since    is not zero. The reduced temperature 

in Figure 11(b) is thus deϐined by /t T T  , where, according 
to the data pre- sented in Figure T GeV10  0.278  for 0.1  .

Let us compare the results demonstrated in Figure 
11(a) with that in Figure 5. In both cases, before the phase 
transition at t m21,    decreases with increasing t . Moreover, 
whereas in Figure 5, M2

 remains constant, it slightly 
decreases once the Vvac contribution is taken into account.

Figure 9: (color online). The T/Tc
(0) dependence of Ӄ min is plot- ted for βΩ = 0, 0.1, 

0.2, 0.3. For Ω 0 and Ω = 0, v-min (T) arises by solving the gap equation (IV.5) and 
(IV.6), respec- tively. Here, Ӄ


 = 0.319 GeV and T


(0) = 0.300 GeV. It turns out that T


 < 

T


(0) and for βΩ  0, T

 increases by increasing βΩ.

Figure 10: (color online) .  The Ω  dependence of the transition temperatures 
is plotted. The blue solid line is the transition temperature Tc  Ω1/3 from 
(III.5). It arises from V

cl + VT, as described in Sec. III A. Red dots correspond 
to the critical temperatures Tc, arising from Vtot − Vring. Green diamonds 
denote T


, arising from Vtot.

Figure 11: (color online). (Panel a) The t = T/Tc dependence of mσ
2(v-min) and mπ

2(v-min) 
from (IV.7) is plotted for Ω = 0.1 GeV. The data of Ӄmin arise by solving the gap equation 
(IV.3) corresponding to Vtot − Vring. The critical temperature Tc for Ω = 0.1 GeV is Tc ~ 
0.399 GeV. As expected from the case of nonrotating Bose gas, in the symmetry-restored 
phase at t ≥ 1, mσ

2 = mπ
2. (Panel b) The t* dependence of mσ

2(v-*) and mπ
2(v-*) from (IV.7) 

is plotted for Ω = 0.1 GeV. The data of Ӄ min arise by solving the gap equation (IV.5), 
corresponding to Vtot which includes the nonperturbative ring potential. According to 
Figure 10, for Ω = 0.1 GeV, we have T* ~ 0.278 GeV. At t ≥ 1, mσ

2 − mπ
2 = 2λӃ*(2)*, with 

Ӄ* ≃ 0.319 GeV from Figure 9 and λ = 0.5.



236

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics

Citation: Wenming S. Spontaneous U(1) Symmetry Breaking and Phase Transitions in Rotating Interacting Bose Gases. Ann Math Phys. 2025;8(6):221-239. 
Available from: https://dx.doi.org/10.17352/amp.000168

After the transition, at t m21,    becomes equal to M2
and 

they both increase with increasing t. It is straight- forward 
to verify this statement using equation (IV.7). Given that, 
in this case, the minima of the potential at 1t   are zero, it 

follows that both masses are equal, speciϐically m m2 2(0) (0) 

, once we substitute min 0   into (IV.7).

This behavior is expected from the case of 0   and 
in the framework of fermionic Nambu-Jona-Lasinio (NJL) 
model: As noted in [45], in the symmetry-broken phase, 

m m2 2   . As the transition temperature is approached, 

m2
  decreases, and at a certain dissociation temperature 

Tdiss, the masses m  and m become de-generate. This 
temperature is characterized by m (Tdiss) 2 = m (Tdiss). 
(IV.8)

As it is described in [45],   mesons dissociates into two 
pions because of the appearance of an s-channel pole in 
the scattering amplitude       . In this process a   
meson is coupled to two pions via a quark triangle. In the 
symmetry-restored phase, at t m1,    becomes equal to m . 
They both increase with increasing T [45,46].

In Table 1, the   dissociation temperatures are listed 
for GeV0,0.1,0.2,0.3  . The data in the second (third) 
column correspond to Tdiss ( Td

 iss) for the case when 

min  is the solution of (IV.3) [(IV.5)] for 0   and (IV.4) 

[(IV.6)] for 0  . Comparing Tdiss and Td


 iss with Tc  

and T  shows that T diss Tc  and similarly T Td   iss 


The property T diss Tc  is because we are working 
with m 0  . Let us notice that, as aforementioned, the 
  dissociation temperature is originally introduced in a 
fermionic NJL model [45]. In this model, nonvanishing m 
indicates a nonvanishing quark bare mass m, and choosing 

0m O
  implies a crossover transition charac- terized by 

Tdiss Tc . It seems that in the bosonic model studied in 
the present work, a nonvanishing pion mass leads similarly 
to T diss Tc .

The behavior demonstrated in Figure 11 (a) changes once 
the contribution of the ring potential is taken into account 
As it is shown in Figure 11 (b) in the symmetrybroken phase 

at 1,t m  decreases slightly with  T while m increases 
with T Moreover in contrast to the case in which Vring is not 
taken into account m and  mare not equal at t 1  This 
observation highlights the ef fect of nonperturbative ring 
contributions on the relation between mand m mainly 
in the symmetry restored phase. This behavior is directly 
related to the fact that the effect illustrated in Figure 9 is a 
crossover once the ring contribution is considered. Plugging 
u  into (IV.7) the masses of   and  mesons are given by

 m u u c a t
m u u c a t

2 2 2 2 33
2 2 2 2 3  ( )




  

   
 
 

        (IV.9)

Their difference is thus given by 2 2 2( ) ( ) 2m u m u u        
and remains constant in t This fact can be observed in 
Figure 11 (b) at t 1 .

V. Summary and conclusions

In this paper, we extended the study of the effects of 
rigid rotation on BE condensation of a free Bose gas in [30], 
to a self-interacting charged Bose gas under rigid rotation. 
In the ϐirst part, we considered the Lagrangian density of 
a complex scalar ϐield 夕 with mass m, in the presence of 
chemical potential μ and angular velocity Ω. The interaction 
was introduced through a λ(夕⋆ 夕) term. This Lagrangian is 
invariant under global U(1) transfor- mation. To investigate 
the spontaneous breaking of this symmetry, we chose a 
ϐixed minimum with a real com- ponent u, and evaluated 
the original Lagrangian around this minimum to derive a 
classical potential. Then, we applied an appropriate Bessel-
Fourier transformation to determine the free propagator 
of this model, expressed in terms of two masses m1 and 
m2, corresponding to the two components of the complex 
ϐield. These masses depend explicitly on u,λ, and m, and 
played a crucial role when the spontaneous breaking of 
U(1) symmetry was consid- ered in a realistic model that 
includes σ and π mesons. Using the free boson propagator of 
this model, we derived the thermodynamic potential of self-
interacting Bose gas at ϐinite temperature T. This potential 
consists of a vac- uum and a thermal part. Along with the 
classical poten- tial, this forms the total thermodynamic 
potential of this model Vtot from (II.24). This potential is 

expressed in terms of the energy dispersion relation k  
from (II.15), and explicitly depends on lΩ. A novel result 
presented here is that, although lΩ appears to resemble 

a chemical potential in combination with k in Vtot, the 

chemical potential μ affects k  in a nontrivial manner. The 
effec-tive chemical potential μeff = μ + lΩ appears solely in 
a noninteracting Bose gas under rotation (see the special 
case 1 in Sec. II D and compare the thermodynamic po- 
tential with that appearing in [30]).

Table 1: 0.2, 0.3 GeV is compared with the critical temperature Tc and crossover 
temperature T*. In the second column, the data arise from the solution of the gap 
equation (IV.3) and (IV.4). In the third column, the data arise from the solution of the 
gap equation (IV.5) and (IV.6). In both cases the dissociation temperature is lower 
than the transition temperatures.

Ω in GeV Tdiss [Tc] in GeV Td(*)diss [T*] in GeV

0
0.1
0.2
0.3

0.584 [0.681]
0.322 [0.399]
0.418 [0.502]
0.480 [0.576]

0.220 [0.300]
0.210 [0.278]
0.271 [0.358]
0.316 [0.416]
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For λ,μ  0, we explored two cases μ > m and μ < m. The 
former corresponds to the phase where U(1) symme- try is 
broken, while the latter describes the symmetry- restored 
phase. By expanding the two branches of the energy 
dispersion relation around k ~ 0 in the symmetry- broken 

phase, we identiϐied k  and k as phonon and roton, 
with the latter representing a massless Goldstone mode. 
Upon comparison with analogous results for a nonrotating 
and self-interacting Bose gas, we found that rigid rotation 

does not alter the behavior of k  at k ~ 0. This is mainly 
because rotation appears in terms of lΩ within Vtot, rather 

than directly affecting k .

In the second part of this paper, we examined the 
effect of rigid rotation on the spontaneous breaking of 
U(1) symmetry in an interacting Bose gas at μ = 0 (see 
Sec. III). In this case, where m2 < 0, we replaced m2 with 
−c2, where c2 > 0. By introducing an additional term to 
the original Lagrangian, we deϐined a new mass, a2 = c2 + 
m0

2. We demonstrated that the minimum of the classical 
potential is nonzero, indicating a sponta- neous breaking 
of U(1) symmetry. We then addressed the question about 
the position of this minimum, specif- ically its dependence 
on T and Ω, after accounting for the thermal part of the 
effective potential combined with the classical potential. 
To investigate this, we performed a high-temperature 
expansion of the thermal part of the potential, utilizing 
a method originally introduced in [30]. This approach 
enabled us to sum over the angular mo- mentum quantum 
numbers ℓ for small values of βΩ, al- lowing us to derive 
both the critical temperature of the phase transition Tc and 
the dependencies of the mini- mum of the potential on T 
and Ω. At this stage, we have Tc ∝ λ -1/3, which is in contrast 
to the Tc

(0) ∝ λ -1/2 for a nonrotating Bose gas. In addition, Tc 
∝ Ω 1/3. Let us remind that the critical temperature of a BEC 
transi- tion for a noninteracting Bose gas in nonrelativistic 
and ultrarelativistic limits are Tc ∝ Ω2/5 and Tc ∝ Ω1/4, re- 
spectively [30]. This demonstrates the effect of rotation in 
changing the critical exponents of different quantities in 
the symmetry-broken phase.

We deϐined a reduced temperature t = T/Tc, and showed 
that in the symmetry-broken phase, the minimum men- 
tioned above depends on (1-t3), while for a nonrotating 
Bose gas this dependence is (1-t0

2), where t0 = T/Tc
(0). In 

the symmetry-restored phase, this minimum vanishes. 
This indicates a continuous phase transition in both non- 
rotating and rotating Bose gases. Plugging these minima 
into m1

2(v) and m2
2(v), it turned out that at t ≥ 1, i.e., in the 

symmetry-restored phase m1 and m2 are imaginary. Since, 
according to our arguments in Sec. III, m2 is the mass of a 
Goldstone mode, we expect that in the chiral limit, i.e., when 

m0 = 0, it vanishes in the symmetry- broken phase at t < 1. 
However, as it is shown in (III.13), m2

2 < 0 in this phase.

To resolve this issue, we followed the method used in 
[40] and added the thermal part of one-loop self-energy 
diagram to the above results. In contrast to the case of 
nonrotating bosons, where the thermal mass square is 
proportional to λT2, for rotating bosons it is proportional 
to λT3/Ω. To arrive at this result, a summation over ℓ 
was necessary. This was performed by utilizing a method 
originally introduced in [30]. Adding this perturbative 
contribution to mi

2, i = 1, 2 at t < 1 and t ≥ 1, we showed that 
the Goldstone theorem is satisϐied in the chiral limit [see 
Sec. III C].

In Secs. III D and III E, we added the vacuum and 
nonperturbative ring potentials to the classical and ther- 
mal potentials. The main novelty of these sections lies in 
the ϐinal results for these two parts of the total potential, 
speciϐically the method we employed to sum over ℓ. Ac- 
cording to this method the vacuum part of the potential 
for a rigidly rotating Bose gas is the same as that for a 
nonrotating gas. We followed the method described in 
[43] to dimensionally regularize the vacuum potential. As 
concerns the ring potential, we present a novel method 
to compute this nonperturbative contribution to the ther- 
modynamic potential. In particular, we summed over ℓ 
by performing a ζ-function regularization. In Sec. III F, we 
presented a summary of these results.

In Sec. IV, we used the total thermodynamic poten- tial 
presented in Sec. III to study the effect of rotation on the 
spontaneous U(1) symmetry breaking of a realistic model 
including σ and π mesons. Fixing free parameters mσ, mπ, 
and λ, and identifying m1 and m2 with the me- son masses 
mσ and mπ, we obtained numerical values for c and a (see 
Sec. III A). First, we determined the T de- pendence of the 
minima of the total thermodynamic po- tential, excluding 
the ring contribution. According to the results presented 
in Figure 8, rotation decreases the critical temperature of 
the U(1) phase transition. Additionally, it is shown that 
Tc increases with increasing Ω. In [30], it is shown that 
the critical temperature of the BEC in a noninteracting 
Bose gas under rotation behaves in the same manner. 
This phenomenon indicates that rotation enhances the 
condensation. Recently, a similar result was observed in 
[47], where it is demonstrated that the inter- play between 
rotation and magnetic ϐields signiϐicantly increases 
the critical temperature of the superconducting phase 
transition.

To explore the effect of nonperturbative ring poten- 
tial, we numerically solved the gap equation correspond- 
ing to the total thermodynamic potential and determined 
its minima min. Because of the speciϐic form of the ring 
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potential, there was a certain ⋆ through which all the 
curves v-min (T,Ωf), independent of the chosen Ωf, con- 
verge (see Figure 9). Moreover, the transition for Ω = 0 
turned out to be discontinuous, while it is continuous for 
all Ω  0. As it is demonstrated in Figure (10), T⋆ increases 
with increasing Ω.

Finally, we determined the T dependence of the masses 
mσ and mπ mesons for a ϐixed value of Ω. To achieve this, 
we utilized (IV.7) along with min, which is derived from 
Figs. 8and 9. The plot shown in Figure 11(a), based on 
the total potential excluding the ring contribu- tion, is 
representative of the T dependence of mσ and mπ (see e.g., 
[46]). However, when we include the ring contribution, the 
shape of the plots changes, especially at T > T⋆. The reason 
is that considering the ring potential changes the order 
of the phase transition from a second order transition to 
continuous (for Ω  0) or discontinu- ous (for Ω = 0) a 
crossover. In this context, we numer- ically determined 
the σ dissociation temperature Tdiss, which may serve as 
an indicator for type of the transi- tion into the symmetry-
restored phase. We showed that Tdiss < Tc and T

ymyyyy
iss < T⋆, 

as expected from a crossover transition [46].

It would be intriguing to extend the above ϐindings, in 
particular those from Sec. III, to the case of nonvanish- ing 
chemical potential. In [48], the kaon condensation in a 
certain color-ϐlavor locked phase (CFL) of quark mat- ter 
is studied at nonzero temperature. This is a state of matter 
which is believed to exist in quark matter at large densities 
and low temperatures. Large densities at which the color 
superconducting CFL phase is built are expected to exist in 
the interior of neutron stars. One of the main characteristic 
of these compact stars, apart from densities, is their large 
angular velocities. It is not clear how a rigid rotation, like 
that used in the present paper, may affect the formation 
of pseudo-Goldstone bosons and the critical temperature 
of the BE condensation in this nontrivial environment. We 
postpone the study of this problem to our future publication.
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