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Abstract

We investigate spontaneous U(1) symmetry breaking and the associated phase transitions in rotating interacting Bose gases. Using a theoretical framework that
combines mean-field analysis with rotational dynamics, we analyze how rigid rotation modifies the condensate structure, critical behavior, and low-energy excitation
spectrum. We identify the emergence of Goldstone modes (massless rotons and massive phonons) in the symmetry-broken phase and clarify their role in mediating low-
energy excitations—findings that remain robust at low momentum regardless of rotation. A key result is the angular velocity (Q) dependence of the critical temperature
(Tc) for U(1) phase transition, where Tc scales as Q*(1/3), distinct from the Q*(2/5) (nonrelativistic) and Q*(1/4) (ultrarelativistic) scaling observed in noninteracting
rotating Bose gases. Rotation also alters the temperature dependence of the thermodynamic potential minima, changing the characteristic factor from (1 - t) (t = T/Tc for
nonrotating systems) to (1 - t3) for rotating gases. We further demonstrate that rotation preserves the second-order nature of the phase transition, while modifying the
critical exponents and reducing the discontinuity in heat capacity with increasing Q. Additionally, we define a  meson dissociation temperature (Tdiss) characterized by
mo(Tdiss) = 2mm(Tdiss), showing that Tdiss is always lower than Tc. Thermal mass corrections are shown to ensure the validity of Goldstone’s theorem in the rotating
frame, even in the chiral limit. These results deepen our understanding of the interplay between symmetry, rotation, and many-body interactions, with implications for
interpreting extreme conditions in heavy-ion collisions and compact astrophysical objects, while advancing the theoretical framework for phase structures in rotating Bose

systems.

PACS: 05.30.Jp;11.30.Qc;67.85.-d;64.60.-i

I. Introduction

One of the primary goals of modern Heavy Ion Colli-
sion (HIC) experiments is to study matter under extreme
conditions and its transitions through various phases. In
Quantum Chromodynamics (QCD), these phases range from
the deconfined quark-gluon plasma to the confined hadron
phase, which consists of mesons and baryons. Mesons, as
composite particles made up of a quark and an antiquark,
are often regarded as (pseudo-)Goldstone bosons arising
from the spontaneous breaking of chiral symmetry. Key
questions related to the phase transition of matter created
in HIC experiments focus in particular on the order of the
phase transition and the location of the critical endpoint
[1-5]. Answers to these questions provide valuable insights

into astrophysical and cosmo- logical models of the early
universe [6,7]. Both of these properties are affected by
external conditions, such as ex- ternal electromagnetic fields
and rotation. Intense mag- netic fields are believed to be
generated in the early stages of noncentral HICs. Depending
on the initial conditions, the strength of the magnetic fields
is estimated to be ap- proximately B ~ 1018 - 1020 Gauf in
the early stages after these collisions [8,9]. In recent years,
several stud- ies have explored the QCD phase diagram
in the presence of magnetic fields. Novel effects, such as
magnetic and inverse magnetic catalysis are associated
with the effect of constant background magnetic fields on
the nature of the chiral phase transition and the location
of the critical point [10-12]. Recently, several studies have
investigated the effect of rotation on quark matter created
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in HIC experiments. This matter is believed to experience
ex- tremely high vorticity, with an angular velocity reaching
up to 1022 Hz [13,14]. Extensive research has focused on
how rotation influences the thermodynamic properties
of relativistic fermionic systems [15-20]. One notable ex-
ample is the chiral vortical effect, which is related to the
transport properties of the quark matter produced after
HICs and provides insights into the topological aspects of
QCD [21]. When examining the thermodynamic proper- ties
of rotating Fermi gases using field theoretical meth- ods, it
is advantageous to assume rigid rotation with a constant
angular velocity [22,23]. The impact of rigid rotation on
QCD phase transitions, including chiral and confinement/
deconfinement, has been studied with and without
boundary conditions, e.g., in [15,24]. In [24], it is shown
that at finite temperature the phase diagram of a uniformly
rotating system exhibits, in addition to a confining and a
deconfining phase at low and high tem- peratures, a mixed
inhomogeneous phase at intermediate temperatures.

Several studies have also explored both relativistic
bosons [25-35] and the linear sigma model with quarks
[36-39] under rigid rotation. In [26], a spin-one gluon gas
under rigid rotation is analyzed, revealing that at tem-
peratures below a certain supervortical temperature, the
moment of inertia of a rotating spin-one gluon plasma
becomes negative. This phenomenon indicates a thermo-
dynamic instability and is associated with the negative
BBarnett effect, where the total angular moment of the
system opposes the direction of its angular velocity. For
spin-zero bosons in the presence of imaginary rotation,
ninionic statistics arise, modifying the standard Bose-
Einstein distribution with a statistical angle. Under spe-
cific conditions, these bosons exhibit fermionic-like be-
havior and display fractal thermodynamics that depend
on the angle of imaginary rotation [27]. A separate study
in [28] investigated the thermodynamics of spin-zero
com- plex scalar fields under rigid rotation, revealing that
ther- modynamic instabilities emerge at high temperatures
and large coupling constants. These instabilities include
neg- ative moment of inertia and heat capacity. Finally, in
[30], the Bose-Einstein (BE) condensation of a free Bose
gas subjected to rigid rotation is investigated in both
rel- ativistic and nonrelativistic limits. It is demonstrated
that rotation not only modifies the equation of state of
the system but also impacts the transition temperature
for BEC and the fraction of condensates. Specifically, it is
shown that the critical temperature of a rotating Bose gas
is lower than that of a nonrotating gas; however, as the
angular velocity increases, the critical temperature of the
rotating gas also rises. Additionally, an analysis of the heat
capacity of a nonrelativistic rotating free Bose gas indicates
that rotation alters the nature of the BEC phase transition
from continuous to discontinuous. The present paper aims
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to extend these findings to an inter- acting Bose gas under
rigid rotation.

We begin with the Lagrangian density of a complex
Klein-Gordon field ¢ that includes a self-interaction term
A(@* @)2 with a coupling constant A. To introduce rigid
rotation we use a metric including the angular velocity Q.
In the first part of this paper, we introduce a chem- ical
potential u corresponding to the global U(1) sym- metry
of the Lagrangian. For later analysis, we expand the
Lagrangian density around a classical configuration |(¢|
= v. Following standard methods [40,41] and utiliz- ing
an appropriate Bessel-Fourier transformation [29,30], we
derive the free propagator of this model. This propa- gator
is subsequently employed to compute the thermo- dynamic
potential as a function of y, (), and the energy dispersion
relation €*k. As it turnss out, the spontaneous breaking of
U(1) symmetry occurs for m < . In this regime, we find two
distinct energy branches; one corre- sponding to a massive
phonon and the other to a massless roton. It is noteworthy
that the rotation does not alter €k at low momentum, and
the results are similar to the nonrotating case [42].

In the second part of this paper, we explore the im- pact
of rotation on the spontaneous breaking of U(1) symmetry,
focusing specifically on the case of zero chem- ical potential.
Our primary emphasis is on the T and Q2 dependence of the
critical temperature of the corre- sponding phase transition,
as well as two masses m, and m,, which are identified with
the masses of the o0 and ™ mesons, respectively. We begin
by considering the ther- modynamic potential discussed
in the first part of this paper. Apart from a classical part,
it consists of a ther- mal and a vacuum contributions.
By employing a novel method for summing over the
quantum number ¥ related to rotation, we perform a high-
temperature expansion. Combining the classical and the
thermal parts, we de- rive an analytical expression for the
critical temperature of U(1) phase transition Tc, which is
found to be pro- portional to Q1/3,

Furthermore, we show that the min- ima of this
potential are proportional to (1 - t*), where t = T/T_is the
reduced temperature. This contrasts with the behavior
observed in a nonrotating Bose gas, where the minima are

described by the factor (*%) with t, = T/Tc.(Here, sub-
and superscripts zero correspond to nonrotating Bose gas.)
We also demonstrate that when sub- stituting these minima
into m, and m,, they become imaginary in the symmetry-
restored phase, analogous to the behavior in a nonrotating
Bose gas. This issue is addressed by adding the thermal
masses that arise from one-loop perturbative contributions
to m, and m.. By following this method, we confirm that the
Goldstone theorem is satisfied in the symmetry-restored

phase.
(22 ]
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We then compute the vacuum part of the potential by
adding the appropriate counterterms and performing
dimensional regularization. Our findings extend the re-
sults from [43], where the vacuum contribution to the
effective action for a A@* theory was computed. We add this
potential to the classical and thermal parts of the potential,
minimize the resulting expression, and exam- ine how the
minima depend on temperature T for fixed angular velocity
Q. We show that, similar to the behav- ior observed in a
noninteracting Bose gas [30], rotation reduces the critical
temperature of the phase transition, which then increases
as Q rises. Additionally, by plug- ging these minima into the
corresponding expressions to m, and m, (or equivalently
mo and m_), we investigate the T dependence of o and ©
meson masses for fixed . As expected, in the symmetry-
restored phase, we find m_ = mm. This equality indicates
that at T_ the min- ima of the corresponding potential
vanish, suggesting a second-order phase transition, even in
the presence of rigid rotation.

Finally, we focus on the nonperturbative ring con-
tribution to the potential described above. We present a full
derivation of the ring potential in the presence of rotation.
Based on the findings in [43], we expect that the addition
of the ring potential will alter the order of the phase
transition. Our results indicate that when rotation is absent
(2 =0), adiscontinuous phase transition occurs at a specific
temperature. In contrast, when rotation is present (£ # 0),
the phase transition remains continuous. Furthermore, we
define a o disso- ciation temperature, denoted by Tdiss,
which is charac- terized by m_ (Tdiss) = 2Zmm (Tdiss) and
show that Tdiss is less than the critical temperature.

The organization of this paper is as follows: In Sec. II,
we introduce the rigid rotation in the Lagrangian density
of a complex scalar field in the presence of a finite chemi-
cal potential. We derive the corresponding free propaga-
tor, determine the full thermodynamic potential of this
model, and explore how rotation affects the spontaneous
breaking of global U(1) symmetry. In Sec. III, we focus on
the special case of 4 = 0 and systematically deter- mine the
full thermodynamic potential, which consists, apart from
the classical part, of a thermal and a vacuum contribution.
After examining the effect of rotation on the Goldstone
theorem, we add the nonperturbative ring contribution
to this potential, which is explicitly derived for the case of
a rotating complex scalar field. In Sec. 1V, the numerically
solve the corresponding gap equation for the full potential
with and without the ring potential. We investigate the
T dependence of the corresponding min- ima for fixed Q.
Additionally, we determine the T and Q dependence of
m_and m7, along with the o dissoci- ation temperatures.
Section V concludes the paper with a compact summary
of our findings. In Appendix A, we present the high-
temperature expansion in the presence of a rigid rotation.
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Notably, we apply a method intro- duced in [30] to sum
over £. Appendices B and C contain derivations of formulas
(IlI.27) and (1I1.34), while the derivation of (Il1.44) is
detailed in Appendix D.

From a broader physical perspective, this study
bears important implications for understanding rotating
quantum fluids—covering systems like the high-vorticity
quark-gluon plasma in heavy-ion collisions and the
superfluid cores of neutron stars (where interactions
dominate quantum behavior). By clarifying how rotation
regulates U(1) symmetry breaking, critical temperatures,
and Goldstone mode dynamics in interacting Bose gases, we
provide a theoretical framework to interpret experimental
signatures of rotation-induced phase transitions (e.g.,
modified condensate fractions or excitation spectra in
quantum gas experiments). Additionally, the (-dependent
scaling of Tc (Q"(1/3)) and the preservation of second-
order phase transitions under rotation offer new insights
for controlling quantum coherence in rotating systems—
relevant for quantum simulations of extreme astrophysical
environments or the design of rotation-tunable BEC-
based devices. Ultimately, this work bridges fundamental
field theory, condensed matter physics, and astrophysics,
advancing our understanding of the collective behavior of
strongly interacting quantum fluids.

II. Interacting charged scalars under rigid
rotation

A. The free propagator

We start with the Lagrangian density of a charged scalar
field

L=g"a" @x 0" @ -m? @*x @ - A(@* ¢)? (IL.1)
with the metric

1—r2(22 yQ -xQQ 0

| ya a1 o0 o
I =l xa 0 4 o (I1.2)
0 0o 0o 1

describing a rigid rotation. Here, m is the rest mass and 0 <
A < 1is the coupling constant, describing the strength of the
interaction. The spacetime coordinate is described by x* = (¢,
x,y, z) and r? = x? + y% More- over, ( is the constant angular
velocity of a rigid rotation around the z-axis. The above
Lagrangian is invariant un- der global U(1) transformation

Px) > e @(x), @*(x) - e ox(x), (I1.3)

with a a real constant phase. Plugging the metric into (I1.1),
we obtain

L=(90-in-1QL 2)¢|* - |[Vo|*-m?||*-A|*  (IL4)
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where the chemical potential p corresponding to the
global U(1) symmetry (I1.3) isintroduced. The z- component
of the angular momentum, L, is defined by L_=i(ydx - xdy).
To investigate the spontaneous breaking of U(1) symmetry,
we rewrite L in terms of real fields ¢p1 and ¢2 appearing in

¢ = 1/V(¢p1+i$2) and perform the shift @~ & + @ with

v .
O? = (Oj and v = const. We arrive at

L=

i

4
L, (IL5)

=0

with

L, = E(ﬂz —mz)v2 —%v‘*,

L, = —m*)ve, — uvd,p, — V3o, +iuQvl p,

(060,) +(202) = (Vo) =(Vo,)’
+(,le - mz)(golz + (022) + Zlu(wzaogol - ¢’180¢2)
—/1(3v2(p12 + v2¢22)

Lzz

1
2

—0*[(Lp,) +(Lp,) |- 2iQ[ (0,0, + 1)L, |
-2iQ[ (8,0, — 1o, )L, |

L, = -wo (o + o)

Ao, 2\?
L, = ——((01 + (02) (IL6)
4
The classical part of the Lagrangian, L, defines the clas-
sical (zero mode) potential

1 2 2 2 ﬂ'
V() = -£, :E(m — W +Zv‘* (11.7)

The free propagator arises from the quadratic term
L, in the fluctuating fields ¢, and ¢,. To derive the free
propagator in the momentum space, we use the Fourier-
Bessel transformation

(/)i(X) - én%k

el(wnr+£¢+kZZ)J£(kJ_r)¢l (k) (118)

with i=1, 2. The cylindrical symmetry is implemented
by introducing the cylinder coordinate system described
by x* = (t, x, y, z) = (t, r cos, r sing, z), with r the ra- dial
coordinate, ¢ the azimuthal angle, and z the height of the
cylinder. The conjugate momenta, corresponding to these
coordinates at finite temperature T, are given by the bosonic
Matsubarafrequency wn=2nnT, dis- crete quantum number
£, which is the eigenvalue of Lz, continuous momentum

1/2

k, and k.=Jk,|[=(kX +k})"" in cylindrical coordinates. The
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Bessel function J# (k| r) captures the radial dependence in
this transformation and t = it. Plugging (I1.8) into L, and
performing an integration over cylindrical coordinates,
according to

- i = _(‘:dr '([rdr ! d¢ ,L dz, (11.9)

we arrive after some manipulations at

V - - - -
- S R0, D0 0,00 2,06,
iﬁz 2 Zk K)o oo (I1.10)
with the free propagator
o< | (@O vel =i 2ule, +it0)
24(, +ilQ) (@, +ilQ) + @] - u*
(I1.11)

Here, o = k* + mi%>, i=1,2, with m;?(v) = 3Av?
+m? and m,?(v) = Av? + m? the corresponding masses
to two fields ¢ 1 and 2. In cylinder coordinate system,
we have k?>=k?+kZ. In Sec. IlI, we break the global U(1)
symmetry by choosing m? = —c? with ¢ > 0 and show that
after considering the quantum corrections, @2 become a
massless Goldstone mode.

A comparison with similar results for a nonrotating
charged Bose gas at T and p shows that while £Q is said
to play a role analogous to that of the chemical potential
u [23], the manner in which it is incorporated into the
free propagator and the thermodynamic potential differs
significantly (as discussed below).

B. The thermodynamic potential

To derive the thermodynamic potential V, corre-
sponding to this model, we follow the standard procedure
and define this potential by

T

v:—vlnz, (IL.12)

with

Inz = —%ln det(ﬂszl(k)). (I1.13) Let us first focus on In Z

with Z the partition function of this model. Plugging D¢ from (I11.11) into

(I1.13), we arrive first at

1
InZ = —EZZ/n

e=xtn,(,k

5 [(fke)z + (o, + iéQ)ZJ‘ (11.14)

with € given by

1/2
6 = (Ezf +1* + 4 E} +§M4) ) (1.15)
EkZ+ M2 , and
M? Ei(m2 +m2) SM? si(m2 —mz)- .16
S\ 2 )y 2\ 2 ( ' )
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Following standard steps, it is possible to show that

Inz = ——ZZ{In( [a)j + (5,? + EQ)ZD

e+n€k

.17
+In(,6’2 [a}j +(e,f —KQ)zD} (L17)
Performing the Matsubara sum with

z In((ZIZ'n)Z +772) = I]+2In(1—e_") (11.18)

n=—oo

we arrive at

|nz_——zzjdk{

e+/

+In(1—e7ﬁ @ j+|n( j} (11.19)

where the summation over k is replaced with the
inte- gration over k in the cylinder coordinate system,

v 2 kodk,
;av;jdk, with Idksj(£”)3.

(11.20)

Here, kL = |kL |. Using (II.12), the thermodynamic po-
tential V is given by

V = Vvac + VT, (11.21)

with the vacuum part
-1 b

V= Egjdk(ek + €y )5 (11.22)

and the matter (thermal) part
-le+1)
V= Ze D, J‘dk{ln(l -
+1n(1 e f‘VO*Q)) (11.23)

Adding V with V (v) from (IL.7), to include the zero
mode contribution, we obtain the full thermodynamic
potential V_,

1., v A o4 1
th—a(m % +ZV +§Zc:-[dk(€ +€k)

L ZZJ‘dK{In(l— (‘*”“)j

e=+/(#0

+In (1 _g M) )}

C. Spontaneous breaking of global U(1) symmetry

(11.24)

Let us consider the classical potential (I1.7). Assum- ing
m? > u?, the coefficient of v? in this expression is positive
and, as it turns out, VCl possesses one single min- imum at
7,=0 and the system is in its symmetric phase.
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In this case, mf(v _0) - mZ(V — o) = mZ,(S‘MZ =0 and fki 1S
given by
& =Nk +m’ T pu

. . ¥ 1 :
Here, m is a mass gap and ack=ek” —ck=24—. In Figur

(11.25)

1(a),e k" eis plotted for generic mass m=1MeV and chemical
potential x=0.6MeV(u<m),

In the symmetry-broken phase characterized by m? < p?,
however, extremizing V_ yields a maximum at va = 0 and
two minima at

_ 2 a2
Vs ==+ —ﬂ ml.
\ A

The masses m2(v-b)=3u*-2m> and M(v-b) =" Wwe
thus have M? = 2pi2 - m? and 6M? = u? - m? leading to

6 =K+ G - m*)F bk + Gyt —m?).
(I.26)
In Figure 1(b),c+ is plotted for generic «=11MeV and
m = 1MeV(u >m). As it is shown, whereas ¢k is quadratic
in k zlkl,ef{ ~o for k~o. This behavior indicates the

presence of a massless Goldstone mode. By expanding &
in the orders of k ~o, we obtain

2 2 5/”2 -m’ 2
= m + k )
223> -m*)?

/le_mz

Y | 1. (11.27)

According to these results, & and €. correspond to
phonon and roton modes in the symmetry-broken phase
m < u, respectively.

As it is shown in this section, /Q appears in the ther-
mal part of the effective potential VT from (I1.23) and does
not modify neither k=kl,ck~o nor the energy dispersion

(@ap<m (b) > m
3.0 35
25 3.0
20 ;g &
515 13 & 1_5
19 & 10
05 0.5f  Goldstone M98 )
ﬂ'%.o 0.5 1.0 15 20 O'Co.o Y= 1.0 15 20
k k

Figure 1: (color online). The k dependence of the energy dispersion €,k from (11.25)
and (11.26) in the U(1) symmetric phase (panel a) and the symmetry-broken phase

(panel b), characterized by p < m and p > m, respectively. As demonstrated, in the
symmetry-broken phase, there is a massless Goldstone mode. These findings
remain unchanged regardless of any rotation.
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< k- Hence, a comparison with analogous results for
nonrotating bosons [42] shows that rigid rotation has no
effect on the behavior of j =1 at k ~o.

D. Two special cases

In what follows, we consider two special cases 2 =0, = 0
and #0,u =0 :

Case 1: For the special case of noninteracting rotating
Bose gas with 1=0 and x=#0, we have m =m,=m,

Ef =K’ +m?, and SM=o. We thus have
6 = VK> +m* T u, (11.28)
=0,pu#

and therefore

1 -
Vtot |/1:0,;4¢O: E(mz - ,U2 )V2 + Zjd k{Ek}
0

1}
+T[In(1 _ e*/J’(Ek—,ueff)) + |n(1 _ e—ﬂ(Ekereff)))
(I1.29)

with u eff = u + Q. This potential is exactly the same
potential arising in [30]. Using this potential, the effect of
rotation on the BE condensation of a relativistic free Bose
gas is studied.

Case 2: Another important case is characterized by

A# 0 and u = 0. In this case, € k are given by
6 =K +m; =,
e :\¢E2+m3 =w.

Plugging (11.30) into (I1.24) and choosing u = 0 and m?
= —c? with ¢ > 0, the total thermodynamic po- tential is
given by

(11.30)

>

Vtot [A#0,u=0=V_ +V _ +VT, (IL31)
with the classical part
2 2 4
v =S A (11.32)
2 4
the vacuum part
1
Vvac - Ez.“dk (wl + (02), (1133)
4

and the thermal part

1 _
v, = EZ(V,+ -v),

iep

(11.34)

where
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Ve =TY [kIn(1-e 7@,

1#0

(IL35)

Here, wi, i =1, 2 are given in (11.30). Let us notice that in
(I1.35), the £ = 0 contribution is excluded, because the zero
mode contribution is already captured by Vcl from (I1.32).
It is possible to limit the integration over £

in V;‘E from (I1.35). Having in mind that the arguments
of In(1-eP«@ D) are to be positive, the summation over ¢ in
In(1-e*@ D) is over £ € (-0, -1] and in In(1 - e®@+D) js
over £ € [1, ) [30]. Performing a change ¢ — -£, we thus
have

V= Tijd%ln@ —e ) =y, (I136)
I=1
Hence, the final form of VT from (I1.34) reads
Vo= TZiJ‘dEln(l—e’ﬂ(“””U)). (1L.37)

i=1,2 (=1

III. Spontaneous breaking of global U(1)
symmetry in a rigidly rotating bose gas

A. The critical temperature of U(1) phase transition;
Analytical result

In this section, we study the effect of rigid rotation on
the spontaneous breaking of global U(1) symmetry in an
interacting charged Bose gas. Before starting, we add a new
term

Zo = %ng(gal +V)v, (II1.1)

to L from (IL5). This leads to an additional mass
term in the classical potential Vcl. We define a new mass

a* =c* +m?, which replaces c? in (I1.32). Minimizing the
resulting expression, the (classical) minimum of V  is thus
given by

Vo = I (111.2)

At this minimum, the masses of m;(v)=34v?>-c* and

m2(v) = Av> —¢” are given by

2

m; (v,)=3a> -c*,m;(v,)=a’-¢’ (111.3)

Form =0, we have m, =0 and @2 becomes a massless
Goldstone mode. The position of this (classical) mini- mum
changes, once the contribution of the thermal part of the
thermodynamic potential, VT, is considered. To show this,
we first define V. =V + VT and use the high-temperature
expansion of VT by making use of the results presented in
Appendix A. Considering only the first two terms of (A.13)
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and plugging the definitions oof m;(v) and m;(v) into it, the
high-temperature expansion of V, reads

2,2 3 4
Va(v,T,Q)z—a v 1_2/172' 5(3) . AV
2 arzQ 4
_2T%()_¢T¢@) (I1L.4)
Q 27°0Q
Setting the coefficient of v? equal to zero, the critical
tem- perature of global U(1) phase transition is determined,

13
a’r’Q
To=| 2722
’ (zmz)]

In [30], the BE transition in a noninteracting Bose gas

(1IL.5)

under rigid rotation is studied. It is shown that in nonrel-
ativistic regime Tc « Q%5 and in ultrarelativistic regime Tc
o QY% In the present case of interacting Bose gas, similar
to that noninteracting cases, the critical temper- ature
increases with increasing (.

Introducing the reduced temperature t = T/Tc, with Tc
= Tc (Q) from (III.5), and minimizing Va from (II1.4) with
respect to v, the new nontrivial minimum is given by

v (T,Q) = {(%(1 -t3)t<1, (11L.6)

(ot>1

When comparing with a similar result for a nonrotating
charged Bose gas [40], it turns out that the power of ¢ in
(I11.6) changes once the gas is subjected to small rotation.
In Sec. IV, we numerically study the effect of rotation
on the spontaneous breaking of global U(1) symmetry.
For this purpose, we employ a phenomenological model
that includes ¢ and © mesons, replacing ¢1 and ¢2 fields

in the above computation. We set mi(vo)=3wg-c*=
mZ and mi (Vo) = /IV(Z) -~ - m,zz with V the classical minimum
from (I11.2). Moreover, we choose mo in (I1I.1) equal to mmn.

For m_=400MeV and m =140MeV, we obtain

c= (%} 1/2 ~ 225 MeV. (1L.7)

1/2
2
Moreover, 81(02 +m,,) =265MeV. We also choose 1=0.5.

Using these quantities the function

AVa =Va (v, T,Q) — Va (0, T,Q))
azvz /1v"
=— = (1—t3)+—, I11.8
L3+ (118)

is plotted in Figure 2 at t = 0.6, 0.8 in the symmetry-
broken phase and t = 1.2 in the symmetry-restored phase.
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At t = 1 a phase transition from the symmetry-broken
phase to a symmetry-restored phase occurs. Let us notice,
that the effect of rotation consists of changing the power
of tin (II1.6) and (IIL.8) from t? to t. This is apart from the
Q dependence of the critical temperature Tc from (IIL.5)
(Figure 7).

The result indicates a continuous phase transition from
a symmetry-broken phase at t < 1 to a symmetry- restored
phase at t = 1. To scrutinize this conclusion, let us consider
the pressure P arising from Va from (II1.4).

It is given by P = —Va. Denoting the pressures below
and above Tc with P< (v, T,Q) and P> (v, T,Q1), we have P<

4 273 5 4
P_(vmin, T,0) =~ 2 + S 24(3) L2T 2C(S) N
22 270 20 4L
c’T3¢(3) 27°¢(5) a*
P>(0,T,Q)= _at
>(0T.0) 270 Q4 (11L.9)

Here, we have added a term —a* /4A to P< and P> in

22

order to guaranteeP_ (Vmin ,O,QJ =0 and P_= P> at the

the transition temperature T. At T = T, the pressure is
given by
Pc(vrznin’Tc’Q):Pc(O’Tc)Q)
a* ac’

C4A 4

a’r*Q*¢(5)
2’N[E3)F

(111.10)

For m0 =0 (or a=c), the first two terms cancel, resulting
in an increase in pressure as () increases. Moreover,

whereas the entropy (dP/dT) is continuous at
dP_

T=Tc,—
dT

_

(1IL11)
Tc dT

Tc

the heat capacity (dzP / dT2) is discontinuous

)]

onN_ o A~

AlVa x 10-3 (GeV4)

Figure 2: (color online). The v dependence of AVa from (l11.8) is plotted at t = 0.6,
0.8,1,1.2. Att < 1 the global U(1) symmetry is broken and AVa possesses nontrivial

minima at v2 . = a? (1 - t%)/A. At t = 7 the symmetry is restored and at t = 1 a single
minimum atv__= 0 appears (see (lII.6)).

in
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d’P ~ d*P.

<

dr* "

_9c*Ble(3)1
e [ 21/3 ﬂ4/3 /11/392/3

(111.12)

Hence, according to Ehrenfest classification, this is
a sec- ond order phase transition. In comparison to the
non- rotating case [40], although rotation alters the critical
temperature, the order of the phase transition remains
unchanged. It is noteworthy that the discontinuity in the

heat capacity decreases with increasing ().
Plugging at this stage, min from (IIL.6) into

2 2 2 .
m%(v) = 3}Lv2 ~¢ and m5(v) = Av” - ¢™ we arrive at

m, (vmin) = 3—a2(1—t3)—cz, t<1

c?, t>1

m, (vmin) = a’ (1 - t3) -c?,

-c?, t<1
(1I113)

Hence, as it turns out, at t = 1, after the symmetry is

2 2
restored, M and M, become negative. Contrary to our
expectation, for a = ¢, i.e,, in the chiral limit m0 = 0, the
. . . 2 .
Goldstone boson ‘2 acquires a negative mass -C t3 in
the symmetry-broken phase at t < 1. In what follows, we
compute the one-loop tadpole diagram contributions to
masses m1 and m2. We show, in particular, that by con-

sidering the thermal mass, the one-loop corrected mass of
the Goldstone mode ‘2 vanishes in chiral limit m0 = 0.

B. One-Loop Corrections to m' (v) and m? (v)

To calculate the one-loop corrections to m, and m,, let
us consider L, from (II.4). Three vertices, corre-sponding to

2
. 2, 2 . .
three terms in 54 = —Z(% +(P2) ,are to be considered in

this computation (Figure 3),

'
— 1 —
b (111.14)
_42 - _4
1 1
_E(/)fwzz - Y

They lead to two different tadpole contributions to
1 1
Q| T( 1(x) 1(y)) Q) and (Q| T(Iz(x)'z(y)) | Q) that

correct m, and m, perturbatively. They are denoted by Ilij
with the first index, i = 1;2, corresponds to whether ' 1 or
' 2 are in the external legs, and the second index j = 1;2 to
whether the internal loop is built from ' 1 or ' 2 (Figure 4,
where Tlij are plotted). Hence, according to this notation,
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. . 2 2 :
the one-loop perturbative corrections to m; and m; arise
from

mf(v) - mf(v) + IT11 + 112,

mz(v) - mi (v) + 1121 + 1122 (II1.15)
At this stage, we introduce
(T,Q,m)=T Y > [dk D(w,,@) (11L.16)
N=—oo [=—0
with free boson propagator
D)=, (111.17)
(o, - i1Q) + :

arising from (I11.11) with = 0. Here, £ -kl +kZ+m{ and i=

1; 2. Using this notation, it turns out that
M11=3M1;MM12=12;

M22 =302 ;MM21=11. (I11.18)

Hence, the perturbative corrections of masses are given
by

2 2
mz(v) - m2(v) + 310, + 11

2 2
m5 (v) - m3(v) + 310, + 11 (1I.19)

To evaluate II, from (II1.16), we follow the same steps
as presented in [30]. The Matsubara summation is eval-
@uated with

1
2nD, (@n,oi) = Twl_[nb(a)/+€(2)+nb(a),’—£(2)+ﬂ

(111.20)

where nb(!) =1=(efw-1) is the BE distribution func-

Figure 3: Three vertices arising from L4 from (I.4). Dashed and solid lines
correspond to @1 and 2 fields, respectively.

Iy = 311,

Figure 4: The tadpole diagrams contributing to the one-loop corrections of m,? and

m,2. Dashed and solid lines correspond to @1 and ¢2 fields, respectively.
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tion. In what follows, we insert (II1.20) into (II1.16) and
focus only on the matter (T and Q2 dependent) part of

- nb(a),+e€Q)

ITi, HI. :—Ze +X00ldk (111.21)

Having in mind that in nb(li+£‘Q), we must have
ef(wi + Q) -1 > 0, it is possible to limit the summation

over. We thus obtain $\Pi_{i}*{\mathrm{mat}}=\sum_{\
ell=1}"{\infty} \int d \tilde{k} \frac{n_{b}\left(\omega_

{i}+\ell \Omega\right)}{\omega_{i}}$. (111.22)

Let us notice that in the term including nb (! i Q)
an additional shift — - is performed. To carry out the
summation over " and eventually the integration over k
and kz, we use

np (e +zQ)=Tdi/n(1—e—ﬂ(“’i MQ)) (111.23)

oj

and arrive first at

o q _ .
gmat _ 7 ¥ dk_'i_m(l_e ﬁ(wﬁm)) (111.24)
! (=1 @90

Using, at this stage, (A.2), we then obtain

1 d eleg?
me = 7Yy (dk L 9 e
! ;;I o, dw j

(111.25)

The summation over * can be performed by making use
of (A.4). Assuming Q < 1 and using (A.5), [li(mat)i reads

L 2ak € e

mat
Ili =
Jl-l i

(111.26)

Following the method presented in Appendix B, we fi-
nally arrive at

AT?¢(3) |

Hmat —
! 27°Q

(111.27)

The first term in (II1.27) is analogous to the thermal
mass AT? /3 in a nonrotating interacting Bose gas [40] and
the ellipsis includes higher order corrections of ITi(mat)i in
Bmi.

At high temperature, it is enough to consider only the
first term in (I11.27), which is independent of mi. We thus
have

l—Imat l—Imat AT3£(3)

S (111.28)

and therefore
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P<(VminyTyQ) = *its + 2T3§(3) + 2T52§(5) t )
24 27°Q Q 4L
P>(0,T,Q) = 2T3ZC @) 2T 524(5) a* (111.29)
Q Q LA

with t = T/Tcand Tc from (II1.5).

C. Goldstone theorem

Let us consider again the result presented in (II.13).
Adding the contribution of thermal mass (II1.28) to

mf( ,,,,,,) and m (vm,,,) according to (III.29), we obtain

3
2¢ (1 t3)+3m2[1—2;], t<1,

2
my (Vmin) =
cz(t3 1)+m0t3 t>1,
2
mg, t<1,
m%(Vmin ) (I11.30)

2
c (t3 )+m0t3 t>1,

where a® = ¢ +m is used. Assuming ™o = %m, van- ishes
at t < 1. This indicates that the Goldstone theorem is valid

when the thermal mass corrections to = and m> are taken

into account. Moreover, we observe that mf(vmin) = mi(vmin)
in the symmetry-restored phase at t > 1. In Figure 5, the t

dependence of 2 vmin and m2 vmin from (I11.30) is plotted.

These masses are identified with m> and mizr, respectively.
We use ¢ = 0.225GeV from (II1.7) and mo = 0.140GeV

, as de- scribed in Sec. III B and observe that in the sym-
metry- broken phase, at t < Lm_ decreases with increasing
temperature, while Mz remains constant. As expected, at
symmetry-restored phase at t > Lm_ and mz are equal
and increase with increasing temperature. It is noteworthy
that the effect of rotation, apart from affect- ing the value of

GeV2

Figure 5: (color online). The t dependence of m,> and m,?2 from (I1.30) at vm(2)min
from (I11.6) is plotted. These masses are iden- tified with o and m meson masses.

In the symmetry-broken phase, at t < 1, mo decreases with increasing temperature,
while mmt remains constant. At symmetry-restored phase at t = 1, mo and mm are
equal and increase with increasing t.
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the critical temperature Tc from (II1.5), consists of changing
the power of t in (I11.30) from ¢ to t* (see [40]).

D. Vacuum potential

In what follows, we compute the contribution of the
vacuum part of the thermodynamic potential, Vvac from
(I1.33) to Vtot. Let us first consider the summation over £ €
(-00, +00) in this expression. This sum is divergent and need
an appropriate regularization. To perform the summation
over £, we use

2rmae

=1im[1 + 22 e j=1+lim

X—0 — x>01 @ X
=1 + divergent term. (Il1.31)
Neglecting the divergent term, we obtain
Vvac=§jdl_€ (o, +@,) (11.32)

The above regularization guarantees that rotation does
not alter Vvac. To perform the integration over k1 and kz,
let us consider the integral

A 1/2
# ~
I(m) = = [dk (k2+m2) (111.33)
with ¢ = 3-d. Here, d is the dimension of spacetime and
4 denotes an appropriate energy scale. Later, we show that

4 can be eliminated from the computation. Utilizing

a9k 1
)dy = A
(D(m n) I(Zﬂ)d (k2+m2)n
1 r'(n-d/2) 1 (I11.34)

:(4”)d/2 r(n) (mz)”*d/z

to perform a d dimensional regularization, we obtain
for ®(m,3 - €,-1/2), (In Appendix C, we derive (II.24) in
cylinder coordinate system).

__ m* (2 3 m?
I(m) = 64”2£8+2 Ve ln(lﬂwzj]

The vacuum part of the thermodynamic potential
(IT1.32) is thus given by

(11.35)

Vvac =1(m1) + [(m2)

Lmem(a,, ), ot
T 647 \e P ve 647\ 4mu®

(111.36)
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In what follows, we regularize this potential by following
the method presented in [43]. To do this, we first define

Vb=V, +V__+VCT, (111.37)

with V| from (I1.32) with c* replaced with a* = ¢* +m¢and

V.. from (II1.36). The counterterm potential is given by

Av2 Bv4
+
2 4

Yer= e (111.38)

The coefficients A and B are determined by utilizing two
prescriptions

vl . oY
8\;) |V2_0’ 6v2b

o

=m?(v,) (111.39)

2
Vo

2
Here, Vo from (1I1.2) is the classical minimum and

mf (vo) from (II1.3). Let us note that the first prescription

guar- antees that the position of the classical minimum
does not change by considering the vacuum part of the
poten- tial. The term C in (II.38) includes all terms which
are independent of v. Using (111.39), we arrive at

m 3¢’A c*Aye 5miA c*A
2 87 4tn* 8x* 2n’s

+ c’2 1 miz +3CZ}b In| 207 +3m, +_32m0
167> | 4zu® ) 167> L

g_MaA 5%y, 52> 2% 1 Mg
2a> 8x> 4rle 1677 Lom®

A:

912 2¢? +3m?
ln{ . J (111.40)

167> Lo it®

Plugging A and B from (111.40) into VCT from (I11.38) and
choosing

C= ¢t ct In my \ ct In 20" +3m,
167%¢ 6477 4#;12} 647 L
3c* _0475
647> 327 (I11.41)

vthe counterterm potential from (II1.38) is determined.
These counterterms eliminate the divergent terms in the
vacuum potential, as expected. The total potential Vb from
(I11.37) is thus given by

Ve a’v* vt mpv? 3c*av* 5miAv?
’ 2 4 4 87 167
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_152%v* +m§ﬂ,v4
64x>  8a’ . (111.42)
mi m ma m
In—— |+ -2.In =2
647r 2¢’+3m} | 6472 | m

As mentioned earlier, the energy scale # does not appear
in the final expression of Vb. Additionally, a nonzero moO is
necessary to specifically regularize the last term in Vb from
(111.42).

E. Ring potential

We finally consider the nonperturbative ring poten-
tial Vring. As mentioned in the previous paragraphs, the
Lagrangian is written in terms of ¢ 1 and @2, three type of
vertices appear in the A(@p* @) model (Figure 3). We thus
have four different types of ring diagrams:

- Type A: A ring with N insertions of I12 and N
propagators D (wn,w 1) propagators, V4

ring’

- Type B: A ring with N insertions of I1 1 and N
propagators D (wn,w?2) propagators, V®

ring’

- TypeC: Aringwithrinsertions of [12 and s insertions
of I1 1 with N propagators D¢ (wn,w2), V¢

ring”

Here,r=1andr+s=N.

- Type D: A ring with r insertions of I1 1 and s

inser@tions of [12 with N propagators D¢ (wn,w 1),

D
ring”

Similar to the previous case,r=1andr +s=N.

Here, I1i (T,2, mi) and D¢ (wn,wi), i = 1, 2 are defined

in (II1.16) and (II1.17), respectively. In Figure 6, these
different types of ring potentials are demonstrated. The
Bfull contribution of the ring potential is given by

rlng Z rlng

I={A,D} (111.43)

Following standard field theoretical method, it is possi-
ble to determine the combinatorial factors leading to the
standard form of the ring potential [40]. In Appendix D, we

outline the derivation of V' g 1=4 - D. They are given by

Figure 6: Ring diagrams of Type A, B, C, and D contributing to the nonperturbative
ring potential Vring. Dashed and solid lines correspond to ¢1 and @2, respectively.
They are given by the expressions from (l11.44).
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Vfﬁw T2 nZ,ZI d; NOZ;%(—Hzol W,
Vfllang T2 2 Idkl\lozoz,i,(—lth)'\’
x[(—aﬁ(— Ny,

g xjak 5§ (enlten!

n,? N=2r=1 N!

o (=11, (-11,)"" D}

(111.44)

Here, the notation Di = D¢ (wn,wi) is used. To evaluate

VA and VB _ |
ring’

ring

we introduce a simplifying notation

0

Vn(r:g/):_*z.[d z _HiDj )N
N=2

(111.45)

Here, (i, j) = (2, 1) and (i, j) = (1, 2) correspond to Vr(A)

ring and VB respectively. Plugging Dj from (II1.17) into

ring’
(II.45) and focusingonn =0 as well as # 0 contri- butions
in the summation over n and ¢, we arrive first at

DTS AN ﬂ 2)-N N
ViD=T> [dk>" ()™ (11;)
/=1 N=2 N

(111.46)

with u] = k + kZ + m] ~ 202 . Plugging then

(k,,z -N _ J' dt tN-te-m’tg—(k} +k3)tge”Q?t

(N )7 (111.47)

into (II1.46), the integration over kL and kz can be
car- ried out by making used of (A.9). To limit the
summation over ¢ from below, we use the fact that the
summand is even in #. To perform the integration over

k1l and kz, we use the Mellin transformation of (“jzj—N

(U,-IZ -N_ )J‘ dt tN-1g-m’te-(kK +k3)tge*’t

(N
(111.48)

and (A.9) to arrive first at

© _1)N+1 HN )
YUsf) = ( dt N-512g-mit|( )

(111.49)

where
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/(Q)Eie“ o't (111.50)

/=1

To evaluate the summation over ¢, we expand e? Q? t in
a Taylor expansion and obtain

Q) z(QZt)

with

¢(-2r) (111.51)

iﬂz’:;’(—Zr), ¢ (2) the Riemann zeta function. Since

/=1
for r € N, we have {(—2r) = 0, the only nonvanishing
contribution to the summation over r arises from r = 0. We
1 .
thus use ¢(0) = -5 to arrive at

-1

1(Q)= ! (I11.52)
Plugging this result into (111.49), using

j dt tN-3emit=(mz?) (V3 F(N —%) (1IL53)

and performing the summation over N, we arrive at

Vn(nlgl)—izlm[z(mf + 1"[1.)3/2 —2m]3 - 3ij,} (111.54)
We arrive eventually at
A B
)1) i ’2)
Vring = Vein g,Vring =V [1,,7. J (II1.55)
To evaluate VCring and VDring, we introduce
N | |
Vn(':g])__i J'dkzz( 1) (N f') (f' 1)
N=2r=1
- N
(l 0 _ © N ()N (N-r)l(r-1)!
= Z [dk ¥ ¥ —F—
Vg ne  N=2r-1 N! (111.56)
xnln’]“ NDN

Here, (i, j) = (2, 1) corresponds to VCring and (i, j) = (1, 2)
to VDrmg. Plugging Di from (I11.17) into (I1I1.56) and fo cusing

onn =0 and £ # 0 contributions in the summa- tion over n
and ¢, we obtain

ring

V) szd i 1 (- r)l(r ik

/=1

(111.57)

where u]? is defined below (111.46). Following, at this stage,
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the same steps as described in previous paragraph, we
arrive first at

v MT )M (N=r)!(r-1)!
" 167 S5 NTT(N)

S M2 NN (vl
Vg 167312 N20 2 N! A(N)

«(N-3/2)11f N —r(z(miz)—N

To perform the summation over N and r, we use the
relation

(111.58)

iif(N r)= zf(N N)+Z Z F(N,r) (111.59)
We thus obtain
virdg vy (111.60)
with
3 r(N-3/2)rN [m? N
.M g N TV ()
_1671'3/2N—2 N F(N)
STz 2 N (v-nle-)!
167[3/2r N=r1 N r(N)
N
N N[22
XF(N—3/2)HiHH] (mi)

(1IL61)

For V (i), the summation over N can be carried out and
yields

v<f>=274[z(mf ST —amp - 3m,.H,} (11L.62)

As concerns V@, we perform the summation over N and
arrive at

() 5 & () *r(r-1/2) 51
Y r=1 r I(r+2) i Hj(mi )

H .
x3F, (1,2,r—1/2);(r+1,r+2);——i , (111.63)
i

where pFq(a;b;z) is the generalized hypergeometric
function having the following series expansion

(a )k (a )k Z

oF(@b )Z(b)k @), Kl (11L64)

Here,a = (al, --,ap),b= (by -+, bq) are vectors

with p and q components.
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Moreover, (a1 )k = T'(ag+k) / T'(aj)) is the Pochhammer
symbol. For our purposes, it is suffi- cient to focus on the
contribution atr = 1 in (I11.63).

. T I1.
V(”’)l,f =—[2 m? +11. P> —2m? - m.H}—'
= ur (m J) i —3mll; m, (111.65)

Having in mind that the one-loop contribution to the
self- energy Ili, which is determined in Sec. III B is of order
0(A), the contributions corresponding to r = 2 are of order
0(A2) and can be neglected at this stage. We thus have

Cc

1,2 (2 1)’
Vying =V =V Vi
ring r g + o1

+o[,12),vrl,-?,g=vr("” 12 y@,y02)] o) (166
r=1

The final result for Vring is given by plugging Vr(I)ring,
[=A, -, D from (IIL.55) and (111.65) into (I11.43),

T 2 3/2
Vring = M—”{[z(ml +H2) —2m13—3m11'[2

+
N

+
N

+
N

—_— —_— —_— —_— —_—
=
+
i
[ay

(11L.67)

Focusing only on the first perturbative correction to Ili
and using ITi(mat)i, i = 1, 2 from (I11.28), the above results
is simplified as

\/rlnngLZZZI:Z(le + Hmat )3/2 — Zml3 _ 3miHmati|
i=1

(11.68)

3
where [Tt =[TPat=[]]at =L§(3)

111.69
2720 ( )

F. Summary of Analytical Results in Sec. IlI

In this section, we summarize the main findings. Ac-
cording to these results, the total thermodynamic po-
tential of a rigidly rotating Bose gas, Vtot, including the
classical potential Vcl from (11.32) with c2 replaced with a2,
the vacuum potential (11.33), the thermal part (11.34), Band
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the ring potential (111.43) is given by
Vtot = VCl + VVac + VT + Vring,

with

V. - azv2 /1v4

o T2 T
2.2 2,2 2

Vvac o +3021V2+5m01v 1512v4+m0/1v4’
4 872 1672 64712 8a2

217¢(5) AT3v*¢((3) c*T3£(3)
VT 2 2 20
=Q /a9 27°Q

Vring z+L22 z(mi+l'lmat) —2m.3—3,mi1'lmat

T 2 3/2 I

(11.70)

2 2 2
Here, 22 - ;2 . mé,mf(v) — 32 -2 and m>(v) = av* —c?, and

t 2
™ = 213£6) 12772, We notice that the logarithmic terms

appearing in Vvac from (111.42) are skipped in (II1.70).

In the next section, we study the effect of rotation on
the formation of condensate and the critical temperature
of the global U(1) phase transition. To this purpose, we
compare our results with the results arising from the
full thermodynamic potential of a nonrotating Bose gas.
BAccording to [40], itis given by (Subscripts (0) correspond
to=0.)

o \_ (0) (o
Vt( )_Vcl+vvac+VT +V in 9

oot g (11.71)

where V_ and V V., and V © gread

vac are given in (I11.70), while

2 2.2 242
NONE: T4 AT T (11172
T 45 6 12 '
and
(o) ... T , o
V,-,'ng~—4”§(2( m|+Ho)3/2—2m,—3m,Ho) (111.73)
with the one-loop self-energy correction

mat 2 .
Iy~ = AT/ 3[40] and miz,i = 1,2 given as above.

IV. Numerical results

In this section, we explore the effect of rotation on
different quantities related to the spontaneous breaking

of global U(1) symmetry. To this purpose, we consider
different parts of Vtot from (II1.69).

In Sec. Il A, we derived the minimum of the potential
Vaincluding Vcl and VT. We arrived at v* _ (T,Q) from

(0)
(I11.6). Replacing VT with Vr from (II1.72) for a
nonrotating Bose gas and following the same steps leading
from (1I1.4) to (II1.6), we arrive at the critical temperature
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2 \1/2
ONECH (IV.1)
A
and the T dependent minima
PG
Vmin(M=", (1-12) th<1 (IV.2)
(o, to=1

with the reduced temperature t, = T/T and T from
(IV.1). In Figure 7, vm(2)min is plotted for Q = 0 [see (IV.2)]
and Q # 0 [see (I1I.6)] as function of the corresponding
reduced temperature t0 and t. The difference between
these two plots arises mainly from different exponents of
the corresponding reduced temperatures t0 and t in (IV.2)
and (1IL.6). The reason of this difference lies in dif- ferent
results for the high-temperature expansion of T for Q= 0
[see (111.72)] and VT for Q7 0 [see (I11.70)].

Let us consider Vtot - Vring = Vcl + V_+ VT from
(I11.69). By minimizing this potential with respect to v, and
solving the resulting gap equation,

%(Vtot - Vring ) i =0

v,

(IV.3)

min

itis possible to determine numerically the T dependence the
minima, denoted by v-min (T,Q), for fixed Q. To this purpose,
we use the quantities a = 0.265 GeV, ¢ =~ 0.225 GeV,and A =
0.5 given in (IIL.7). In Figure 8, the T/T  dependence of ¥
min is demonstrated for fQ = 0.1, 0.2, 0.3 (dashed, dotted,
and dotted-dashed curves). The results are then compared
with the corresponding minima for a nonrotating Bose gas
(red solid curve). The latter is determined by minimizing
the combination Vt(oot)—vr[;;J, according to
1
d _
(40 o

(Iv.4)
with v ($)from (IIL.71). In both cases, T, ©_ o.6816ev is
the critical temperature of the spontaneous U(1) sym-
metry breaking in a nonrotating Bose gas. (The critical
temperature is the temperature at which the condensate v
min vanishes.)

These results indicate that rotation lowers the critical
temperature of the phase transition. However, as shown in
Figure 8, Tcincreases with increasing Q. Itis also im- portant
to note that this same trend is observed in a noninteracting
Bose gas under rigid rotation [30].

To answer the question whether the transition is con-
tinuous or discontinuous, we have to explore the shape
of the potential, the value of its first and second order
derivatives at temperatures below and above the critical
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- Q=0
— Q#0 |
15 20

Figure 7: (color online). The t0 [t] dependence of v (T) and v2_ (T,Q) for
nonrotating (Q = 0) and rotating (Q = 0) Bose gas [see (I1.6) and (IV.2)]. For Q =

0 and Q # 0, the reduced temperature t0 or t is defined by t0 = T/T® and t = T/T,
respectively.

—- BQ=01

04r e Q=02
. Q=03
%03 Q=0
@

0
00 02 04 06 08 10 12
/19

Figure 8: (color online). The T/T © dependence of ¥ min is plot- ted for 0 = 0, 0.1,
0.2, 0.3. For Q # 0 and Q = 0, v-min (T) arises by solving the gap equation (IV.3)

and (IV.4), respec- tively. The temperature T is rescaled with T = 0.681 GeV, the Q
independent critical temperature of a nonrotating Bose gas. It turns out that Tc < T ©
and for BQ = 0, Tc increases by increasing BQ.

temperature, Tc. Using the numerical values for the set
of free parameters a, ¢, and A as mentioned above, the
transitions turns out to be continuous not only for Q0 = 0 but
also for Q7 0.

To explore the effect of the ring potential on the tem-
perature dependence of the condensate v-min, we solved
numerically the gap equation

dViot -0 (1V.5)
dv "7 .
min
and
dv®ot
—— =0 (Iv.6)
dv

Vmin

for a rotating and a nonrotating Bose gas, respectively.
The corresponding results are demonstrated in Figure 9.
Because of the specific form of the ring potentials Vring
and V @'n from (111.70) and (II1.73), including in particular

(mi2+“ma‘)3 /2, there is a certain value of v below which the
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potential is undefined (imaginary). Let us denote this value
by ¥*. In both rotating and non- rotating cases v, = 0.319
GeV. As it is shown in Figure 9, the minima decrease with
increasing temperature and converge towards *. Let us
denote the temperature at which o, = v, with T for Q a
0and T,® for A =0.For Q=0, T,®=0.300 GeV, and as it is
shown in Figure 9, the transition to v is discontinuous (red
circles). For Q # 0, however, T, < T,© and increases with
increasing B(), similar to the results presented in Figure 8.
Moreover, in contrast to the case of Q = 0, the transition to
o_for all values of BQ 7 0 is continuous.

In Figure 10, the phase diagram T - is plotted for two
cases: The blue solid curve demonstrates T_from (IIL5)
arising from V_ + VT. Red dots denote the Q) depen- dence
of Tc arising from the potential Vtot - Vring. A comparison
between these data reveals the effect of Vvac in increasing
T. Apart from the Q dependence of Tc, the Q dependence
of T* is demonstrated in Figure 10. It arises by adding the
ring contribution to V, + VT + Vvac, as described above.
According to the results demonstrated in Figure 10,
considering Vring decreases Tc. But, simi- lar to T, T, also
increases with increasing ). It should be emphasized that
the transition shown in Figure 8 is a crossover, since V* #0.

In Sec. III B, the masses ml.z, i =1, 2 including the one-
loop correction are determined [see (II1.29)]. Identi- fying
ml2 with mu2 and mz2 with mnz, we arrive at

mz(v) = 3/1v2 - c2 + a2t3,
i (IV.7)
mfzt(v):ﬁvz—c2 +a%t3.

Using the data for v;in arising from the solution of the
gap equation (IV.3) and (IV.5), and evaluating mi (vz) and

m/zr (VZ) from (IV.7) at 173".” for a fixed fQ, the t=1/7,

dependence of m? and mj is determined. In Figure 11(a),
the dependence of mi(ﬂfm) and m Z(Vr%”.n) with vmin

arising from (IV.3) on the reduced tempera-ture t =T [ Tc
is plotted for fixed SQ = 0.1. Here, the contribution of the
ring potential isnottaken into ac- count. Hence, a continuous
phase transition occurs with the critical temperature

- 2
Tc ~0399GeV for Q = 0.1GeV . In contrast, in Figure 11(b),m”

and mi are determined by plugging the data of V
minarising from (IV.5), with Vtotincluding the ring potential.
Hence, the difference between the plots demonstrated in
Figs. 11(a) and 11(b) arises from the contribution of the
nonperturbative ring potential. As we have mentioned
above, when the ring potential is taken into account, the
data demonstrated in Figure 9 do not describe a true
transition, since ‘7* is not zero. The reduced temperature
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Figure 9: (color online). The T/T © dependence of ¥ min is plot- ted for B0 = 0, 0.1,
0.2,0.3. For Q # 0 and Q = 0, v-min (T) arises by solving the gap equation (IV.5) and
(IV.6), respec- tively. Here, 7, = 0.319 GeV and T, = 0.300 GeV. It turns out that T, <
T,© and for BQ =0, T, increases by increasing BQ.

0.1 / . L] Te
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Figure 10: (color online). The Q dependence of the transition temperatures
is plotted. The blue solid line is the transition temperature T¢ ¢ 01/3 from
(111.5). It arises from V, + VT, as described in Sec. Ill A. Red dots correspond
to the critical temperatures Tc, arising from Vtot - Vring. Green diamonds
denote T, arising from Vtot.

{a) O = 0.1 GeV from V-V
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Figure 11: (color online). (Panel a) The t = T/Tc dependence of m_*(v-min) and m_*(v-min)
from (IV.7) is plotted for Q = 0.1 GeV. The data of me
(IV.3) corresponding to Vtot — Vring. The critical temperature Tc for Q = 0.1 GeV is Tc ~

arise by solving the gap equation

0.399 GeV. As expected from the case of nonrotating Bose in the symmetry-restored

phase at t> 1, m > = m *. (Panel b) The t* dependence of m _*(v-*) and m *(v-*) from (IV.7)

is plotted for Q = 0.1 GeV. The data of ¥ min arise by solving the gap equation (IV.5),
corresponding to Vtot which includes the nonperturbative ring potential. According to
Figure 10, for Q = 0.1 GeV, we have T* ~ 0.278 GeV. At t > 1, m > — m > = 2AV*(2)*, with
V, = 0.319 GeV from Figure 9 and L =0.5.

in Figure 11(b) is thus defined by t, =T/T,, where, according
to the data pre- sented in Figure 10T _~0.278GeV for Q =0.1.

Let us compare the results demonstrated in Figure
11(a) with that in Figure 5. In both cases, before the phase
transition at t < 1,mfr decreases with increasing t. Moreover,
whereas in Figure 5, M? remains constant, it slightly
decreases once the Vvac contribution is taken into account.
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After the transition, at t < l,mi becomes equal to Mzn and

they both increase with increasing t. It is straight- forward
to verify this statement using equation (IV.7). Given that,
in this case, the minima of the potential at t>1 are zero, it

follows that both masses are equal, specifically m? (0) = m? (0)
, once we substitute vmin =0 into (IV.7).

This behavior is expected from the case of ) = 0 and
in the framework of fermionic Nambu-Jona-Lasinio (N]JL)
model: As noted in [45], in the symmetry-broken phase,

mi_ >m2. As the transition temperature is approached,

mi decreases, and at a certain dissociation temperature
Tdiss, the masses m, and m_become de-generate. This
temperature is characterized by m, (Tdiss) 2 = m_ (Tdiss).
(Iv.8)

As it is described in [45], ¢ mesons dissociates into two
pions because of the appearance of an s-channel pole in
the scattering amplitude 7 + 7 = 7 + 7 . In this process a @
meson is coupled to two pions via a quark triangle. In the
symmetry-restored phase, at t > 1,m _ becomes equal to mz .
They both increase with increasing T [45,46].

In Table 1, the ¢ dissociation temperatures are listed
for Q =0,0.1,0.2,0.3GeV. The data in the second (third)

column correspond to Tdiss (Tg iss) for the case when

Vmin is the solution of (IV.3) [(IV.5)] for Q # 0 and (IV.4)

[(IV.6)] for Q = 0. Comparing Tdiss and Td* iss with Tc
*

and T, shows that T diss < TC and similarly Tqjss < T,

The property T diss # TC is because we are working
with mz # 0. Let us notice that, as aforementioned, the
o dissociation temperature is originally introduced in a
fermionic NJL model [45]. In this model, nonvanishing mn
indicates a nonvanishing quark bare mass m , and choosing

Mg #0 implies a crossover transition charac- terized by

Tdiss # Tc. It seems that in the bosonic model studied in
the present work, a nonvanishing pion mass leads similarly
to T diss # Tc.

Thebehavior demonstrated in Figure 11 (a) changesonce
the contribution of the ring potential is taken into account
Asitis shown in Figure 11 (b) in the symmetrybroken phase

Table 1: 0.2, 0.3 GeV is compared with the critical temperature Tc and crossover
temperature T*. In the second column, the data arise from the solution of the gap
equation (IV.3) and (IV.4). In the third column, the data arise from the solution of the
gap equation (IV.5) and (IV.6). In both cases the dissociation temperature is lower
than the transition temperatures.

Tdiss [Tc] in GeV Td(*)diss [T*] in GeV

0 0.584 [0.681] 0.220 [0.300]
0.1 0.322 [0.399] 0.210[0.278]
0.2 0.418 [0.502] 0.271[0.358]
0.3 0.480 [0.576] 0.316 [0.416]
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at t_<1,m_ decreases slightly with T while mn increases
with T Moreover in contrast to the case in which Vring is not
taken into account m_and mm are not equal at t 21 This
observation highlights the ef fect of nonperturbative ring
contributions on the relation between m_and mn mainly
in the symmetry restored phase. This behavior is directly
related to the fact that the effect illustrated in Figure 9 is a
crossover once the ring contribution is considered. Plugging
u__ into (IV.7) the masses of o and n mesons are given by

m%—(u*):yu%—c2 +a2t3

IV.9

m%(u—*):iu%—cz +a2t3 ( )

Their difference is thus given by m(zr(u —%) - '",2[(“ —%) = uuf

and remains constant in t This fact can be observed in
Figure 11 (b) at t* >1.

V. Summary and conclusions

In this paper, we extended the study of the effects of
rigid rotation on BE condensation of a free Bose gas in [30],
to a self-interacting charged Bose gas under rigid rotation.
In the first part, we considered the Lagrangian density of
a complex scalar field 4 with mass m, in the presence of
chemical potential p and angular velocity . The interaction
was introduced through aA(# * #) term. This Lagrangian is
invariant under global U(1) transfor- mation. To investigate
the spontaneous breaking of this symmetry, we chose a
fixed minimum with a real com- ponent u, and evaluated
the original Lagrangian around this minimum to derive a
classical potential. Then, we applied an appropriate Bessel-
Fourier transformation to determine the free propagator
of this model, expressed in terms of two masses m1 and
m2, corresponding to the two components of the complex
field. These masses depend explicitly on u,A, and m, and
played a crucial role when the spontaneous breaking of
U(1) symmetry was consid- ered in a realistic model that
includes o and T mesons. Using the free boson propagator of
this model, we derived the thermodynamic potential of self-
interacting Bose gas at finite temperature T. This potential
consists of a vac- uum and a thermal part. Along with the
classical poten- tial, this forms the total thermodynamic
potential of this model Vtot from (I1.24). This potential is

expressed in terms of the energy dispersion relation Eli{
from (I1.15), and explicitly depends on 1Q. A novel result
presented here is that, although 1Q appears to resemble

a chemical potential in combination with ei in Vtot, the

chemical potential p affects ei in a nontrivial manner. The
effec-tive chemical potential peff = p + 1Q appears solely in
a noninteracting Bose gas under rotation (see the special
case 1 in Sec. II D and compare the thermodynamic po-
tential with that appearing in [30]).
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For A,u # 0, we explored two cases u > m and p < m. The
former corresponds to the phase where U(1) symme- try is
broken, while the latter describes the symmetry- restored
phase. By expanding the two branches of the energy
dispersion relation around k ~ 0 in the symmetry- broken

phase, we identified ei and e k™ as phonon and roton,
with the latter representing a massless Goldstone mode.
Upon comparison with analogous results for a nonrotating
and self-interacting Bose gas, we found that rigid rotation

does not alter the behavior of eli{ at k ~ 0. This is mainly
because rotation appears in terms of 1Q within Vtot, rather

than directly affecting eli{.

In the second part of this paper, we examined the
effect of rigid rotation on the spontaneous breaking of
U(1) symmetry in an interacting Bose gas at u = 0 (see
Sec. III). In this case, where m? < 0, we replaced m? with
-c?, where ¢ > 0. By introducing an additional term to
the original Lagrangian, we defined a new mass, a* = ¢ +
m 2 We demonstrated that the minimum of the classical
potential is nonzero, indicating a sponta- neous breaking
of U(1) symmetry. We then addressed the question about
the position of this minimum, specif- ically its dependence
on T and (, after accounting for the thermal part of the
effective potential combined with the classical potential.
To investigate this, we performed a high-temperature
expansion of the thermal part of the potential, utilizing
a method originally introduced in [30]. This approach
enabled us to sum over the angular mo- mentum quantum
numbers ¢ for small values of (), al- lowing us to derive
both the critical temperature of the phase transition Tc and
the dependencies of the mini- mum of the potential on T
and Q. At this stage, we have T A3, which is in contrast
to the T ® oc A"'/2 for a nonrotating Bose gas. In addition, T,
o Q /3, Let us remind that the critical temperature of a BEC
transi- tion for a noninteracting Bose gas in nonrelativistic
and ultrarelativistic limits are T, o< Q*° and T, « Q'/*, re-
spectively [30]. This demonstrates the effect of rotation in
changing the critical exponents of different quantities in
the symmetry-broken phase.

We defined areduced temperature t="T/Tc, and showed
that in the symmetry-broken phase, the minimum men-
tioned above depends on (1-t%), while for a nonrotating
Bose gas this dependence is (1-t,*), where t, = T/T ©. In
the symmetry-restored phase, this minimum vanishes.
This indicates a continuous phase transition in both non-
rotating and rotating Bose gases. Plugging these minima
into m ?*(v) and m,*(v), it turned out that at t > 1, i.e,, in the
symmetry-restored phase m' and m? are imaginary. Since,
according to our arguments in Sec. IlI, m? is the mass of a
Goldstone mode, we expect that in the chiral limit, i.e.,, when
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m, = 0, it vanishes in the symmetry- broken phase at t < 1.
However, as it is shown in (111.13), m,* < 0 in this phase.

To resolve this issue, we followed the method used in
[40] and added the thermal part of one-loop self-energy
diagram to the above results. In contrast to the case of
nonrotating bosons, where the thermal mass square is
proportional to AT? for rotating bosons it is proportional
to AT3/Q. To arrive at this result, a summation over ¢
was necessary. This was performed by utilizing a method
originally introduced in [30]. Adding this perturbative
contribution to miz, i=1,2att<1andt=>1, we showed that
the Goldstone theorem is satisfied in the chiral limit [see
Sec. 111 C].

In Secs. II D and III E, we added the vacuum and
nonperturbative ring potentials to the classical and ther-
mal potentials. The main novelty of these sections lies in
the final results for these two parts of the total potential,
specifically the method we employed to sum over . Ac-
cording to this method the vacuum part of the potential
for a rigidly rotating Bose gas is the same as that for a
nonrotating gas. We followed the method described in
[43] to dimensionally regularize the vacuum potential. As
concerns the ring potential, we present a novel method
to compute this nonperturbative contribution to the ther-
modynamic potential. In particular, we summed over £
by performing a {-function regularization. In Sec. III F, we
presented a summary of these results.

In Sec. IV, we used the total thermodynamic poten- tial
presented in Sec. III to study the effect of rotation on the
spontaneous U(1) symmetry breaking of a realistic model
including o and m mesons. Fixing free parameters m,m,
and A, and identifying m, and m, with the me- son masses
mo and mm, we obtained numerical values for c and a (see
Sec. III A). First, we determined the T de- pendence of the
minima of the total thermodynamic po- tential, excluding
the ring contribution. According to the results presented
in Figure 8, rotation decreases the critical temperature of
the U(1) phase transition. Additionally, it is shown that
Tc increases with increasing (). In [30], it is shown that
the critical temperature of the BEC in a noninteracting
Bose gas under rotation behaves in the same manner.
This phenomenon indicates that rotation enhances the
condensation. Recently, a similar result was observed in
[47], where it is demonstrated that the inter- play between
rotation and magnetic fields significantly increases
the critical temperature of the superconducting phase
transition.

To explore the effect of nonperturbative ring poten-
tial, we numerically solved the gap equation correspond-
ing to the total thermodynamic potential and determined
its minima Umin. Because of the specific form of the ring
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potential, there was a certain ¥x through which all the
curves v-min (T,Qf), independent of the chosen Qf, con-
verge (see Figure 9). Moreover, the transition for Q = 0
turned out to be discontinuous, while it is continuous for
all Q7 0. As it is demonstrated in Figure (10), T* increases
with increasing Q.

Finally, we determined the T dependence of the masses
m_ and m_mesons for a fixed value of Q. To achieve this,
we utilized (IV.7) along with Ymin, which is derived from
Figs. 8and 9. The plot shown in Figure 11(a), based on
the total potential excluding the ring contribu- tion, is
representative of the T dependence of mo and mm (see e.g.,
[46]). However, when we include the ring contribution, the
shape of the plots changes, especially at T > T*. The reason
is that considering the ring potential changes the order
of the phase transition from a second order transition to
continuous (for # 0) or discontinu- ous (for Q = 0) a
crossover. In this context, we numer- ically determined
the o dissociation temperature Tdiss, which may serve as
an indicator for type of the transi- tion into the symmetry-
restored phase. We showed that Tdiss < T, and Tdiss < Tx,
as expected from a crossover transition [46].

It would be intriguing to extend the above findings, in
particular those from Sec. I1], to the case of nonvanish- ing
chemical potential. In [48], the kaon condensation in a
certain color-flavor locked phase (CFL) of quark mat- ter
is studied at nonzero temperature. This is a state of matter
which is believed to exist in quark matter at large densities
and low temperatures. Large densities at which the color
superconducting CFL phase is built are expected to exist in
the interior of neutron stars. One of the main characteristic
of these compact stars, apart from densities, is their large
angular velocities. It is not clear how a rigid rotation, like
that used in the present paper, may affect the formation
of pseudo-Goldstone bosons and the critical temperature
of the BE condensation in this nontrivial environment. We
postpone the study of this problem to our future publication.
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