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Abstract
Equations that are polynomial in variables and their derivatives appear throughout algebraic geometry, 

dynamical systems, and the theory of diff erential equations. This article presents a unifi ed analytic calculus for 
obtaining asymptotic expansions and simplifi ed representations of solutions to such equations. The approach 
relies on the systematic use of power geometry, including truncated equations, power transformations, logarithmic 
transformations, and normalizing coordinate changes. The calculus applies uniformly to algebraic equations, 
ordinary diff erential equations, autonomous systems, and partial diff erential equations. This expanded version 
provides a structured methodological framework, clarifi es the stepwise procedure, and illustrates its relevance 
through conceptual applications. The methods presented here support the systematic construction of asymptotic 
solutions and enable the analytical treatment of nonlinear problems that often resist classical techniques.

Introduction

Polynomial-type equations involving variables and their 
derivatives arise in a wide range of mathematical and physical 
models. Examples include algebraic varieties near singularities, 
nonlinear ordinary differential equations (ODEs), autonomous 
dynamical systems, and certain classes of partial differential 
equations (PDEs). Analytical methods for solving such 
equations often rely on special representations, asymptotic 
expansions, or geometric interpretations of differential orders 
[1].

To address these challenges, an analytic calculus has 
been developed that enables the systematic construction of 
asymptotic solutions. This calculus is based on the concepts of 
power geometry, truncated equations, and carefully selected 
coordinate transformations. The central idea is to reduce a 
complex polynomial-type equation to a hierarchy of simplifi ed 
equations whose solutions approximate the behavior of the 
original system.

Purpose of the study

The purpose of this article is to present a structured and 
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unifi ed methodology for solving equations of polynomial type 
analytically. In particular, we aim to:

• Describe each step of the calculus in a clear procedural 
manner,

• Explain the role of truncated equations and normalizing 
transformations,

• Show how power geometry generalizes classical order-
based methods,

• Highlight conceptual applications across algebraic, 
ODE, and PDE settings.

Signifi cance

Traditional tools such as Newton’s polyhedron or standard 
asymptotic methods are often limited when confronted with 
nonstandard orders of derivatives or nonlinear perturbations 
[2,3]. Power geometry expands these classical techniques 
by allowing more general relationships between orders of 
variables and derivatives, thereby enabling new asymptotic 
forms [4], including:
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• Power expansions with non-integer exponents,

• Expansions with oscillatory, trigonometric, or elliptic 
coeffi cients,

• Solutions with nonstandard derivative order gaps.

The analytic calculus used in this work was developed in 
earlier studies on nonlinear analysis, truncated equations, 
parametric expansions, and power geometry [5-14].

Structure of the paper

This paper is organized into four main sections:

• Section 2 describes the analytic calculus and its 
methodological foundations.

• Section 3 presents conceptual applications to various 
equation types.

• Section 4 discusses advantages, limitations, and 
structural implications.

• Section 5 concludes with a summary of contributions 
and future directions.

Methods: A unifi ed calculus based on power geometry

The analytic calculus consists of fi ve sequential steps 
applicable to any polynomial-type equation. These steps are 
summarized below.

Step 1: Selection of truncated equations

A truncated equation consists of the 
dominant monomials from the original equation.
To determine them, one constructs a supersupport—a geometric 
representation that includes each monomial’s exponent vector 
and coeffi cient magnitude.

For algebraic equations, these points form an Adamar 
polyhedron, whose faces determine admissible truncated 
equations [10]. For differential equations, the geometric 
structure additionally incorporates derivative orders.

Step 2: Power and logarithmic transformations

Each truncated equation is simplifi ed using [11,12]:

• Power transformations y = xαz,

• Logarithmic coordinate changes x = et,

To convert the equation into a form with a simple leading-
order solution.

This transformation may be repeated several times until a 
solvable representation is reached.

Step 3: Construction of a leading-order solution

The simplifi ed truncated equation yields a primary 
asymptotic form. This may include:

• Polynomial-type solutions,

• Fractional power solutions,

• Trigonometric or elliptic coeffi cient functions (in 
higher-level power geometry).

Step 4: Perturbation and normalizing transformation

The leading-order solution is substituted into the full 
equation. If the resulting perturbation contains a linear part, 
a normalizing transformation is applied to construct the full 
asymptotic expansion.

If no linear part exists, a new truncated equation is extracted 
and the process iterates.

Step 5: Higher-level power geometry

Classical power geometry assumes

ord (y′) = ord(y)-1.

This is the zero level.

Higher-level power geometry removes this restriction and 
allows arbitrary differences between the orders of successive 
derivatives. As a result, one may obtain expansions whose 
coeffi cients are:

• Trigonometric functions,

• Elliptic functions,

• Periodic or quasiperiodic functions.

This generalization produces entirely new families of 
solutions inaccessible to classical methods [7,8,13,14].

Applications to different classes of equations

Algebraic equations

For an algebraic equation

f(X) =∑aQXQ = 0

Each monomial defi nes a point in the supersupport space.

Truncated equations derived from the faces of the Adamar 
polyhedron allow the study of singularities that Newton’s 
polyhedron cannot resolve [6].

This enables the derivation of:

• Parametric expansions near singular points,

• Asymptotic representations of algebraic varieties,

• Multivariable solutions.

Ordinary differential equations

For a single ODE or an autonomous system, the calculus 
provides:

• Power expansions near equilibrium points,
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• Expansions with oscillatory coeffi cients (using higher-
level techniques),

• Asymptotic descriptions in multidimensional systems 
[8,11,12].

Partial differential equations

Although less developed in current literature, the same 
approach can be extended conceptually to PDEs [9,15]:

• Defi ning generalized supersupports in higher-
dimensional order spaces,

• Applying power geometry to mixed partial derivatives,

• Constructing multi-parameter expansions.

This represents a promising direction for future research.

Discussion

That distinguish it from traditional asymptotic and 
symmetry-based methods [1-4]:

1. Generality: applicable to algebraic, ODE, system, and 
PDE settings.

2. Flexibility: permits nonstandard orders and nonclassical 
solution forms.

3. Constructiveness: provides explicit algorithms and 
transformations.

4. Extensibility: higher-level power geometry offers new 
asymptotic structures.

Limitations include:

• The need for computational support for complex 
transformations,

• Increased geometric complexity for PDEs,

• Sensitivity to the choice of appropriate truncated 
equations.

Recent software developments, however, greatly support 
automation of these procedures.

Conclusion

This article presents a structured and expanded exposition 
of an analytic calculus for solving polynomial-type equations 
involving variables and derivatives. Through power geometry, 
truncated equations, and coordinate transformations, the 
methodology unifi es and extends classical asymptotic 
techniques. The framework is broadly applicable across 
algebraic, differential, and dynamical systems and provides 
powerful tools for investigating nonlinear phenomena.

Future work includes formalizing supersupport structures 

for PDEs, automating transformation sequences, and 
integrating these methods with symbolic computation systems.
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