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Abstract

Vortex rings represent canonical axisymmetric vortex structures in fl uid mechanics, and understanding their dynamic behaviors is crucial for elucidating the generation, 
transport, and dissipation of vorticity. This paper introduces a novel vortex ring dynamics modeling method predicated on a linear mass-spring-damper system, thereby 
simplifying the vortex ring's motion to the dynamic response of a three-dimensional linear system. By discretizing the surrounding fl uid into a fi nite number of particles 
and constructing a three-dimensional linear system to represent the encompassing fl ow fi eld, the model accurately replicates vortex ring trajectories documented in 
established literature, achieving an average fi tting error of less than 9%. The fi ndings demonstrate that, with a damping coeffi  cient of fv 0, the model effectively reproduces 
the closed trajectory characteristic of vortex rings in superfl uids. Conversely, with fv > 0, it accurately captures the damped spiral motion observed in conventional 
fl uids. This linear model circumvents the inherent complexities of traditional nonlinear approaches, offering an alternative analytical framework for investigating vortex 
ring dynamics, substantially reducing computational demands, and highlighting its potential for engineering applications in areas such as vortex ring control and fl uid 
mechanical design.

Introduction

Vortex rings are fundamental structures in fl uid 
mechanics, widely observed in industrial processes and 
natural environments. Investigating their generation and 
evolution is crucial for understanding fl uid dynamics and 
advancing industrial applications. Since 1857, numerous 
scholars, including Helmholtz [1], Rankine [2], and Taylor [3], 
have extensively studied vortex rings in both classical fl uids 
and superfl uids [4], proposing various theoretical models to 
elucidate their formation and evolution. These models are 
primarily based on the Navier-Stokes (N-S) equations [5], 
with scholars developing nonlinear descriptions through the 
NS equations, which are then solved numerically. However, 
the inherent nonlinearity of fl uid dynamics results in highly 
complex theoretical models and substantial computational 
costs, hindering precise prediction and control of large-scale 
vortex ring motion.
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To study the global evolution of vortex rings, Kaden [6] 
simplifi ed the vortex ring into a spiral curve. This approach, 
based on geometric feature analysis, signifi cantly reduces 
computational complexity and improves effi ciency. However, 
it does not fully account for dynamic processes of the fl uid, 
limiting its applicability to qualitative explanations rather than 
broader fl uid dynamics research.

However, our decomposition analysis reveals a new avenue 
for understanding vortex ring dynamics. Upon examining 
Kaden and other scholars’ [7] simplifi ed model, we observed 
that the two-dimensional (2D) vortex ring can be described 
as a damped oscillatory spiral. Further decomposition reveals 
that this 2D spiral can be split into two one-dimensional (1D) 
curves, both exhibiting damped oscillation characteristics. 
Drawing parallels between fl uid dynamics and mechanical 
systems, we note that in control theory, complex systems are 
often simplifi ed as linear mass-spring-damper systems. When 
subjected to an impulse input, the system’s response manifests 
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as a 1D damped oscillatory curve. The similarity between these 
curves suggests that the underlying fl uid behavior may be 
analogous to a linear mass-spring-damper system.

Based on this insight, we propose a novel linear vortex 
ring model, where the moving fl uid is treated as a rigid body 
with fi nite mass, while the surrounding fl uid is modeled as a 
three-dimensional (3D) linear mass-spring-damper system. 
To validate the model, we fi rst employed 2D and 3D linear 
mass-spring-damper systems to fi t experimentally obtained 
vortex ring trajectories from prior studies, as shown in Figure 
1, achieving high fi tting accuracy. Furthermore, in the zero-
damping limit, such linear modeling successfully reproduced 
the characteristic motion of vortex rings in superfl uids. The 
results demonstrate that our linear model effectively explains 
vortex ring generation mechanisms.

T he analogy between fl uid dynamics and linear mass-
spring-damper systems introduces a novel paradigm to 
fl uid mechanics. This approach signifi cantly simplifi es 
computational procedures while preserving accuracy, thereby 
establishing an innovative modeling framework for vortex ring 
dynamics research. 

Modeling of vortex

Consider the classical one-dimensional linear second-
order mass-spring-damping system, which comprises a mass 
block of mass (m), a spring with an elasticity coeffi cient k, and 
a damper with a damping coeffi cient f v (Figure 2(a)). When 
a force f (t) is applied to the mass block, it induces reciprocal 
motion in the x-direction, resulting in a displacement x(t). The 
presence of damping causes the amplitude of this motion to 
gradually decrease, indicating that the mass block undergoes 
oscillatory motion with a decaying amplitude. The governing 
equation for this second-order system can be expressed as 
equation (1):

2

2
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d x t dx tm f kx t f t
dt dt
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If the input f(t) is an impulse force, the displacement x(t) of 
the mass block can be determined by equation (2):
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The oscillatory motion path of a mass block subject to a unit 
impulse force can be determined by analyzing the system's 
dynamics. Consider a mass block with a weight of m 1kg and a 
spring with an elasticity coeffi cient of k 20N/m. As illustrated 
in Figure 2(b), under undamped conditions (red curve, 
damping coeffi cient fv = 0), the mass block exhibits vibrations 
of constant amplitude. In contrast, under damped conditions 
(blue curve, damping coeffi cient fv = 0.6N.s/m), the motion is 
characterized by oscillations that gradually decay over time. 
When comparing the trajectory of the mass block with that of 
a vortex ring, it becomes evident that the mass-spring damped 
system undergoes one-dimensional motion along a straight 

line, whereas the vortex ring moves within a two-dimensional 
plane with a diminishing radius. This observation leads to the 
hypothesis that a mass block constrained in a plane by a spring-
damping system operating in two directions simultaneously 
would exhibit a trajectory akin to that of a vortex ring in a fl uid. 
The conceptual setup of this system is depicted in Figure 3(a).

Assuming this, the control equation for the trajectory of 
mass block m is expressed as equation (3):
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              (3)

Under the simplest computational conditions, with fx(t) and 
fy(t) as impulse forces, the displacement in both directions is 
given by Eq. (4):
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Figure 1: Schematic diagram of the model.
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Figure 2: Schematic diagram of a one-dimensional mass-spring damping system 
and mass-block trajectory. (a) Schematic diagram of the mass-spring damping 
system (b) Displacement time curve of the mass block.
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Assuming a mass block with a weight of m = 1 kg and a 
spring elasticity coeffi cient of k = 16 N/m in both directions, 
the trajectory in a two-dimensional plane can be determined 
using the given formula, with phase angles Ф1 = 0 and Ф2 = 
0.3π. As depicted in Figure 3(b), the trajectory of the undamped 
mass block forms an approximately elliptical closed curve, 
represented by the red curve, where the damping coeffi cients 
fvx = fvy = 0. This trajectory bears resemblance to the vortex loop 
trajectory observed in superfl uid dynamics. Conversely, when 
damping is introduced, with damping coeffi cients fvx = fvy = 
0.6 N·s/m, the motion trajectory evolves into a spiral with a 
decreasing diameter, as shown by the blue curve in Figure 3(b). 
This behavior, characterized by oscillations that decay over 
time, aligns with the motion law of vortex ring trajectories in 
conventional fl uids, thereby providing preliminary validation 
for our hypothesis.

To further validate the reliability of the theoretical model, 
we employed the model described by Eq. (3) to fi t the vortex 
ring trajectories presented in PULLIN [7], specifi cally those 
depicted in Figure 4(a) and Figure 4(c), which serve as 
reference vortex ring curves. Notably, the vortex ring curves 
in Figure 4(a) exhibit unstable perturbations in the front 
section, resulting in data instability; thus, these data points 
were excluded from the fi tting process. Given the uncertainty 
associated with the vortex ring size and the initial point of the 
vortex ring trajectory, it is hypothesized that a scaling factor 
applies to the vortex ring size, and the depicted trajectory 
represents a period following the generation of the vortex ring. 
Consequently, scaling coeffi cients kx, ky, along with the leading 
time term t0, are introduced into the vortex ring trajectory 
fi tting. At this juncture, the second-order linear model of the 
vortex ring is reformulated from Eq. (4) into the format of Eq. 
(5):
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The phase angles Ф1 and Ф2 are calculated according to 
equation (6):
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According to Eq. (6), it has been established that the fi tted 
curve initiates concurrently with the target curve, and the 
vortex ring trajectory is modeled using MATLAB. The fi tting 
procedure is detailed as follows:

The total length of the reference vortex loop curve is 
calculated through integration, and this length is divided into 
n = 500 equal segments. The node coordinates (x0i, y0i) for each 
sub-segment are recorded;

Utilizing Eq. (5) and Eq. (6), the fi tted vortex ring 
trajectories are generated using the ergodic method under 
various combinations of parameters kx, ky, t0, ζ, and ωn;

The length of the fi tted vortex loop trajectory is truncated 
to match the length of the reference vortex loop curve. This 
truncated section is then divided into n = 500 equal segments, 
and the node coordinates (x1i, y1i) for each segment are 
documented.

The fi tting errors between the fi tted vortex ring curves and 
the reference vortex ring curves are compared. The set of fi tted 
parameters that yields the smallest fi tting error is considered 
the optimal fi tting result.

fv k

m

k

fv

 

 
(a) (b) 

Figure 3: Schematic diagram of the 2D mass-spring damping system and mass-
block trajectory. (a)Schematic diagram of a two-dimensional mass-spring damping 
system (b) Displacement time curve of a mass block.

Starting fitting process

Calculate reference curve total length; Divide into n=500  
segments and record nodes ( x0i, y 0i)

Traverse parameter  combinations (  kx, ky, t0, ζ, and ω n) using 
Eqs. (5) and (6)

Generate fitted trajectory  and 
truncate to match  reference 

length

Divide fitted curve into  n=500 
segments  Record node 

coordinates  (x1i, y1i )

Calculate fitting error  S(x, y)  and 
�  using Eq.(7)

Error minimal?

No

Save parameters as optimal fit

Yes

Output results and error metrics

End process

Figure 4: Flowchart of vortex ring fi tting process.
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We have also prepared a fl owchart, as shown in Figure 4.

Given the complexity of the vortex loop curve and the 
non-uniformity of x-coordinates and y-coordinates between 
the reference curve and the fi tted curve, traditional error 
calculation methods, such as the least squares method and the 
goodness-of-fi t, are not applicable. Instead, the fi tting error is 
computed by evaluating the difference in the average distance 
of the xy-coordinates between corresponding nodes of each 
segment of equal length. This trajectory fi tting error, S(x, y), 
and the percentage of error, Δ, are calculated as shown in Eq. 
(7).

2 2
0 1 0 1

1

0 0
1 1

( ) ( )
( , )

2
( , ) 100%

( ) / (2 )

n

i i i i
i

n n

i i
i i

x x y y
S x y

n
S x y

x y n



 

  


  




 

             (7)

The optimal fi tting trajectory of the vortex ring, determined 
by the smallest S(x,y) and the smallest Δ, is depicted in Figure 
5(b) and Figure 5(d), representing the best fi tting result of the 
vortex ring trajectory using the specifi ed calculation method. 
In Figure 5(b), the fi tting results correspond to the vortex ring 
trajectory shown in Figure 5(a), with fi tting parameters kx = 
0.200, ky = 0.260, t0 = 0.850s, ζ = 0.042N.s/m, and ωn = 0.610rad/s. 
The average distance difference of the xy-coordinates for each 
segmented node is 0.0054m, resulting in an error percentage of 
Δ = 8.96%. Similarly, Figure 5(d) illustrates the fi tting results 
for the vortex ring trajectory depicted in Figure 5(c), with 
fi tting parameters kx = 0.390, ky = 0.390, t0 = 0.120s, ζ = 0.040N.s/m, 
and ωn = 0.490rad/s. Here, the average distance difference in 
the xy-coordinates for each segment node is 0.0064m, with an 
error percentage of Δ = 7.67%. 

The high degree of similarity and closeness between the 
fi tted vortex ring curves and the reference curves, along with 
the minimal fi tting distance error between corresponding 
segmented points, effectively demonstrates the validity and 
accuracy of the theoretical model proposed in this paper.

Following the fi tting of the vortex ring trajectory, an analysis 
of the vortex ring's velocity characteristics is performed using 
this model. Specifi cally, the linear velocity components (vx, vy), 
the resultant velocity (vr), and the angular velocity (ω) of the 
vortex ring can be derived from Eq. (5) and are expressed in 
Eq. (8). Based on the established fi tting model and Eq. (8), the 
velocity distributions of these components along the vortex 
ring trajectories, specifi cally for the cases shown in Figure 4(b) 
and Figure 4(d), are presented in Figure 6.
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As depicted in Figure 6, the linear velocity (vx, vy & vr) of 
the vortex ring exhibits an oscillating and decaying trend. 
The gradual decrease in the vortex ring radius is consistent 
with the dissipative effects of fl uid resistance acting on it. 
Conversely, the angular velocity ω of the vortex ring maintains 
a stable oscillatory process, with its amplitude appearing 
unaffected by the vortex ring's changing radius. This stability 
in angular velocity is fundamentally linked to the conserved 
or quasi-conserved nature of the vortex ring's circulation [8]. 
Consequently, the amplitude of the angular velocity does not 
decay, which highlights the ability of the proposed theoretical 
model to accurately describe this aspect of the vortex ring's 
velocity characteristics [9,10].

  
(a) Adapted from PULLIN[7] (b) 

 
 

(c) Adapted from PULLIN[7] (d) 

Figure 5: Second-order linear model fi tting results for vortex loop paths. (a) Vortex 
loop trajectory1 of PULLIN[7] (blue curve is the fi tted segment) (b) Fitting results 
to the vortex loop trajectory of Figure 3(a). (c) Vortex loop trajectory2 of PULLIN[7] 
(blue curve is the fi tted segment) (d) Fitting results to the vortex loop trajectory of 
Figure 3(c).

  
(a) Linear velocity in fig4(b) (b)Angular velocity in fig4(b) 

 
(c) Linear velocity in fig4(d) (d)Angular velocity in fig4(d) 

Figure 6: Velocity results of vortex rings in Figure 5.
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In the previous analysis, we developed a two-dimensional 
vortex ring second-order linear model, Eq. (3), by considering 
the system input force f(t) as an impulse force. To extend this 
model to a three-dimensional vortex ring, the model equations 
are presented in Eq. (9):

2

2

2

2

2

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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             (9)

The second-order linear model for a 3D vortex ring, based 
on Equation (9), is applied to the vortex ring trajectories 
described in the works of Chevalier [11] (Figure 7(a)) and 
Scheeler [12] (Figure 8(a)). Due to the absence of specifi c 
coordinate data in these papers, the trajectories are fi tted based 
on similar features. In the analysis of the vortex ring trajectory 
depicted in Figure 7(a), an attenuated vortex ring curve is 
observed in the yz plane, with the trajectory progressing along 
the x-axis. Refl ecting these characteristics, the parameters for 
the yz direction are set as ωn = 2 and ζ= 0.2, while the excitation 
described in Equation (10) is applied in the x direction. By 
substituting into the model of Equation (9), the vortex ring 
trajectory is fi tted, resulting in the fi tting equation provided 
in Equation (11). The fi tting outcome, illustrated in Figure 7(b), 
demonstrates a curve with trajectory characteristics closely 
resembling those of the vortex ring curve in Figure 7(a).
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Figure 8(a) illustrates the trajectory of a vortex ring in a 
superfl uid, characterized by a closed curve in the xy-plane and 
exhibiting periodic sinusoidal fl uctuations along the z-axis. 
To capture the dynamics of this vortex ring trajectory, the 
excitation force described in Equation (12) is employed. By 
substituting the model from Equation (9), we derive a fi tting 
equation, presented as Equation (13), that aligns with the 
vortex ring trajectory. The results of this fi tting process are 
depicted in Figure 8(b), where the fi tted curves demonstrate 
trajectory characteristics similar to those of the vortex ring 
curves shown in Figure 8(a).
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This underscores the validity and precision of the second-
order linear model of vortex rings proposed in this study, 
suitable for fi tting 2D and describing 3D vortex ring trajectories.

Summary

This study introduced a vortex ri ng linear theory model 
predicated on a linear mass-spring-damper system. The 
model effectively characterized the kinematic behavior of two-
dimensional vortex rings and was subsequently extended to 
successfully describe the trajectory characteristics of three-
dimensional vortex rings. These fi ndings suggest that a 
vortex ring model based on a linear mass-spring system can 
effectively represent the physical behavior of vortex fl uids in 
three-dimensional space. Notably, this model applies to both 

Figure 7: Three-dimensional vortex ring fi tting results with vortex ring trajectory of 
Chevalier [11].

 
(a) Adapted from Scheeler[12] 

 
(b) 

Figure 8: Three-dimensional vortex ring fi tting results (a) Vortex ring trajectory of 
Scheeler [12] (b) Fitting results to the vortex ring trajectory of Figure (6a).
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conventional fl uid vortex rings and undamped superfl uid vortex 
rings. This approach signifi cantly simplifi es the mathematical 
modeling of vortex ring characteristics in fl uids, thereby 
broadening the methodological approaches within vortex 
ring theory and offering substantial value for engineering 
applications related to fl uid properties.
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