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Abstract

Vortex rings represent canonical axisymmetric vortex structures in fluid mechanics, and understanding their dynamic behaviors is crucial for elucidating the generation,
transport, and dissipation of vorticity. This paper introduces a novel vortex ring dynamics modeling method predicated on a linear mass-spring-damper system, thereby
simplifying the vortex ring's motion to the dynamic response of a three-dimensional linear system. By discretizing the surrounding fluid into a finite number of particles
and constructing a three-dimensional linear system to represent the encompassing flow field, the model accurately replicates vortex ring trajectories documented in
established literature, achieving an average fitting error of less than 9%. The findings demonstrate that, with a damping coefficient of fv 0, the model effectively reproduces
the closed trajectory characteristic of vortex rings in superfluids. Conversely, with fv > 0, it accurately captures the damped spiral motion observed in conventional
fluids. This linear model circumvents the inherent complexities of traditional nonlinear approaches, offering an alternative analytical framework for investigating vortex
ring dynamics, substantially reducing computational demands, and highlighting its potential for engineering applications in areas such as vortex ring control and fluid
mechanical design.

To study the global evolution of vortex rings, Kaden [6]
simplified the vortex ring into a spiral curve. This approach,
based on geometric feature analysis, significantly reduces

Introduction

Vortex rings are fundamental structures in fluid

mechanics, widely observed in industrial processes and
natural environments. Investigating their generation and
evolution is crucial for understanding fluid dynamics and
advancing industrial applications. Since 1857, numerous
scholars, including Helmholtz [1], Rankine [2], and Taylor [3],
have extensively studied vortex rings in both classical fluids
and superfluids [4], proposing various theoretical models to
elucidate their formation and evolution. These models are
primarily based on the Navier-Stokes (N-S) equations [5],
with scholars developing nonlinear descriptions through the
NS equations, which are then solved numerically. However,
the inherent nonlinearity of fluid dynamics results in highly
complex theoretical models and substantial computational
costs, hindering precise prediction and control of large-scale
vortex ring motion.

computational complexity and improves efficiency. However,
it does not fully account for dynamic processes of the fluid,
limiting its applicability to qualitative explanations rather than
broader fluid dynamics research.

However, our decomposition analysis reveals a new avenue
for understanding vortex ring dynamics. Upon examining
Kaden and other scholars’ [7] simplified model, we observed
that the two-dimensional (2D) vortex ring can be described
as a damped oscillatory spiral. Further decomposition reveals
that this 2D spiral can be split into two one-dimensional (1D)
curves, both exhibiting damped oscillation characteristics.
Drawing parallels between fluid dynamics and mechanical
systems, we note that in control theory, complex systems are
often simplified as linear mass-spring-damper systems. When
subjected to an impulse input, the system’s response manifests
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as a 1D damped oscillatory curve. The similarity between these
curves suggests that the underlying fluid behavior may be
analogous to a linear mass-spring-damper system.

Based on this insight, we propose a novel linear vortex
ring model, where the moving fluid is treated as a rigid body
with finite mass, while the surrounding fluid is modeled as a
three-dimensional (3D) linear mass-spring-damper system.
To validate the model, we first employed 2D and 3D linear
mass-spring-damper systems to fit experimentally obtained
vortex ring trajectories from prior studies, as shown in Figure
1, achieving high fitting accuracy. Furthermore, in the zero-
damping limit, such linear modeling successfully reproduced
the characteristic motion of vortex rings in superfluids. The
results demonstrate that our linear model effectively explains
vortex ring generation mechanisms.

The analogy between fluid dynamics and linear mass-
spring-damper systems introduces a novel paradigm to
fluid mechanics. This approach significantly simplifies
computational procedures while preserving accuracy, thereby
establishing an innovative modeling framework for vortex ring
dynamics research.

Modeling of vortex

Consider the classical one-dimensional linear second-
order mass-spring-damping system, which comprises a mass
block of mass (m), a spring with an elasticity coefficient k, and
a damper with a damping coefficient f (Figure 2(a)). When
a force f (t) is applied to the mass block, it induces reciprocal
motion in the x-direction, resulting in a displacement x(t). The
presence of damping causes the amplitude of this motion to
gradually decrease, indicating that the mass block undergoes
oscillatory motion with a decaying amplitude. The governing
equation for this second-order system can be expressed as
equation (1):

dx(0) PRO)

e 7 +hx(t) = /(1) ®

If the input f(t) is an impulse force, the displacement x(t) of
the mass block can be determined by equation (2):

—Cw,t

x(t) = J——-Nmmw+¢xm

Where o, = =w1-& .
ere 52\/— NI=E

The oscillatory motion path of a mass block subject to a unit
impulse force can be determined by analyzing the system's
dynamics. Consider a mass block with a weight of m 1kg and a
spring with an elasticity coefficient of k 20N/m. As illustrated
in Figure 2(b), under undamped conditions (red curve,
damping coefficient f,= 0), the mass block exhibits vibrations
of constant amplitude. In contrast, under damped conditions
(blue curve, damping coefficient f,= 0.6N.s/m), the motion is
characterized by oscillations that gradually decay over time.
When comparing the trajectory of the mass block with that of
a vortex ring, it becomes evident that the mass-spring damped
system undergoes one-dimensional motion along a straight
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Figure 1: Schematic diagram of the model.
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Figure 2: Schematic diagram of a one-dimensional mass-spring damping system

and mass-block trajectory. (a) Schematic diagram of the mass-spring damping
system (b) Displacement time curve of the mass block.

line, whereas the vortex ring moves within a two-dimensional
plane with a diminishing radius. This observation leads to the
hypothesis that a mass block constrained in a plane by a spring-
damping system operating in two directions simultaneously
would exhibit a trajectory akin to that of a vortex ring in a fluid.
The conceptual setup of this system is depicted in Figure 3(a).

Assuming this, the control equation for the trajectory of
mass block m is expressed as equation (3):

m%+f d);(t)w X0 = £.(t)
3)
dJ’(l) i, dy(l)+k W)= £.(0)

Under the simplest computational conditions, with f (t) and
f,(t) as impulse forces, the displacement in both directions is
given by Eq. (4):

(=2
x(t) =—F
J-2
S %)
$(0) = 2 *sin(o, + )
/1 2

*sin(w,t + @)

s S 3
Where @, =,[—.{=—F=.,0,=0,1-&" °
ere - '3 TR 4
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Assuming a mass block with a weight of m = 1 kg and a
spring elasticity coefficient of k = 16 N/m in both directions,
the trajectory in a two-dimensional plane can be determined
using the given formula, with phase angles ¢ = 0 and @, =
0.37. As depicted in Figure 3(b), the trajectory of the undamped
mass block forms an approximately elliptical closed curve,
represented by the red curve, where the damping coefficients
fw =1, = 0. This trajectory bears resemblance to the vortex loop
trajectory observed in superfluid dynamics. Conversely, when
damping is introduced, with damping coefficients f, = f, =
0.6 N-s/m, the motion trajectory evolves into a spiral with a
decreasing diameter, as shown by the blue curve in Figure 3(b).
This behavior, characterized by oscillations that decay over
time, aligns with the motion law of vortex ring trajectories in
conventional fluids, thereby providing preliminary validation
for our hypothesis.

To further validate the reliability of the theoretical model,
we employed the model described by Eq. (3) to fit the vortex
ring trajectories presented in PULLIN [7], specifically those
depicted in Figure 4(a) and Figure 4(c), which serve as
reference vortex ring curves. Notably, the vortex ring curves
in Figure 4(a) exhibit unstable perturbations in the front
section, resulting in data instability; thus, these data points
were excluded from the fitting process. Given the uncertainty
associated with the vortex ring size and the initial point of the
vortex ring trajectory, it is hypothesized that a scaling factor
applies to the vortex ring size, and the depicted trajectory
represents a period following the generation of the vortex ring.
Consequently, scaling coefficients k,, k , along with the leading
time term t, are introduced into the vortex ring trajectory
fitting. At this juncture, the second-order linear model of the
vortex ring is reformulated from Eq. (4) into the format of Eq.

(5):

—¢w, (1y+1)
w e
_7 x%
X0 =k, T

*sin(w,t + ¢,)

(5)

w e s+

»()= ky *W*Sin((%t +4,)

The phase angles ¢ and @, are calculated according to
equation (6):

X(1)-Y(1)

f

Position-X/(m)
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Figure 3: Schematic diagram of the 2D mass-spring damping system and mass-

block trajectory. (a)Schematic diagram of a two-dimensional mass-spring damping
system (b) Displacement time curve of a mass block.
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Starting fitting process

Calculate reference curve total length; Divide into
segments and record nodes ( Xoi ¥ o)
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Figure 4: Flowchart of vortex ring fitting process.
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According to Eq. (6), it has been established that the fitted
curve initiates concurrently with the target curve, and the
vortex ring trajectory is modeled using MATLAB. The fitting
procedure is detailed as follows:

x(0) =k, *

The total length of the reference vortex loop curve is
calculated through integration, and this length is divided into
n = 500 equal segments. The node coordinates (x_, y ) for each
sub-segment are recorded;

Utilizing Eq. (5) and Eq. (6), the fitted vortex ring
trajectories are generated using the ergodic method under
various combinations of parameters k, k, t,(, and o ;

W o

The length of the fitted vortex loop trajectory is truncated
to match the length of the reference vortex loop curve. This
truncated section is then divided into n = 500 equal segments,
and the node coordinates (x, y,) for each segment are
documented.

The fitting errors between the fitted vortex ring curves and
the reference vortex ring curves are compared. The set of fitted
parameters that yields the smallest fitting error is considered
the optimal fitting result.

Citation: Zheng T, Wang W, Yuan Y. Linear Model of Vortex Ring. Ann Math Phys. 2025;8(6):212-217. Available from: https://dx.doi.org/10.17352/amp.000166



P PeertechzPublications

We have also prepared a flowchart, as shown in Figure 4.

Given the complexity of the vortex loop curve and the
non-uniformity of x-coordinates and y-coordinates between
the reference curve and the fitted curve, traditional error
calculation methods, such as the least squares method and the
goodness-of-fit, are not applicable. Instead, the fitting error is
computed by evaluating the difference in the average distance
of the xy-coordinates between corresponding nodes of each
segment of equal length. This trajectory fitting error, S(x, y),
and the percentage of error, A, are calculated as shown in Eq.

(7.

2‘()50; =2+ (Vg — yl[)2’
S, p) =+

2n
S(x,») (7)

=— ~ x100%
x|+ X[va 7 2n)
i=1 i=1

A

The optimal fitting trajectory of the vortex ring, determined
by the smallest S(x,y) and the smallest A, is depicted in Figure
5(b) and Figure 5(d), representing the best fitting result of the
vortex ring trajectory using the specified calculation method.
In Figure 5(b), the fitting results correspond to the vortex ring
trajectory shown in Figure 5(a), with fitting parameters k =
0.200, k = 0.260, t, = 0.850s, { = 0.042N.s/m, and wn = o.610rad/s.
The average distance difference of the xy-coordinates for each
segmented node is 0.0054m, resulting in an error percentage of
A = 8.96%. Similarly, Figure 5(d) illustrates the fitting results
for the vortex ring trajectory depicted in Figure 5(c), with
fitting parameters k = 0.390, k,=0.390, t,= 0.120s, (= 0.040N.s/m,
and o, = 0.490rad/s. Here, the average distance difference in
the xy-coordinates for each segment node is 0.0064m, with an
error percentage of A =7.67%.

The high degree of similarity and closeness between the
fitted vortex ring curves and the reference curves, along with
the minimal fitting distance error between corresponding
segmented points, effectively demonstrates the validity and
accuracy of the theoretical model proposed in this paper.

Following the fitting of the vortex ring trajectory, an analysis
of the vortex ring's velocity characteristics is performed using
this model. Specifically, the linear velocity components (v,, v ),
the resultant velocity (v,), and the angular velocity (o) of the
vortex ring can be derived from Eq. (5) and are expressed in
Eq. (8). Based on the established fitting model and Eq. (8), the
velocity distributions of these components along the vortex
ring trajectories, specifically for the cases shown in Figure 4(b)
and Figure 4(d), are presented in Figure 6.

p = B0
todt
dt (8)

_ 2 2
v, =4y,

x(2).v, — y(0)v,
=2y T

2 2
NSRS
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Figure 5: Second-order linear model fitting results for vortex loop paths. (a) Vortex
loop trajectory1 of PULLIN[7] (blue curve is the fitted segment) (b) Fitting results

to the vortex loop trajectory of Figure 3(a). (c) Vortex loop trajectory2 of PULLIN[7]
(blue curve is the fitted segment) (d) Fitting results to the vortex loop trajectory of
Figure 3(c).
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Figure 6: Velocity results of vortex rings in Figure 5.

As depicted in Figure 6, the linear velocity (v, v, & v,) of
the vortex ring exhibits an oscillating and decaying trend.
The gradual decrease in the vortex ring radius is consistent
with the dissipative effects of fluid resistance acting on it.
Conversely, the angular velocity » of the vortex ring maintains
a stable oscillatory process, with its amplitude appearing
unaffected by the vortex ring's changing radius. This stability
in angular velocity is fundamentally linked to the conserved
or quasi-conserved nature of the vortex ring's circulation [8].
Consequently, the amplitude of the angular velocity does not
decay, which highlights the ability of the proposed theoretical
model to accurately describe this aspect of the vortex ring's
velocity characteristics [9,10].
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In the previous analysis, we developed a two-dimensional
vortex ring second-order linear model, Eq. (3), by considering
the system input force f(t) as an impulse force. To extend this
model to a three-dimensional vortex ring, the model equations
are presented in Eq. (9):

d*x(t) , dx(f) -

m— ot S 7 k.x(t) = f.(1)
d’y(t) . dy() _

m— +f, " +k,y(0) = f,(0) (9)
d*z(1) dz(t) ~

m—at fvz7+ k.z(t)=f.(1)

The second-order linear model for a 3D vortex ring, based
on Equation (9), is applied to the vortex ring trajectories
described in the works of Chevalier [11] (Figure 7(a)) and
Scheeler [12] (Figure 8(a)). Due to the absence of specific
coordinate data in these papers, the trajectories are fitted based
on similar features. In the analysis of the vortex ring trajectory
depicted in Figure 7(a), an attenuated vortex ring curve is
observed in the yz plane, with the trajectory progressing along
the x-axis. Reflecting these characteristics, the parameters for
the yz direction are set as w, = 2 and (= 0.2, while the excitation
described in Equation (10) is applied in the x direction. By
substituting into the model of Equation (9), the vortex ring
trajectory is fitted, resulting in the fitting equation provided
in Equation (11). The fitting outcome, illustrated in Figure 7(b),
demonstrates a curve with trajectory characteristics closely
resembling those of the vortex ring curve in Figure 7(a).

{fz(t) =0.5kt +0.5¢ + 0.1(k — mw, )sin(@, .t) + 0.1cw, cos(t) (10)

o, =w\1-&

x(t) = 205 sin(2y1— & 1)

1-&

et 5
()= W sin(24/1-&7 1+ 0.57) ()

2(£) =0.5¢+0.01sin(2y/1 - £ 1)

-

Figure 8(a) illustrates the trajectory of a vortex ring in a
superfluid, characterized by a closed curve in the xy-plane and
exhibiting periodic sinusoidal fluctuations along the z-axis.
To capture the dynamics of this vortex ring trajectory, the
excitation force described in Equation (12) is employed. By
substituting the model from Equation (9), we derive a fitting
equation, presented as Equation (13), that aligns with the
vortex ring trajectory. The results of this fitting process are
depicted in Figure 8(b), where the fitted curves demonstrate
trajectory characteristics similar to those of the vortex ring
curves shown in Figure 8(a).

f.(t) = (2k —8m)sin(2t) + 4ccos(2t)
S, () = (2k —8m)sin(2t) — 4ccos(21)
1.() =(0.1k — 40m)sin(20¢) + 2c cos(20¢)

(12)
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Figure 7: Three-dimensional vortex ring fitting results with vortex ring trajectory of
Chevalier [11].
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Figure 8: Three-dimensional vortex ring fitting results (a) Vortex ring trajectory of

Scheeler [12] (b) Fitting results to the vortex ring trajectory of Figure (6a).

x(t) = 2sin(2¢)
y(t) = 2sin(2¢ + 0.57) (13)
z(t) = 0.1sin(20¢)

This underscores the validity and precision of the second-
order linear model of vortex rings proposed in this study,
suitable for fitting 2D and describing 3D vortex ring trajectories.

Summary

This study introduced a vortex ring linear theory model
predicated on a linear mass-spring-damper system. The
model effectively characterized the kinematic behavior of two-
dimensional vortex rings and was subsequently extended to
successfully describe the trajectory characteristics of three-
dimensional vortex rings. These findings suggest that a
vortex ring model based on a linear mass-spring system can
effectively represent the physical behavior of vortex fluids in
three-dimensional space. Notably, this model applies to both
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conventional fluid vortex rings and undamped superfluid vortex
rings. This approach significantly simplifies the mathematical
modeling of vortex ring characteristics in fluids, thereby
broadening the methodological approaches within vortex
ring theory and offering substantial value for engineering
applications related to fluid properties.
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