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Abstract

3D reconstruction from point cloud data has become a key component in various domains such as computer graphics, medical imaging, industrial design, and virtual
reality. Among the many available approaches, implicit function methods have attracted significant attention due to their robustness and their ability to generate high-
quality surface meshes from sparse and noisy data. This paper investigates the fundamental principles of 3D reconstruction, with a particular focus on the application
of space-partitioned local fitting methods in implicit surface reconstruction from point clouds. Furthermore, we introduce a hybrid normal estimation and orientation
technique to enhance global surface consistency. Experimental results on LiDAR point clouds demonstrate the accuracy and efficiency of the proposed reconstruction

pipeline, validating its effectiveness.

Introduction

With the rapid advancement of 3D scanning technologies,
point cloud data [1,2] has emerged as a crucial medium for
representing three-dimensional spatial information. They are
widely used in various domains, including computer graphics,
medical imaging, industrial design, and virtual reality [3,4].
Due to their high precision, density, and rich geometric
details, point clouds constitute a fundamental resource for
3D reconstruction research [5-8]. Nevertheless, the efficient
and accurate reconstruction of surfaces from point cloud data
remains a central challenge [9-11]. Over the years, a variety
of reconstruction techniques have been developed to address
the difficulties associated with structured, unstructured, noisy,
or incomplete point clouds. These techniques are commonly
classified according to their underlying representations and
reconstruction strategies. The principal categories include
mesh-based, explicit surface-based, volumetric, and point-
based approaches, each characterized by distinct advantages
and trade-offs, depending on the properties of the input data
and the specific application requirements.

Mesh-based reconstruction methods

Mesh-based approaches reconstruct 3D surfaces by
connecting discrete points into polygonal meshes. Among the
most widely adopted techniques are the Delaunay triangulation
and the marching cubes algorithm. The Delaunay triangulation
method generates a triangulated surface by maximizing the
minimum angle of triangles, thereby reducing numerical
instability. It is particularly well-suited for structured and dense
point clouds and ensures the production of manifold surfaces.
However, it performs poorly with noisy, sparse, or incomplete
data and is highly sensitive to outliers. The marching cubes
algorithm is a voxel-based method that extracts isosurfaces
from volumetric data. It is computationally efficient for
structured datasets, such as CT or MRI scans, and produces
smooth surfaces. Nevertheless, it requires the construction
of a volumetric grid, which substantially increases memory
consumption and limits scalability.

Explicit surface-based methods

These approaches represent surfaces directly through
parametric functions or piecewise polynomial approximations
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[12,13]. Two widely used methods are Non-Uniform Rational
B-Splines (NURBS) and the Bézier method. NURBS construct
smooth, continuous surfaces using control points and basis
functions, offering precise shape control. NURBS are widely
applied in computer-aided design and industrial design;
however, they require a predefined topology and involve
complex fitting procedures, particularly for large-scale or noisy
datasets. Bézier and B-Spline Surfaces provide mathematical
representations for smooth surface modeling, yielding high-
quality results in computer-aided design. However, their
adaptability is limited when applied to unstructured point
clouds or datasets with missing information.

Volumetric methods

These approaches define surfaces within a volumetric
domain, typically employing implicit functions or level-
set formulations. Two widely used methods are Poisson
Surface Reconstruction and Level Set Methods. Poisson
Surface Reconstruction formulates surface reconstruction
as the solution to a Poisson equation, generating an implicit
function that approximates the input point cloud. It is robust
to noise and incomplete data and produces smooth, watertight
surfaces; however, it is computationally intensive and requires
accurately defined point normals. Level Set Methods represent
evolving surfaces using a signed distance function, naturally
accommodating topological changes. Despite this flexibility,
these methods are computationally intensive and sensitive to
initialization.

Point-based methods

Unlike explicit surface construction, point-based methods
represent and render 3D models directly from point clouds.
This method defines a smooth surface by computing a locally
weighted polynomial approximation. It is robust to noise
and well-suited for scattered data; however, it becomes
computationally expensive when applied to large datasets.

Traditional surface reconstruction [14] methods face
limitations in managing complex topologies, noisy data, and
large-scale point clouds [15-17]. Therefore, the development
of approaches that can effectively capture intricate geometric
structures while remaining robust to noise is of considerable
importance.

In recent years, implicit function-based 3D reconstruction
methods have gained increasing attention [3,18,19].
These methods represent 3D surfaces implicitly through
mathematical functions (such as signed distance functions and
radial basis functions), eliminating the need for explicit mesh
topology [5]. This allows them to naturally handle complex
topological structures and partially missing point cloud data.
Additionally, implicit representations can inherently smooth
out noise effects, improving reconstruction quality and making
them well-suited for various application scenarios, such as
computer graphics, medical imaging, industrial design, virtual
reality, and augmented reality [3,20].

In this study, we propose a novel approach for geometric
reconstruction based on implicit functions. The methodology
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consists of two main components. First, surface normals are
estimated at each point to ensure consistent surface orientation.
Subsequently, a smooth implicit function is constructed in
the local neighborhood of each point using the estimated
normals. By combining these local implicit functions, voxel
data at multiple levels can be utilized to reconstruct the overall
geometry. Compared with existing methods, the proposed
approach produces smoother geometries across varying levels
of detail and demonstrates strong robustness to noise.

Section 2 presents the methodology for normal estimation,
while Section 3 details the formulation of local implicit functions.
Section 4 provides illustrative examples demonstrating the
efficiency of the proposed method. Finally, Section 5 concludes
the study and discusses potential directions for future research.

Normal estimation of point clouds and nor-
mal orientation consistency

Normal estimation of point clouds based on covariance
matrix

Normal estimation is a critical component of point cloud
processing, playing a fundamental role in 3D reconstruction,
surface fitting, feature extraction, and classification. Normal
information describes the local geometric properties of
point clouds and is essential for applications such as surface
rendering, mesh reconstruction, and point cloud registration.

The covariance matrix-based method is a classical and
efficient approach to normal estimation, relying on the
statistical distribution of local neighborhoods. By applying
Principal Component Analysis (PCA) to the covariance matrix,
the normal direction is identified as the eigenvector associated
with the smallest eigenvalue. Owing to its mathematical
simplicity and computational efficiency, this method has been
widely adopted in point cloud processing.

(1) Local Neighborhood Search: To estimate the normal
at a point p,, its local neighborhood N(p,) must be identified.
Common strategies for neighborhood selection include:

k-Nearest Neighbors (k-NN): Identifies the k closest points
to p, based on Euclidean distance.

Fixed Radius Search: Selects all points within a given radius
r centered at p..

Let the neighborhood of p, contain n points, denoted as
N(p) =Py Pysees P} -

(2) Covariance Matrix Computation: In point cloud normal
estimation, the covariance matrix is typically constructed with
respect to a reference point. This reference can be either the
current point under consideration or the centroid (mean) of its
neighborhood, computed as :

— _ l n — l n l n l n
q_nziq[ (nzl'qxf’n ,qyi’nzt'qzij (®
The covariance matrix is then computed as:
1 n -_— [
C:;z,qiz(qi_q)(ql'_q)r (2)
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Where g, represents the coordinates of the neighboring
points. The covariance matrix C is a 3 x 3 symmetric matrix:

: (3)

Each element C,, is calculated as:

c, - %Zj(u,. ), -7) %)

where u,v represents the x,y,z coordinates.

(3) Eigenvector computation: Perform Eigen Decomposition
on the covariance matrix C, obtaining eigenvalues A,,4,,4, and

their corresponding eigenvectors v,, v,,v, , where:

b2k A (5)

The smallest eigenvalue , corresponds to the eigenvector
v,, which represents the least variance direction in the local
neighborhood. This vector is chosen as the estimated normal:

n=v (6)

1 3

Normal orientation consistency

In point cloud normal estimation, particularly with
covariance matrix-based methods, the computed normals
inherently exhibit directional ambiguity, both n, and -n, are
valid normal at a point p, . Without resolving this ambiguity,
inconsistent normal directions can cause significant errors in
surface reconstruction, rendering, or registration. Therefore,
enforcing consistent normal orientation across the point cloud
is essential.

This paper adopts a hybrid strategy that combines
local consistency with neighborhood-based propagation.
Specifically, a set of seed points is selected from the point
cloud, these are typically representative points. The normal
directions of these seed points serve as the initial references
for propagation. From each seed point, normal directions are
locally propagated to neighboring points based on a directional
consistency criterion.

To ensure the initial consistency of normal orientations
at the seed points, which serve as the starting nodes for
orientation propagation, this paper adopts a method based
on quadratic surface fitting to refine and correct their normal
directions.

Local quadratic surface fitting method: To accurately
capture the local geometric characteristics of a point cloud,
we adopt a local coordinate-based quadratic surface fitting
approach centered at a given point. This method involves
establishing a local frame aligned with the surface normal
and fitting a second-order surface to the nearest neighboring
points in that frame, as shown in Figure 1. The procedure is
detailed as follows:
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1) Selection of Neighboring Points

Given a query point P e R with a corresponding unit surface
normal vector NeR , we identify its k nearest neighbors from

a global point set 0={q,}" €R’, using Euclidean distance as

the metric. In this paper, we set k = 6.
2) Construction of Local Coordinate System

A local right-handed orthonormal coordinate system
(u,v,w) is established at P , where:

w = N defines the local z-axis direction;
u is obtained by normalizing the cross product of N with
xN

. . t
an arbitrary non-collinear vector t, u=—

,v=uxw.The
e N]

resulting rotation matrix R = [uT v’ wT]T e R*™ transforms
global coordinates into the local frame. For each neighboring
L
point g, the local coordinate ¢; is computed as:
q; =R(q;, - p) (7)
3) Quadratic Surface Fitting in the Local Fram

After transformation, the neighboring points are

represented in the local frame as ¢; = (x;,y,,z;) . We assume the

local surface (as shown in Figure 1) near P can be approximated
by a second-order polynomial of the form:

z=ax" +2bxy +cy’ (8)

To estimate the coefficients a, b, ¢ we construct a linear
system using the transformed coordinates:

Z = AX (9)

where:

)

B
ot

Qﬂ_\k

bl &

Figure 1: Local Coordinate-Based Quadratic Surface Fitting.
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z X2y 0
z-12| A~ X, 2%y, Vi X = Z
REE O Y (10)
2 2 2 ¢
Zg Xe  2XeVs Vs

The coefficients are then estimated via the least-squares
solution:

X=(A"A)'A"Z (11)

Normal consistency by local quadratic surface: To ensure
the initial consistency of the normal orientations at the seed
points, the entire point cloud is first enclosed within a uniform
volumetric grid of resolution 50 x 50 x 50 . Each grid vertex
is then classified as lying either outside or inside the surface:
vertices outside are assigned a positive sign (“+”), while those
inside are assigned with a negative sign (“-”), as shown in
Figure 2a). This initial classification provides a coarse signed
distance field used for orientation refinement in subsequent
steps.

For each grid vertex P located near the surface boundary,
the closest point Q on the input point cloud is identified,
as illustrated in Figure 2b). A local coordinate system is
constructed at Q, with the local z-axis is aligned to the normal
vector N at that point. Within this local frame, the quadratic
surface defined in Equation 8, is fitted to the neighboring
points. This fitted surface serves as a smooth approximation
of the local geometry near Q. Using the fitted coefficients q,
b, ¢ , the function is evaluated at the offset points P* and P-,
which are positioned slightly along the positive and negative
directions of the normal vector, respectively:

w(P) = ax, +2bx,y, +cy, (12)

If the evaluated function ¥ at either offset point yields a
sign inconsistent with the expected orientation w(P")<0 or

w(P")> 0, then the normal vector is flipped as N = -N , and the

coefficients are adjusted accordingly a =-a,b=b,c=—c.

This correction ensures that the fitted surface's normal
direction points consistently outward from the shape, resolving
ambiguities in surface orientation near thin or concave regions.
After obtaining a reliable and consistently oriented normal at
the selected seed points using quadratic surface fitting, the
method proceeds to propagate the corrected normal directions
to the rest of the point cloud using a neighborhood-based
orientation propagation algorithm.

a)

b) P;
|

NI
[}
]
NN
S
.

Figure 2: a) Inside and outside vertex classification in a volumetric grid. b) Closest

point method for normal orientation.
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In this process, each seed point acts as a local root, and
its normal direction is propagated to neighboring points in
a breadth-first manner. At each propagation step, if the dot
product between the current point's normal and that of its
neighbor is negative, the neighbor's normal is flipped to align
with the propagation direction.

By employing multiple seed points and performing
propagation in parallel across the dataset, this method ensures
global orientation consistency while avoiding issues such as
direction drift or error accumulation that may arise from using
a single-root traversal.

The results of the normal orientation correction are shown
in Figure 3. As shown in Figure 3a), the initial normal vectors
are inconsistent, with some pointing inward and others
outward. After applying the proposed method, a globally
consistent normal field is obtained. In Figure 3b), the red
vectors represent the normal that were already correctly
oriented, while the green vectors denote those that were
originally inverted but have been successfully corrected to
point outward. Figure 3c), shows the result obtained using a
traditional method. It can be observed that in regions with
complex geometric structures, such as corners and edges, the
normal vectors remain noticeably disordered and lack global
consistency. Specifically, the normals in the upper part of the
model tend to point inward, while those in the lower part point
outward, further highlighting the limitations of traditional
methods in achieving globally consistent normal orientation.
This demonstrates the effectiveness of the proposed strategy in
producing coherent and meaningful normal directions across
the entire point cloud.

Implicit function-based 3D reconstruction
techniques

The space-partitioned local fitting approach provides
an effective compromise between efficiency and accuracy in
implicit surface reconstruction from point clouds. By dividing
the domain into local regions and fitting implicit functions
independently, it reduces computational complexity, supports
parallelization, and adapts well to non-uniform and noisy data.
This enables the method to capture fine geometric details while
maintaining global surface consistency. Consequently, we adopt
this approach to achieve robust and efficient reconstruction in
large-scale point cloud scenarios.

An implicit surface is defined by an analytical equation
F(x,y,z) = C where (X, y,z ) belongs to a volume domain and
C is a constant called “level” and the corresponding surface
is a level set. A discrete representation of this surface is the
data values of the underlying function, F(x,,y;,z,), at the
vertices (%»7;,Z;) of a 3D (Cartesian) grid, 1<i<n, 1<j<n,
and 1<k<n, where (#,7,,n) are three integers defining
the resolution of the grid, also implicitly representing the
boundaries and so the (discrete) definition volume of the

surface. Such a grid is often called a "voxel" grid, as shown in
Figure 4.
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Figure 3: Normal reorientation: a) Inconsistent Initial Normals; b) Reoriented Normals; c) Traditional Method Result.

To compute function values F(x;,7,,z,) at each grid vertex

P, we adopt a local approximation strategy based on point cloud

data. For each vertex P, the m nearest neighbors {0}, in the

point cloud are identified (in this paper m = 3 ) . Around each
Q, a local quadratic surface is fitted:

9,(x,y) = ax’ +bxy +¢,y’ (13)

where x and y are coordinates of P in a local coordinate system
centered at Q. The distance from vertex p=(x,y,z) to the
surface Q, is computed as:

d(P,p)=z-ax’—bxy—cy’ (14)

The function value at P is then obtained through a weighted
combination of these distances:

F(xiay_nzk):z;ﬂ:lwi'd(Ps(oi) (15)

The weight o, for each surface is determined by the inverse
distance magnitude, normalized by a harmonic normalization
factor H:

1 m 1
= H=)" ——
P H 2=1|d(p,(,,,,)| (16)

This formulation gives greater influence to surfaces closer
to the point P, and ensures smooth interpolation across the
grid.

Figures 5,6 illustrate this process. Figure 5 shows the
topological relation between a grid vertex P and its neighboring
point samples { Q, }, while Figure 6 visualizes the local quadratic
surface ¢, constructed at a point Q, along with the projection of
P onto the surface.

Applications

In this section, the proposed 3D reconstruction algorithm
is applied to several point cloud datasets. For each case, we
present the point cloud, the estimated normals, and the 3D
reconstructed model. In certain examples, fine-resolution
grids are employed to better capture geometric details during
reconstruction.

/
/

[}
[
Figure 5: Schematic of voxel grid and local point sample geometry.

Figure 6: Visualization of the local quadratic surface ¢, near Q, and orthogonal

distance from grid point P.

The implicit surfaces are converted into 3D meshes using
the PLOUGH3D software. The PLOUGH3D software generates
the triangulation of a given level set of the implicit surface
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from a voxel grid. In addition, the software also generates
the corresponding level curves in each plane z = z,. Several
features are also available for optimization of the shape
quality, simplification, and smoothing (roughness removal)
of the resulting triangulation. The software also produces a
closed surface of a given thickness around the imposed level.
This kind of triangulation is particularly useful for surface 3D
printing. The software includes several processing p hases:

+ Analysis of the grid (minimum and maximum values
and initialization of the parameter thresholds deduced
from these values).

- Generation of the vertices of the triangulation on the
edges of a 3D grid triangulation.

+  Generation of the triangles of the triangulation.

- Extraction of the topology of the triangulation.

- Optimization of the shape quality of the triangulation.
- Simplification of the triangulation.

- Extraction of the connected components of the
triangulation.

+  Low frequency smoothing.

+ Loading into memory and writing the resulting
triangulation.

Figure 7 shows the point cloud data (from 18,667 points to
1,198,896 points), Figure 8 shows the corresponding normal
estimation, and Figure 9 shows the reconstructed models.

Using fine grids allows us to capture details on the surface
(Figures 10-12).

As demonstrated by the examples above, the proposed
approach produces smoother geometric reconstructions across
different levels of detail compared to existing methodologies.
For illustration, Figure 13 presents a comparison between a
reconstructions obtained using the Poisson method and one
generated by our proposed approach.

points: 30, 814 points‘:‘ﬂ, 964 points: 62, 610

points: 1, 198, 896

Figure 7: Point clouds.
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Figure 9: 3D reconstructed models.
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100x100x100 200 200x 200 300 300x300

Figure 10: Reconstructed models for 100x100x100, 200x200x200, and
300x300x300 grids.

100x100x100 200200200 300%300x300

Figure 11: Reconstructed models for 100x100x100, 200x200x200, and

300x300x300 grids.
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100> 100=100 300300 %300

200x200x200,

200 % 200 % 200
Figure 12: Reconstructed models for 100x100x100

300x300x300 grids.

Figure 13: Comparison with Poisson reconstruction.

Conclusion

In this paper, we propose a novel methodology for
constructing discrete 3D models from point cloud data, based
on implicit surface reconstruction. The approach addresses
two key challenges: normal estimation and implicit surface
definition. Several examples were presented to demonstrate
the effectiveness and efficiency of the method.

Future extensions of this work include the incorporation
of sharp edge features, where multiple normals must be
considered, and the use of adaptive 3D grids for model
construction. The latter would enable the capture of fine
geometric details independently of dataset size, further
enhancing the scalability and accuracy of the reconstruction
process.
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