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Abstract

3D reconstruction from point cloud data has become a key component in various domains such as computer graphics, medical imaging, industrial design, and virtual 
reality. Among the many available approaches, implicit function methods have attracted signifi cant attention due to their robustness and their ability to generate high-
quality surface meshes from sparse and noisy data. This paper investigates the fundamental principles of 3D reconstruction, with a particular focus on the application 
of space-partitioned local fi tting methods in implicit surface reconstruction from point clouds. Furthermore, we introduce a hybrid normal estimation and orientation 
technique to enhance global surface consistency. Experimental results on LiDAR point clouds demonstrate the accuracy and effi  ciency of the proposed reconstruction 
pipeline, validating its effectiveness.

Introduction

With the rapid advancement of 3D scanning technologies, 
point cloud data [1,2] has emerged as a crucial medium for 
representing three-dimensional spatial information. They are 
widely used in various domains, including computer graphics, 
medical imaging, industrial design, and virtual reality [3,4]. 
Due to their high precision, density, and rich geometric 
details, point clouds constitute a fundamental resource for 
3D reconstruction research [5-8]. Nevertheless, the effi cient 
and accurate reconstruction of surfaces from point cloud data 
remains a central challenge [9-11]. Over the years, a variety 
of reconstruction techniques have been developed to address 
the diffi culties associated with structured, unstructured, noisy, 
or incomplete point clouds. These techniques are commonly 
classifi ed according to their underlying representations and 
reconstruction strategies. The principal categories include 
mesh-based, explicit surface-based, volumetric, and point-
based approaches, each characterized by distinct advantages 
and trade-offs, depending on the properties of the input data 
and the specifi c application requirements.
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Mesh-based reconstruction methods

Mesh-based approaches reconstruct 3D surfaces by 
connecting discrete points into polygonal meshes. Among the 
most widely adopted techniques are the Delaunay triangulation 
and the marching cubes algorithm. The Delaunay triangulation 
method generates a triangulated surface by maximizing the 
minimum angle of triangles, thereby reducing numerical 
instability. It is particularly well-suited for structured and dense 
point clouds and ensures the production of manifold surfaces. 
However, it performs poorly with noisy, sparse, or incomplete 
data and is highly sensitive to outliers. The marching cubes 
algorithm is a voxel-based method that extracts isosurfaces 
from volumetric data. It is computationally effi cient for 
structured datasets, such as CT or MRI scans, and produces 
smooth surfaces. Nevertheless, it requires the construction 
of a volumetric grid, which substantially increases memory 
consumption and limits scalability.

Explicit surface-based methods

These approaches represent surfaces directly through 
parametric functions or piecewise polynomial approximations 
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[12,13]. Two widely used methods are Non-Uniform Rational 
B-Splines (NURBS) and the Bézier method. NURBS construct 
smooth, continuous surfaces using control points and basis 
functions, offering precise shape control. NURBS are widely 
applied in computer-aided design and industrial design; 
however, they require a predefi ned topology and involve 
complex fi tting procedures, particularly for large-scale or noisy 
datasets. Bézier and B-Spline Surfaces provide mathematical 
representations for smooth surface modeling, yielding high-
quality results in computer-aided design. However, their 
adaptability is limited when applied to unstructured point 
clouds or datasets with missing information.

Volumetric methods

These approaches defi ne surfaces within a volumetric 
domain, typically employing implicit functions or level-
set formulations. Two widely used methods are Poisson 
Surface Reconstruction and Level Set Methods. Poisson 
Surface Reconstruction formulates surface reconstruction 
as the solution to a Poisson equation, generating an implicit 
function that approximates the input point cloud. It is robust 
to noise and incomplete data and produces smooth, watertight 
surfaces; however, it is computationally intensive and requires 
accurately defi ned point normals. Level Set Methods represent 
evolving surfaces using a signed distance function, naturally 
accommodating topological changes. Despite this fl exibility, 
these methods are computationally intensive and sensitive to 
initialization.

Point-based methods

Unlike explicit surface construction, point-based methods 
represent and render 3D models directly from point clouds. 
This method defi nes a smooth surface by computing a locally 
weighted polynomial approximation. It is robust to noise 
and well-suited for scattered data; however, it becomes 
computationally expensive when applied to large datasets.

Traditional surface reconstruction [14] methods face 
limitations in managing complex topologies, noisy data, and 
large-scale point clouds [15-17]. Therefore, the development 
of approaches that can effectively capture intricate geometric 
structures while remaining robust to noise is of considerable 
importance.

In recent years, implicit function-based 3D reconstruction 
methods have gained increasing attention [3,18,19]. 
These methods represent 3D surfaces implicitly through 
mathematical functions (such as signed distance functions and 
radial basis functions), eliminating the need for explicit mesh 
topology [5]. This allows them to naturally handle complex 
topological structures and partially missing point cloud data. 
Additionally, implicit representations can inherently smooth 
out noise effects, improving reconstruction quality and making 
them well-suited for various application scenarios, such as 
computer graphics, medical imaging, industrial design, virtual 
reality, and augmented reality [3,20].

In this study, we propose a novel approach for geometric 
reconstruction based on implicit functions. The methodology 

consists of two main components. First, surface normals are 
estimated at each point to ensure consistent surface orientation. 
Subsequently, a smooth implicit function is constructed in 
the local neighborhood of each point using the estimated 
normals. By combining these local implicit functions, voxel 
data at multiple levels can be utilized to reconstruct the overall 
geometry. Compared with existing methods, the proposed 
approach produces smoother geometries across varying levels 
of detail and demonstrates strong robustness to noise.

Section 2 presents the methodology for normal estimation, 
while Section 3 details the formulation of local implicit functions. 
Section 4 provides illustrative examples demonstrating the 
effi ciency of the proposed method. Finally, Section 5 concludes 
the study and discusses potential directions for future research.

Normal estimation of point clouds and nor-
mal orientation consistency 

Normal estimation of point clouds based on covariance 
matrix

Normal estimation is a critical component of point cloud 
processing, playing a fundamental role in 3D reconstruction, 
surface fi tting, feature extraction, and classifi cation. Normal 
information describes the local geometric properties of 
point clouds and is essential for applications such as surface 
rendering, mesh reconstruction, and point cloud registration.

The covariance matrix-based method is a classical and 
effi cient approach to normal estimation, relying on the 
statistical distribution of local neighborhoods. By applying 
Principal Component Analysis (PCA) to the covariance matrix, 
the normal direction is identifi ed as the eigenvector associated 
with the smallest eigenvalue. Owing to its mathematical 
simplicity and computational effi ciency, this method has been 
widely adopted in point cloud processing.

(1) Local Neighborhood Search: To estimate the normal 
at a point pi, its local neighborhood N(pi) must be identifi ed. 
Common strategies for neighborhood selection include: 

k-Nearest Neighbors (k-NN): Identifi es the k closest points 
to pi, based on Euclidean distance.

Fixed Radius Search: Selects all points within a given radius 
r centered at pi.

Let the neighborhood of pi contain n points, denoted as 

1 2( ) = { , ,..., }i nN p p p p .

(2) Covariance Matrix Computation: In point cloud normal 
estimation, the covariance matrix is typically constructed with 
respect to a reference point. This reference can be either the 
current point under consideration or the centroid (mean) of its 
neighborhood, computed as : 

1 1 1 1= = , ,n n n n
i xi yi zii i i i

q q q q q
n n n n

 
 
 

                (1)

The covariance matrix is then computed as: 

  1= =n T
i i ii
q q q q q

n
 C                 (2)
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Where qi represents the coordinates of the neighboring 
points. The covariance matrix C is a 3 × 3 symmetric matrix: 

=
xx xy xz

yx yy yz

zx zy zz

C C C
C C C
C C C

 
 
 
  

C                    (3)

Each element Cuv is calculated as: 

1= ( )( )n
uv i ii
C u u v v

n
                (4)

where u,v represents the x,y,z coordinates.

(3) Eigenvector computation: Perform Eigen Decomposition 

on the covariance matrix C, obtaining eigenvalues 1 2 3, ,    and 

their corresponding eigenvectors v1, v2,v3 , where: 

1 2 3                        (5)

The smallest eigenvalue  3 corresponds to the eigenvector 
v3, which represents the least variance direction in the local 
neighborhood. This vector is chosen as the estimated normal: 

ni = v3                  (6)

Normal  orientation consistency

In point cloud normal estimation, particularly with 
covariance matrix-based methods, the computed normals 
inherently exhibit directional ambiguity, both ni and -ni are 
valid normal at a point pi . Without resolving this ambiguity, 
inconsistent normal directions can cause signifi cant errors in 
surface reconstruction, rendering, or registration. Therefore, 
enforcing consistent normal orientation across the point cloud 
is essential.

This paper adopts a hybrid strategy that combines 
local consistency with neighborhood-based propagation. 
Specifi cally, a set of seed points is selected from the point 
cloud, these are typically representative points. The normal 
directions of these seed points serve as the initial references 
for propagation. From each seed point, normal directions are 
locally propagated to neighboring points based on a directional 
consistency criterion.

To ensure the initial consistency of normal orientations 
at the seed points, which serve as the starting nodes for 
orientation propagation, this paper adopts a method based 
on quadratic surface fi tting to refi ne and correct their normal 
directions. 

Local  quadratic surface fi tting method: To accurately 
capture the local geometric characteristics of a point cloud, 
we adopt a local coordinate-based quadratic surface fi tting 
approach centered at a given point. This method involves 
establishing a local frame aligned with the surface normal 
and fi tting a second-order surface to the nearest neighboring 
points in that frame, as shown in Figure 1. The procedure is 
detailed as follows:

1) Selection of Neighboring Points

Given a query point P �  with a corresponding unit surface 
normal vector N �  , we identify its k nearest neighbors from 

a global point set   3
=1

= n
i i

Q q  , using Euclidean distance as 

the metric. In this paper, we set k = 6.

2) Construction of Local Coordinate System

A local right-handed orthonormal coordinate system 
(u,v,w) is established at P , where:

w = N defi nes the local z-axis direction;

u is obtained by normalizing the cross product of N with 

an arbitrary non-collinear vector t , = 

t Nu
t N

, v = u × w . The 

resulting rotation matrix 
TT T T 3 3=    R u v w   transforms 

global coordinates into the local frame. For each neighboring 

point qj, the local coordinate 
Lq j  is computed as: 

= ( )L
j jq q pR                  (7)

3) Quadratic Surface Fitting in the Local Fram

After transformation, the neighboring points are 

represented in the local frame as = ( , , )L
j j j jq x y z . We assume the 

local surface (as shown in Figure 1) near P can be approximated 
by a second-order polynomial of the form: 

2 2= 2z ax bxy cy                   (8)

To estimate the coeffi cients a, b, c we construct a linear 
system using the transformed coordinates: 

Z = AX                 (9)

where: 

Figure 1: Local Coordinate-Based Quadratic Surface Fitting.
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2 2
2 2 2 2 2

2 2
6 6 6 6 6

2
2

= , = , =

2

z x x y y
a

z x x y y
b
c

z x x y y

  
   
   
               

Z A X
               (10)

The coeffi cients are then estimated via the least-squares 
solution: 

T 1 T= ( )X A A A Z             (11)

Normal consistenc y by local quadratic surface: To ensure 
the initial consistency of the normal orientations at the seed 
points, the entire point cloud is fi rst enclosed within a uniform 
volumetric grid of resolution 50 × 50 × 50 . Each grid vertex 
is then classifi ed as lying either outside or inside the surface: 
vertices outside are assigned a positive sign (“+”), while those 
inside are assigned with a negative sign (“–”), as shown in 
Figure 2a). This initial classifi cation provides a coarse signed 
distance fi eld used for orientation refi nement in subsequent 
steps.

For each grid vertex P located near the surface boundary, 
the closest point Q on the input point cloud is identifi ed, 
as illustrated in Figure 2b). A local coordinate system is 
constructed at Q, with the local z-axis is aligned to the normal 
vector N at that point. Within this local frame, the quadratic 
surface defi ned in Equation 8, is fi tted to the neighboring 
points. This fi tted surface serves as a smooth approximation 
of the local geometry near Q. Using the fi tted coeffi cients a, 
b, c , the function is evaluated at the offset points P+ and P-, 
which are positioned slightly along the positive and negative 
directions of the normal vector, respectively: 

2 2( ) = 2P p P PP ax bx y cy                   (12)

If the evaluated function  at either offset point yields a 

sign inconsistent with the expected orientation ( ) < 0P   or 

( ) > 0P  , then the normal vector is fl ipped as N = -N , and the 

coeffi cients are adjusted accordingly = , = , =a a b b c c  .

This correction ensures that the fi tted surface's normal 
direction points consistently outward from the shape, resolving 
ambiguities in surface orientation near thin or concave regions. 
After obtaining a reliable and consistently oriented normal at 
the selected seed points using quadratic surface fi tting, the 
method proceeds to propagate the corrected normal directions 
to the rest of the point cloud using a neighborhood-based 
orientation propagation algorithm.

In this process, each seed point acts as a local root, and 
its normal direction is propagated to neighboring points in 
a breadth-fi rst manner. At each propagation step, if the dot 
product between the current point's normal and that of its 
neighbor is negative, the neighbor's normal is fl ipped to align 
with the propagation direction.

By employing multiple seed points and performing 
propagation in parallel across the dataset, this method ensures 
global orientation consistency while avoiding issues such as 
direction drift or error accumulation that may arise from using 
a single-root traversal.

The results of the normal orientation correction are shown 
in Figure 3. As shown in Figure 3a), the initial normal vectors 
are inconsistent, with some pointing inward and others 
outward. After applying the proposed method, a globally 
consistent normal fi eld is obtained. In Figure 3b), the red 
vectors represent the normal that were already correctly 
oriented, while the green vectors denote those that were 
originally inverted but have been successfully corrected to 
point outward. Figure 3c), shows the result obtained using a 
traditional method. It can be observed that in regions with 
complex geometric structures, such as corners and edges, the 
normal vectors remain noticeably disordered and lack global 
consistency. Specifi cally, the normals in the upper part of the 
model tend to point inward, while those in the lower part point 
outward, further highlighting the limitations of traditional 
methods in achieving globally consistent normal orientation. 
This demonstrates the effectiveness of the proposed strategy in 
producing coherent and meaningful normal directions across 
the entire point cloud.

Implicit function-base d 3D reconstruction 
techniques

The space-partitioned local fi tting approach provides 
an effective compromise between effi ciency and accuracy in 
implicit surface reconstruction from point clouds. By dividing 
the domain into local regions and fi tting implicit functions 
independently, it reduces computational complexity, supports 
parallelization, and adapts well to non-uniform and noisy data. 
This enables the method to capture fi ne geometric details while 
maintaining global surface consistency. Consequently, we adopt 
this approach to achieve robust and effi cient reconstruction in 
large-scale point cloud scenarios.

An implicit surface is defi ned by an analytical equation 

( , , ) =F x y z C where ( , , )x y z  belongs to a volume domain and 

C is a constant called “level” and the corresponding surface 
is a level set. A discrete representation of this surface is the 

data values of the underlying function, ( , , )i j kF x y z , at the 

vertices ( , , )i j kx y z  of a 3D (Cartesian) grid, 1 ii n   1 jj n   

and 1 kk n   where ( , , )i j kn n n  are three integers defi ning 

the resolution of the grid, also implicitly representing the 
boundaries and so the (discrete) defi nition volume of the 
surface. Such a grid is often called a "voxel" grid, as shown in 
Figure 4.Figure 2: a) Inside and outside vertex classifi cation in a volumetric grid. b) Closest 

point method for normal orientation.
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To compute function values ( , , )i j kF x y z  at each grid vertex 

P, we adopt a local approximation strategy based on point cloud 

data. For each vertex P, the m nearest neighbors =1{ }mi iQ  in the 

point cloud are identifi ed (in this paper m = 3 ) . Around each 
Qi, a local quadratic surface is fi tted:

2 2( , ) =i i i ix y a x b xy c y                 (13)

where x and y are coordinates of P in a local coordinate system 
centered at Qi. The distance from vertex = ( , , )P x y z  to the 
surface Qi is computed as:

2 2( , ) =i i i id P z a x b xy c y                   (14)

The function value at P is then obtained through a weighted 
combination of these distances:

=1
( , , ) = ( , )m
i j k i ii

F x y z d P                  (15)

The weight i for each surface is determined by the inverse 
distance magnitude, normalized by a harmonic normalization 
factor H:

=1

1 1= , =
| ( , ) | | ( , ) |

m
i i

i i

H
d P H d P


               (16)

This formulation gives greater infl uence to surfaces closer 
to the point P, and ensures smooth interpolation across the 
grid.

Figures 5,6 illustrate this process. Figure 5 shows the 
topological relation between a grid vertex P and its neighboring 
point samples { Qi }, while Figure 6 visualizes the local quadratic 
surface I constructed at a point Qi along with the projection of 
P onto the surface.

Applications

In this section, the proposed 3D reconstruction algorithm 
is applied to several point cloud datasets. For each case, we 
present the point cloud, the estimated normals, and the 3D 
reconstructed model. In certain examples, fi ne-resolution 
grids are employed to better capture geometric details during 
reconstruction.

The implicit surfaces are converted into 3D meshes using 
the PLOUGH3D software. The PLOUGH3D software generates 
the triangulation of a given level set of the implicit surface 

Figure 3: Normal reorientation: a) Inconsistent Initial Normals; b) Reoriented Normals; c) Traditional Method Result.

Figure 4: A 3D Cartesian grid enclosing the point cloud model.

Figure 5: Schematic of voxel grid and local point sample geometry.

Figure 6: Visualization of the local quadratic surface i near Qi and orthogonal 
distance from grid point P.
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from a voxel grid. In addition, the software also generates 
the corresponding level curves in each plane z = zk. Several 
features are also available for optimization of the shape 
quality, simplifi cation, and smoothing (roughness removal) 
of the resulting triangulation. The software also produces a 
closed surface of a given thickness around the imposed level. 
This kind of triangulation is particularly useful for surface 3D 
printing. The software includes several processing p hases:

•  Analysis of the grid (minimum and maximum values 
and initialization of the parameter thresholds deduced 
from these values).

• Generation of the vertices of the triangulation on the 
edges of a 3D grid triangulation.

• Generation of the triangles of the triangulation.

• Extraction of the topology of the triangulation.

• Optimization of the shape quality of the triangulation.

• Simplifi cation of the triangulation.

• Extraction of the connected components of the 
triangulation.

• Low frequency smoothing.

• Loading into memory and writing the resulting 
triangulation.

Figure 7 shows the point cloud data (from 18,667 points to 
1,198,896 points), Figure 8 shows the corresponding normal 
estimation, and Figure 9 shows the reconstructed models.

Using fi ne grids allows us to capture details on the surface 
(Figures 10-12).

As dem onstrated by the examples above, the proposed 
approach produces smoother geometric reconstructions across 
different levels of detail compared to existing methodologies. 
For illustration, Figure 13 presents a comparison between a 
reconstructions obtained using the Poisson method and one 
generated by our proposed approach.

Figure 7: Point clouds.

Figure 8: Normal estimation.

Figure 9: 3D reconstructed models.

Figure 10: Reconstructed models for 100×100×100, 200×200×200, and 
300×300×300 grids.

Figure 11: Reconstructed models for 100×100×100, 200×200×200, and 
300×300×300 grids.
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Conclusion

In this paper, we propose a novel methodology for 
constructing discrete 3D models from point cloud data, based 
on implicit surface reconstruction. The approach addresses 
two key challenges: normal estimation and implicit surface 
defi nition. Several examples were presented to demonstrate 
the effectiveness and effi ciency of the method.

Future extensions of this work include the incorporation 
of sharp edge features, where multiple normals must be 
considered, and the use of adaptive 3D grids for model 
construction. The latter would enable the capture of fi ne 
geometric details independently of dataset size, further 
enhancing the scalability and accuracy of the reconstruction 
process.
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Figure 12: Reconstructed models for 100×100×100, 200×200×200, and 

300×300×300 grids.

Figure 13: Comparison with Poisson reconstruction.


