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Abstract

We develop an explicit and verifi able contraction framework for planar, time-periodic Filippov systems with a single codimension-one switching manifold. On compact 
forward-invariant sets, the framework treats smooth fl ow, switching, and sliding within a single calculus by combining (i) differential contraction off the manifold via 
Clarke’s generalized Jacobian, (ii) multiplicative jump contraction at switching instants encoded directly in a weighted distance, and (iii) tangential contraction along the 
Filippov sliding vector fi eld. The analysis is saltation-free and yields computable exponential rates directly from model data.

Three structural results underpin the theory. (1) Local-to-global contraction: a local uniform exponential bound extends to global contraction on compact convex 
invariant sets. (2) Metric transfer: contraction in the weighted distance implies exponential decay in the Euclidean norm with the same rate up to fi xed constants, ensuring 
physical interpretability. (3) Average contraction under bounded switching: if smooth/sliding segments contract at rate ν > 0, each switch contributes at most a factor eκ, and 
the switch count satisfi es N(t) ≤ ρt+N0, then trajectories decay at the effective rate νeff = ν-ρκ. Under T-periodic forcing, the stroboscopic map is a contraction, and Banach’s 
theorem yields a unique exponentially orbitally stable T- periodic Filippov solution with an explicit convergence rate.

The assumptions (time periodicity, piecewise-C1 regularity, a single switching manifold, compact forward invariance, and a mild dwell-time/no-Zeno condition) are 
minimal for our purposes. An explicit two-dimensional piecewise-smooth oscillator (mass–spring–damper with Coulomb friction) demonstrates closed-form verifi cation 
of the hypotheses; simulations visualize contraction across smooth and sliding regimes.

MSC: 34A36, 34D20, 37C60.

Introduction

Nonsmooth dynamical systems arise whenever 
switching, impacts, or frictional effects are idealized, and 
they play a central role across science, engineering, and 
the social sciences. In mechanics, they model impacts, 
dry friction, and stick–slip oscillations in brake systems, 
bowed strings, and drilling mechanisms [1-4]; in structural 
dynamics, they capture vibro–impact oscillators and 
structures with clearance or backlash [5,6]; and in 
electrical engineering, they underpin models of power 
converters, switching circuits, and relay devices [1]. 
Beyond these classical domains, nonsmooth methods have 
proved equally valuable in economics and biomechanics 

Research Article

Contraction and Periodic Orbits 
in Time-Periodic Filippov 
Systems
Pascal Stiefenhofer*
Newcastle University, Subject Group Economics, UK

Received: 08 September, 2025
Accepted: 19 September, 2025
Published: 20 September, 2025

*Corresponding author: Pascal Stiefenhofer, 
Newcastle University, Subject Group Economics, UK, 
E-mail: Pascal.Stiefenhofer@newcastle.ac.uk

Keywords: Filippov systems; Nonsmooth dynamics; 
Contraction theory; Periodic orbits; Sliding modes

Copyright License: © 2025 Stiefenhofer P. This is an 
open-access article distributed under the terms of the 
Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are 
credited.

https://www.mathematicsgroup.us

[7,8]. In economics, contraction-based conditions have 
been used to establish exponential asymptotic stability of 
regime-switching models, ensuring identical ω-limit sets 
for nonsmooth periodic orbits [9,10]. In biomechanics, 
inverted-pendulum models of human gait show how 
stepping strategies over obstacles can be analyzed within 
a nonsmooth framework, revealing that lateral stability 
increases linearly with the inter-leg angle and thereby 
reduces fall risk [8].

Nonsmoothness is also intrinsic to control theory, 
where hybrid and switched systems combine continuous 
plant dynamics with discrete logic [11], and to robotics, 
where unilateral constraints and intermittent contact are 
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fundamental. In economics, discontinuous differential 
equations offer a natural language for regime-switching 
phenomena. It¯o [12] demonstrated that Filippov solutions 
yield unique and well-deϐined outcomes in disequilibrium 
models with discontinuous regime boundaries. Building 
on this foundation, subsequent work established 
conditions for the existence, uniqueness, and exponential 
stability of periodic orbits, together with formulas for 
their basins of attraction [13]. Contraction properties 
of adjacent trajectories were later shown to guarantee 
stability and identical ω-limit sets in switching regimes 
[7]. Complementary approaches developed global stability 
theory for nonsmooth periodic orbits via Poincaré maps, 
while also identifying limitations that motivate local 
analyses [8]. More recent contributions have expanded the 
characterization of ω-limit sets, reϐined contraction-based 
arguments, and broadened the range of applications [9,10]. 
For comprehensive overviews, see [1].

From a mathematical perspective, discontinuities 
disrupt the smooth structure on which classical dynamical 
systems theory is built. Hallmark phenomena such as 
sliding motion, grazing, chattering, and nonuniqueness 
of trajectories lie beyond the direct reach of standard 
smooth tools [1]. A rigorous foundation is provided by 
Filippov, who interprets discontinuous ODEs as set-valued 
differential inclusions obtained by convexifying one-sided 
limits of the vector ϐield across a switching manifold [14,15]. 
This construction guarantees the existence of absolutely 
continuous solutions and naturally captures sliding motion. 
Throughout the paper, we adopt the Filippov notion of 
solution.

While Lyapunov-based methods for Filippov 
systems are well developed, tools that yield incremental 
statements—concerning the contraction of distances 
between trajectories, and thereby the uniqueness and 
robustness of attractors—remain comparatively scarce; 
see also related developments in hybrid control [11]. The 
aim of this work is to provide an explicit and veriϐiable 
framework for incremental stability that is fully compatible 
with the nonsmooth evolution of Filippov systems, 
including switching and sliding dynamics.

We focus on planar, time-periodic Filippov systems of the 
form

x˙ = f(t,x), f: R×R2 →R2,                (1)

where f is piecewise-C1 in the state variable, T-periodic 
in time, and discontinuous across a codimension-one 
switching manifold. On either side of this manifold, the 
dynamics are governed by smooth vector ϐields f±, while on 
the manifold, they are resolved in the Filippov sense,

x˙(t) ∈ F(t,x(t)).                                (2)

Thus, the system alternates between smooth ϐlow in the 
bulk, convexiϐied dynamics at discontinuities, and possible 
sliding motion along the switching manifold. This setting 
already captures the essential geometric and analytic 
challenges of nonsmooth dynamics in dimension two. As 
a representative example, one may consider the compact 
Filippov-type formulation

,                (3)

where A(t) is T-periodic, b(t),g(t) are T-periodic vectors, 
h ∈R2, and Sgn denotes the set-valued sign function.

Recent advances underscore both the promise and the 
challenges of contraction-based analysis in nonsmooth 
dynamics. In [16], a contraction framework was developed 
for planar Filippov systems, combining weighted 
Riemannian metrics, Clarke’s generalized Jacobian, 
and uniform jump conditions to establish exponential 
contraction and the existence of unique attracting periodic 
orbits. Complementarily, [17,18] analyzed a complex-valued 
time-periodic system motivated by dry-friction dynamics, 
proving global exponential stability of a unique periodic 
orbit via spectral analysis of the Poincaré map and a locally 
deϐined contraction metric. Together, these contributions 
demonstrate the feasibility of extending scalar contraction 
theory [3] to higher-dimensional nonsmooth systems with 
sliding and switching.

Research gap. Despite these advances, there is no general 
and veriϐiable framework that simultaneously (i) uniϐies 
smooth, switching, and sliding contraction mechanisms 
within a single calculus; (ii) yields explicit, computable 
constants without ad hoc saltation-matrix bounds; and (iii) 
quantiϐies the effect of switching frequency via an average-
rate theorem. Existing approaches based on Poincaré maps 
or saltation analysis provide stability certiϐicates, but they 
lack incremental, trajectory-to-trajectory estimates with 
practical veriϐiability. The present paper addresses this 
gap for planar, time-periodic Filippov systems on compact 
forward-invariant sets.

Methodology and assumptions. We develop a contraction 
framework for time-periodic Filippov systems based on the 
weighted distance

A(t) := eW(t,x(t)) ∥x(t) − y(t)∥,

where the weight W is bounded on the invariant set 
and admits one-sided traces on the switching manifold. 
Contraction away from the manifold is expressed via 
Clarke’s generalized Jacobian [19]; at switching instants, 
multiplicative jump contractions are incorporated directly 
in A(t) ( without resorting to saltation bounds); and on 
sliding arcs, contraction is formulated along the tangential 
Filippov sliding vector ϐield [16]. The analysis assumes: (i) 
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time-periodic forcing; (ii) piecewise-C1 regularity with a 
single codimension-one manifold; (iii) a known compact 
convex forward-invariant set K; (iv) bounded weights W; 
and (v) exclusion of Zeno behavior and repelling sliding 
via a mild dwell-time condition. Within this setting, we 
establish three complementary results:

 Local-to-global contraction (Lemma 1): a local 
exponential contraction bound on a compact, 
convex invariant set K extends to a global bound by 
interpolation along straight segments. The argument 
is metric-agnostic and applies to any norm uniformly 
equivalent to the Euclidean norm, including the 
weighted distance A(t).

Transfer from weighted to Euclidean contraction 
(Theorem 1): exponential decay of A(t) implies 
exponential decay of the Euclidean distance with the 
same rate, up to a constant determined by uniform 
bounds on W, thereby giving contraction in the 
standard norm a direct physical interpretation.

Average contraction under a bounded switching 
rate (Theorem 2): if smooth/sliding segments 
contract at rate ν > 0, each switching event inϐlates 
distances by at most eκ, and the number of events 
satisϐies N(t) ≤ ρt + N0 (counting the union of 
switches across two trajectories), then trajectories 
decay at the effective exponential rate νeff = ν − 
ρκ. The Euclidean statement follows from metric 
equivalence.

Our contributions are threefold: (i) a uniϐied assumption 
set isolating smooth, jump, and sliding contraction 
mechanisms; (ii) structural results that translate local/
weighted contraction into global/Euclidean decay; and (iii) 
an average-rate theorem quantifying the impact of switching 
frequency. The analysis requires only compact forward 
invariance and a single switching manifold; extensions to 
multiple manifolds and impacts can be accommodated by 
tracking additional jump factors. A distinctive feature is the 
emphasis on saltation-free estimates with explicit constants 
and computable rates, enabling practical veriϐication in 
physics- and engineering-motivated models.

Compared with spectral and saltation-matrix 
approaches, which rely on eigenvalue calculations of 
monodromy or saltation matrices, the present average-rate 
criterion offers a more tractable alternative. In particular, it 
avoids explicit event-by-event Jacobian computations and 
instead requires verifying a uniform contraction inequality 
along trajectories. This yields a global convergence-rate 
guarantee that applies to all trajectories, not just to a single 
periodic orbit. The condition is therefore easier to check in 
systems with dense or irregular switching, and it extends 
naturally to cases with parameter uncertainty where 

inequalities can be veriϐied over sets rather than requiring 
exact orbit computations. The novelty of our contribution 
lies in establishing such an average-rate guarantee for time-
periodic Filippov systems, providing a practical alternative 
precisely in situations where spectral and saltation-based 
methods become algebraically intractable.

Section 2 sets out the modeling assumptions and 
establishes the core lemmas and theorems, including 
Euclidean decay corollaries. Section 3 illustrates the 
approach on a representative example. Section 4 
summarizes the contributions and outlines directions for 
future research.

Model and assumptions

Standing dimension. We formulate the framework for 
general n ∈N, although all main results in this paper are 
applied with n = 2 (planar systems).

Assumption 1 (Filippov system setup). Let T > 0 and 
: / T   denote time modulo T. Let  with 

∇h(x) ̸= 0 for all x ∈ Σ, and deϔine

Σ := {x ∈Rn : h(x) = 0}, 
. 

       
                (4)

We assume Σ is the unique discontinuity manifold. Let 
: n nf      be  T-periodic in t and C1 in x on each side of 

Σ, with restrictions

f± := f|T×Ω±, Dxf
±(t,x) := ∇xf

±(t,x),            (5)

Both admit continuous one-sided extensions to Σ 
(including their Jacobians). The associated Filippov set-
valued map is

,           (6)

which coincides with f off Σ and convexiϔies f± on Σ. A Filippov 
solution is an absolutely continuous function x(·) such that

x˙(t) ∈ F(t,x(t)) for a.e. t ≥ 0.            (7)

Remark 1 (Single switching manifold). We restrict to 
a single codimension-one switching manifold Σ = {h = 0}; 
no additional or higher-codimension discontinuities are 
considered.

Weights, metric, and orbital derivatives. We introduce 
one-sided scalar weights

:  n nf                 (8)

which are C1 in x on Ω±, T-periodic in t, locally Lipschitz 
in x, and admit continuous traces on Σ. We assume W is 
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bounded on 𝕋 × K (deϐined below). The weighted distance 
is deϐined by

A(t) := eW(t,x(t)) ∥x(t) − y(t)∥, ∥·∥ the Euclidean norm. 
                    (9)

(When switch counts N(t) are invoked later, they refer 
to the union of switching events of x(·) and y(·) on [0,t].) The 
orbital derivatives along f± are

DW±(t,x) := ∂tW
±(t,x) + ∇xW

±(t,x) · f±(t,x),           (10)

which extend continuously to Σ from each side. For 
compactness of notation, deϐine

, 

                            (11)

On Σ, we record the jumps

[W](t,x) := W+(t,x) − W−(t,x), [DW](t,x) := DW+(t,x) −

DW−(t,x).           (12)

Sliding objects. On a sliding region Σslide ⊂ Σ, the Filippov 
sliding vector ϔield fslide(t,x) is deϐined as the unique convex 
combination

fslide(t,x) = αf+(t,x) + (1 − α)f−(t,x), α ∈ [0,1],

such that n(x)⊤fslide(t,x) = 0, ensuring consistency with 

the Filippov set F(t,x). We ϐix a consistent trace WΣ and 
introduce the tangential gradient ∇⊤ := (I-n (x)n(x)⊤)∇x, and 
the sliding orbital derivative

DΣW(t,x) := ∂tWΣ(t,x) + ∇⊤WΣ(t,x) · fslide(t,x).             (13)

Clarke rates and the symmetric part. For any matrix 

A, write . The Clarke

generalized Jacobian of f at (t,x) with respect to x is

no

( , ) : {lim ( , ) :  ( , ) ( , ),  ( , )  exists},


  C x k k k k x k kk
f t x co D f t x t x t x D f t x

and  we deϐine the maximal symmetric contraction rate

.              (14)

On sliding arcs, we analogously set

.       (15)

Off Σ, the generalized Jacobian reduces to the classical 
Jacobian, ∂Cf(t,x) = {Dxf(t,x)}.

Assumption 2 (Global structural and contraction 
conditions). Let K ⊂ Rn be compact and forward-invariant 
for the Filippov ϔlow. We assume:

(A1) Time-periodicity and regularity: f is T-periodic in t, 

C1 in x on K \ Σ, with continuous one-sided extensions (and 
Jacobians) to Σ.

(A2) Contraction off Σ: For all (t,x) ∈T× (K \ Σ),

 for some ν > 0.

(A3) Weighted jump contraction: There exists ϵjump > 0 
such that for any crossing time t0 of Σ (for a pair of Filippov 
solutions in K),

.

(A4) Contraction on sliding: For (t,x) ∈ Σslide,

And repelling sliding is excluded.

(A5) Dwell-time / no Zeno: There exists τ > 0 such 
that the time between consecutive crossings of Σ along any 
Filippov solution in K is at least τ.

Remark 2 (Initial conditions on Σ). If x0 ∈ Σslide, the 

trajectory evolves according to fslide, and contraction is 

determined by the sliding dynamics. In contrast, if x0 lies in a 
crossing region, the trajectory immediately enters one of the 
domains Ω±, where contraction follows the smooth dynamics.

Lemma 1 (Local-to-global contraction). Let K ⊂Rn be 
compact, convex, and forward-invariant. Suppose there exist 

δ > 0, ν > 0, C > 0 such that for all x0,y0 ∈ K with ∥x0 − y0∥ < δ,

∥ϕ(t,x0) − ϕ(t,y0)∥ ≤ C e−νt ∥x0 − y0∥, ∀t ≥ 0.

Then there exists C′ > 0 (depending only on C,δ, K) such 
that for all x0,y0 ∈ K and t ≥ 0,

∥ϕ(t,x0) − ϕ(t,y0)∥ ≤ C′ e−νt ∥x0 − y0∥.

The same conclusion holds if the local inequality is stated 
in any norm uniformly equivalent to the Euclidean norm on 
K (e.g., the weighted metric deϔined via W).

Proof. Fix x0,y0 ∈ K and, to avoid any ambiguity arising 
from possible nonuniqueness of Filippov solutions, ϐix once 
and for all a single–valued selection

: [0, ) ,        ( , ) ( , ),K K t z t z    

of Filippov trajectories (if solutions are unique, ϕ is 
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the ϐlow). The local hypothesis is assumed to hold for this 
selection. The claim is trivial when x0 = y0, so assume x0 ≠  y0.

Step 1: Partition of the straight segment inside K. Since K 
is convex, the straight segment

γ(s) := (1 − s)x0 + sy0, s ∈ [0,1],

is contained in K. Choose

Then zj ∈ K for all j and

 (j = 0,...,m − 1).

Step 2: Propagation of the local estimate along the chain. 
By forward invariance of K, ϕ(t,zj) ∈ K for all t ≥ 0 and all 
j. Hence, the local contraction inequality applies to each 
adjacent pair (zj,zj+1):

∥ϕ(t,zj+1) − ϕ(t,zj)∥ ≤ C e−νt ∥zj+1 − zj∥ ∀t ≥ 0.           (16)

Summing (16) over j = 0,...,m − 1 and using the triangle 
inequality yields

Because γ is a straight segment, the polygonal length 
equals the chord length,

,

and therefore

∥ϕ(t,y0) − ϕ(t,x0)∥ ≤ C e−νt ∥y0 − x0∥ ∀t ≥ 0.

This establishes the desired global bound with C′ = C in 
the Euclidean norm.

Step 3: Uniformly equivalent norms. Suppose instead 
that the local inequality is stated in a norm ∥·∥∗ uniformly 
equivalent to the Euclidean norm on K, i.e., there exist 
constants 0 < c1 ≤ c2 < ∞ such that

c1∥v∥ ≤ ∥v∥∗ ≤ c2∥v∥ ∀v ∈Rn.

Repeating Step 2 with ∥·∥∗ in place of ∥·∥ gives
1

0 0 * 1 *
0

( , ) ( , )  ž  







     
m
t

j j
j

t y t x Ce z z

Using norm equivalence on both sides and on the 
increments,

.

Thus, the conclusion holds with C′ = (c2/c1)C.

Remarks on assumptions. Convexity ensures γ([0,1]) ⊂ 
K; forward invariance ensures ϕ(t,zj) ∈ K for all t ≥ 0, so the 
local estimate is valid along the entire chain. Compactness 
of K is not used explicitly in the inequalities, but it is 
standard for well-posedness and for bounding constants. 
The choice of m guarantees each link length is strictly less 
than δ, activating the local hypothesis on every adjacent 
pair.  

Theorem 1 (Transfer from weighted to Euclidean 
contraction). Let W: T×K →R be continuous and bounded, 
and deϔine

( , )
: sup | ( , ) | .

 
  

t x K
M W t x



Suppose x(·),y(·) are Filippov solutions with x(0),y(0) ∈ K 
\ Σ such that

A(t) := eW(t,x(t)) ∥x(t) − y(t)∥ ≤ A(0)e−νt ∀t ≥ 0.

Then, for all t ≥ 0,

∥x(t) − y(t)∥ ≤ e2M e−νt ∥x(0) − y(0)∥.

Proof. By forward invariance of K, x(t),y(t) ∈ K for all t ≥ 
0. Since W is bounded on T× K, we have

e−M ≤ eW(t,x(t)) ≤ eM, t ≥ 0.           (17)

By deϐinition of A(t) and (17) , ∥x(t) − y(t)∥ ≤ eMA(t), t ≥ 
0, and at the initial time,

A(0) = eW(0,x(0))∥x(0) − y(0)∥ ≤ eM∥x(0) − y(0)∥.

Using the assumed decay A(t) ≤ A(0)e−νt, we combine 
these inequalities:

Thus,

∥x(t) − y(t)∥ ≤ e2M e−νt ∥x(0) − y(0)∥,

which is the desired estimate.  

Theorem 2 (Average contraction under a bounded 
switching rate). Let K ⊂Rn be compact and forward-
invariant, and let x(·),y(·) be Filippov solutions with values in 
K. Deϔine the weighted distance

A(t) := eW(t,x(t)) ∥x(t) − y(t)∥,

where ∥·∥ is the Euclidean norm and W is bounded on T× 
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K. Assume:

(i) Smooth/sliding contraction: On any interval free 
of switching events, A(·) is absolutely continuous and 
satisϔies

A˙(t) ≤−νA(t) for a.e. t,

for some ν > 0.

(ii) Jump update: At each switching time, tk,

A(t+
k ) ≤ eκ A(t−

k ),

for some κ ∈R.

(iii) Switching-rate bound: The cumulative number of 
switches up to time t satisϔies

N(t) ≤ ρt + N0, t ≥ 0,

for some ρ ≥ 0 and N0 ∈ N0.

Then, for all t ≥ 0,

A(t) ≤ A(0)e−(ν−ρκ)t eκN0.

Moreover, if

( , )
: sup | ( , ) | ,

 
  

t x K
M W t x



then

∥x(t) − y(t)∥ ≤ e2M+κN0 e−(ν−ρκ)t ∥x(0) − y(0)∥, t ≥ 0.

Proof. Let {tk}k≥1 denote the (strictly increasing) sequence 
of switching times for the pair (x(·),y(·)), with t0:= 0 and 
tN(t)+1:= t. By assumption (iii), N(t) < ∞ for each ϐinite t, so no 
Zeno accumulation occurs.

Step 1 (Decay on event-free intervals). On any interval 
[s,u] containing no switch, assumption (i) and Grönwall’s 
inequality give

( )( )     ( ).    u sA u e A s            (18)

In particular,

) (k = 0,1,...,N(t)).

Step 2 (Jump updates). At each switch, tk, assumption (ii) 
yields

A(t+
k ) ≤ eκA(t−

k ).

Step 3 (Concatenation). Alternating the decay estimates 
with the jump updates and multiplying along the chain 
gives

A(t+) ≤ e−νt eκN(t) A(0+).

If t is not a switching time, then A(t) = A(t+); if t is a 
switching time, then the last update has already been 

accounted for. Thus

A(t) ≤ A(0)e−νt eκN(t), t ≥ 0.

Step 4 (Average rate). Using assumption (iii), N(t) ≤ ρt + 
N0, we obtain

A(t) ≤ A(0)e−(ν−ρκ)t eκN
0, t ≥ 0.

Step 5 (Conversion to Euclidean norm). Since |W(t,x)|≤ M, 
we have

∥x(t) − y(t)∥ ≤ eMA(t), A(0) ≤ eM∥x(0) − y(0)∥.

Substituting into the bound for A(t) yields

02 ( )( ) ( )       (0) (0) ,         M N tx t y t e e x y

as claimed.  

Application

We illustrate the theory with a classical mechanics 
example: a mass–spring–damper system subject to 
Coulomb friction and periodic forcing. Let x = (q,v), where 
q denotes displacement and v velocity. The parameters 
are the natural frequency ω0, damping ratio ζ, friction 
magnitude μg, forcing amplitude F, and forcing frequency 
Ω. The dynamics are

 
                           (19)

interpreted in the Filippov sense on the switching manifold 

Σ = {v = 0}. Sliding (sticking) occurs on

,

With v˙ = 0 enforced by an internal friction force. The 
tangential ϐlow is q˙ = 0, so q remains constant during 
sticking. Away from Σ, the right-hand side of (19) is C1 and 
piecewise afϐine.

Parameters. 

Fix

ω0 = 1, ζ = 1, μg = 0.6, F = 0.4, Ω = 1 (T = 2π).

These values guarantee sticking in part of each period 

(  holds for a nonempty interval) 

and at most two stick–slip transitions per period. Thus

.

Contraction of Σ (Assumption 2(A2)). On either side of 
Σ, the Jacobian of (19) is constant,
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.

Choose the quadratic weight.

,

This solves the Lyapunov inequality

J⊤P + PJ = −I.

Writing ∥x∥P := (x⊤Px)1/2 for the associated norm, we 
compute

So the contraction rate is

In the P- metric.

Contraction on sliding (Assumption 2(A4)). 

On Σslide, the tangential dynamics reduce to q˙ = 0, so 
separations tangent to Σ are nonexpanding. Together with 
dissipative normal dynamics enforcing v˙ = 0, the sliding 
vector ϐield is contracting in the same quadratic metric.

Jump updates and average-rate bound (Assumption 
2(A3)). Introduce a piecewise-constant scalar weight with 
traces.

W+ = α, W− = −α, α = 0.05.

Then [W] = 2α, and the weighted distance

A(t) = eW(t,x)∥x − y∥P

incurs a multiplicative factor eκ with κ = 2α = 0.1 at each 
transversal crossing of Σ. With

N(t) ≤ ρt + N0 and ρ = 1/π, Theorem 2 yields the effective 
rate

, 

so average exponential contraction persists despite 
switching.

Transfer to Euclidean decay (Theorem 1). 

Since |W|≤ α on T× K, we have ∥W∥∞ = α. Thus, the 
weighted and Euclidean distances are uniformly equivalent 
up to factors e±α. Theorem 1 transfers exponential decay 
to the Euclidean norm with the same rate νeff, up to ϐixed 
multiplicative constants.

Local-to-global and periodic orbit (Lemma 1). The local 
differential estimate above, together with the convexity 
and forward invariance of a rectangular set

K = {(q,v) : |q|≤ Q, |v|≤ V },

(chosen via a standard energy estimate) activates Lemma 
1 and yields global incremental contraction on K. For 
T-periodic forcing, the stroboscopic map ϕ(T,·) is a 
contraction on K; hence, by Banach’s ϐixed-point theorem, 
there exists a unique T-periodic Filippov solution in K, 
exponentially orbitally stable with rate νeff.

Numerical illustration. We veriϐied the theoretical 
predictions by simulating pairs of trajectories using an 
event-driven scheme with zero-crossing detection and 
explicit enforcement of sliding motion. The numerical 
results conϐirm the following points: (i) distances between 
distinct initial conditions decay exponentially at rate close to 
−νeff, both in the weighted and Euclidean metrics; (ii) phase 
portraits display alternating slip and sliding segments, 
converging to a unique T-periodic orbit as predicted by 
the contraction of the stroboscopic map; and (iii) the 
observed number of switches grows linearly with slope 
approximately 1/π, in agreement with the assumed bound. 
All parameters (P,ν,κ,ρ, M) are explicit, demonstrating that 
the proposed framework can be veriϐied and visualized 
directly on a classical mechanical system.

Discussion of ϐigures. The numerical results are 
consistent with the theoretical framework and illustrate 
its key mechanisms. Figure 1 shows the weighted distance 
A(t) between two trajectories on a semilog scale: the 
staircase proϐile reϐlects the interplay between continuous 
contraction and discrete jumps, with exponential decay 

at rate  between events and multiplicative 

factors eκ applied at transversal crossings of the switching 
manifold, yielding an overall downward trend that 
anticipates the effective rate −νeff. This interpretation is 
reinforced in Figure 2, where logA(t) closely follows the 
theoretical bounds −νt+κN(t)+C and −νefft+C after a short 
transient, with slope matching the predicted −νeff = ν-ρκ. 
Figures 3 and 4 examine the event structure in more detail: 
jump ratios remain bounded by eκ, conϐirming Assumption 
2(A3), while the cumulative switch count grows essentially 
linearly and respects the assumed envelope N(t) ≤ ρt + N0, 
with observed deviations attributable to numerical chatter 
near the manifold rather than genuine crossings. Metric 
equivalence is illustrated in Figure 5, where A(t) remains 
sandwiched between the Euclidean distances scaled by 
e±∥W∥∞, validating the transfer of contraction to the standard 
norm as formalized in Theorem 1. Sliding intervals, 
highlighted in Figure 6, demonstrate the applicability 
of Assumption 2(A4): during sticking, the tangential 
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ϐlow is nonexpansive while normal dynamics dissipate, 
ensuring contraction even in the absence of motion along 
Σ. The instantaneous decay rate shown in Figure 7 further 
corroborates the analysis: between events, dt

d logA(t) 
remains below −ν, while discrete spikes at switching 
instants are bounded by κN(t), producing the average 
contraction proϐile. The long-term behavior is captured in 

Figures 8–9, where contractivity of the stroboscopic map 
( , )x T x  is evident from the geometric decay of distances 

between iterates and their convergence to a unique ϐixed 
point, corresponding to the unique exponentially stable 
T-periodic Filippov solution guaranteed by Banach’s 
theorem. Finally, the phase portraits in Figures 10–11 

Figure 1: Weighted distance A(t) on a semilog scale. Step-like increases correspond 
to switching across Σ, where the multiplicative jump eκ is applied (κ = 0.1). Between 

events, the smooth/sliding dynamics contract at a rate
 

. Model 
and parameters as stated above.

Figure 2: Trend verifi cation for Theorem 2. We plot logA(t) together with the 
theoretical upper bounds −νt+κN(t)+C and −νefft+C, where N(t) counts switches 
(union over both trajectories) and νeff = ν-ρκ with ρ = 1/π.

Figure 3: Event-wise jump ratios A(t+
k )/A(t−k ) at detected switching times tk. The 

dashed line shows eκ with κ = 0.1. This tests the jump-contraction hypothesis (A3) 
encoded in the weight W.

Figure 4: Switch counter N(t) and the linear bound ρt with ρ = 1/π. This verifi es the 
average-rate assumption used in Theorem 2 to obtain νeff = ν − ρκ.

Figure 5: Metric-equivalence envelope for Theorem 1. The weighted distance A(t) lies 
between e−∥W∥∞∥x1(t) − x2(t)∥ and e∥W∥∞∥x1(t) − x2(t)∥ with ∥W∥∞ = α = 0.05, showing 
transfer of decay from the weighted metric to the Euclidean norm.

Figure 6: Sliding indicator (1 when either trajectory satisfi es v = 0 and 
2
0| cos( ) | |    q F t g or Contraction on sliding segments follows from 

(A4), as the tangential sliding fi eld is nonexpansive in the chosen metric while 
normal dynamics enforce sticking.
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illustrate the qualitative stick–slip dynamics: trajectories 
undergo alternating slip and sliding episodes yet converge 
rapidly to the same periodic orbit, visually conϐirming the 
incremental contraction and uniqueness results established 
in Section 2 [20-30].

Conclusion

We have developed a uniϐied, saltation-free contraction 
framework for time-periodic Filippov systems on compact 
forward-invariant sets with a single codimension-one 
switching manifold. The framework employs a weighted 
distance that consistently incorporates smooth ϐlow, 
sliding motion, and jump updates within a single analytic 
calculus. Within this setting, we established: (i) a local-to-
global principle for incremental contraction (Lemma 1); 
(ii) a transfer theorem showing that exponential decay 
in the weighted metric implies Euclidean decay with 
explicit constants (Theorem 1); and (iii) an average-rate 
result quantifying the impact of switching frequency on 
effective contraction rates (Theorem 2). A canonical mass–
spring–damper with Coulomb friction demonstrated the 
veriϐiability of the assumptions, the explicitness of the 
constants, and the visualization of the predicted decay 
rates.

The methodology is deliberately saltation-free: 
discontinuous events are captured as multiplicative updates 
of the weighted distance, while contraction away from the 
manifold is expressed using Clarke’s generalized Jacobian, 

Figure 7: Finite-difference estimate of dt
d logA(t) with reference line at −ν. 

Between jumps, the instantaneous decay does not exceed −ν, consistent 
with (A2) off Σ and (A4) on Σslide; positive spikes correspond to discrete jump 
updates.

Figure 8: Contraction of the stroboscopic map. Iterates xn+1 = ϕ(T,xn) satisfy ∥xn − 
x⋆∥ decaying geometrically (semilog plot), conϐirming contractivity of ϕ(T,·) on the 
invariant set and the existence/uniqueness of a T-periodic Filippov orbit via Banach’s 
ϐixed-point theorem.

Figure 9: Stroboscopic iterates in phase space (q,v). The sequence xn 
converges to a ϐixed point x⋆ of the return map, corresponding to a T-periodic 
solution of the Filippov system.

Figure 10: Phase portrait of trajectory 1 with event markers (crosses) at zero 
crossings of v. Sliding occurs along Σ = {v = 0} when the Filippov condition holds; 
slip arcs follow the piecewise-smooth vector fi eld with Coulomb friction.

Figure 11: Phase portrait of trajectory 2 with event markers. Together with Figure 
10, this illustrates how different initial conditions converge under the combined 
smooth/sliding contraction and bounded switching penalties.
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and sliding dynamics are treated via the tangential Filippov 
ϐlow. This results in explicit, computable constants and 
rates that allow for practical certiϐication in physics- and 
engineering-motivated models. Natural extensions include 
the treatment of multiple switching manifolds, higher-
dimensional dynamics, robustness under perturbations, 
and data-driven design of admissible weights and 
contraction metrics.

A complementary and promising direction is to 
integrate spectral approaches with the present framework. 
Stiefenhofer [26, 27] has recently advanced a spectral 
contraction framework for planar Filippov systems, proving 
the existence and exponential stability of nonsmooth 
periodic orbits via spectral properties of the Poincaré 
map. Combining such spectral techniques with the explicit 
metric-based analysis developed here offers the prospect 
of a more comprehensive theory, capable of addressing 
higher-dimensional settings, multiple switching manifolds, 
and nonconvex invariant sets. Pursued together, these 
approaches promise to signiϐicantly expand the scope 
and applicability of contraction methods for nonsmooth 
dynamics across mathematics, physics, engineering, and 
the applied sciences.
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