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Abstract

Convolution–type functional equations appear in all fi elds of pure and applied mathematics. The description of the solution space of such equations is based on the 
study of the fundamental problems of spectral analysis and spectral synthesis. Here we exhibit the possibility of using our recent results on spectral synthesis to offer a 
general method to solve systems of convolution–type functional equations. 

AMS (2000) Subject Classifi cation: 43A45, 22D99.

1. Introduction

A convolution-type functional equation is of the form 

* = 0.f                     (1)

Clearly, we have to clarify the exact meaning of the symbols 
appearing in this equation. For instance, f may be a complex 
valued L1-function on the reals R, and μ the Lebesgue measure 
on R, further * denotes the usual convolution: 

* ( ) = ( ) ( ).f x f x y d y                (2)

 If μ is given, then we may look for all L1-functions f 
satisfying (1): the set of all those functions will be called the 
solution space, or simply the solution of (1). On the other hand, 
we may interprete (1) in the following way: f is given, and 
we are looking for those measures μ satisfying equation (1). 
Obviously, we may change the possible domain of μ ’s and f 
’s in equation (1) in any way such that the convolution of μ 
and f makes sense. Naturally, we may consider systems of such 
equations. In this work our setting will be as follows: given 
a commutative topological group G and C(G) will denote the 
space of all continuous complex valued functions on G. Then 
the function f in (1) is supposed to be in C(G). In order that 
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the convolution makes sense we assume that μ is a compactly 
supported complex Borel measure – the set of all such measures 
will be denoted by Mc(G). It is known that the space C(G) is a 
locally convex topological vector space, if it is equipped with 
the linear operations (addition and multiplication by scalars), 
further with the topology of uniform convergence on compact 
sets (the compact-open topology). The advantage of this 
setting is that the topological dual of C(G) can be identifi ed with 
the space Mc(G), moreover, if this latter space Mc(G) is equipped 
with the weak*-topology, then its dual can be identifi ed with 
C(G). The pairing between Mc(G) and C(G) is given by 

, = ( ) ( ).f f x d x   
Another important property of Mc(G) is that the convolution 

of measures is defi ned by 

* , = ( ) ( ) ( )f f x y d x d y                      (3)

for each μ, v in Mc(G) and for every f in C(G). This multiplication, 
together with the linear operations on measures, makes Mc(G) 
a commutative algebra – which is, in fact, a topological algebra 
under the weak*-topology. We call this algebra the measure 
algebra of G. As the convolution between Mc(G) and C(G) is also 
defi ned by the formula 
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* ( ) = ( ) ( ),f x f x y d y 

it turns C(G) into a topological module over the measure 
algebra. For more about the functional analysis topological 
group theoretical background the reader should consult with 
[1-3]. 

Summarizing, given a commutative topological group G 
and a set Γ of measures in Mc(G), a system of convolution-type 
equations has the form 

* = 0,1 .f cm                   (4)

The function f in C(G) is called a solution of (4), if (4) holds 
for each μ in Γ. The solution space of (4) is the set of all solutions 
of (4). We note that the zero function is always a solution of a 
convolution–type system – it is called the trivial solution. 

If Γ is given, then clearly, the solution space VΓ of the system 
(4) is a closed linear space in C(G), which is also translation 
invariant: if f is a solution, then the function τyf , the translate of 
f by y, defi ned by 

( ) = ( )y f x f x y 

is a solution as well, for every y in G. Observe, that = *y yf f   

where, in general, δy denotes the point mass at y. Hence 
translation invariance of a closed linear subspace V in C(G) is 
equivalent to convolution invariance: if f is in V, then μ * f is 
in V, for each μ in Mc(G). In other words, translation invariance 
of a closed linear subspace in C(G) means that it is a closed 
submodule, which we shall call a variety. It follows that the 
solution space of a system of convolution–type equations is a 
variety. 

Given the set Γ in Mc(G) it is easy to see, that the solution 
space of (4) is the same as of the system, where   is replaced 
by the closed ideal in Mc(G) generated by Γ. This means that, 
when studying the solution space of a system of convolution–
type equations we may always suppose that Γ is a closed ideal 
in Mc(G). This closed ideal is, in fact, the annihilator v of the 
variety V, which is the solution space of (4). And the dual 
concept is the annihilator of an ideal I in Mc(G): it is the set I of 
all functions which are annihilated by all measures in the ideal 
I. We note that we obviously can use the concept of annihilator 
for any subset in C(G), resp. Mc(G). For our later purposes 
we recall a basic result about this variety-ideal annihilator 
correspondence:

Theorem 1 

1. The annihilator of each subset in C(G) is a closed ideal, 
and the annihilator of each subset in Mc(G) is a variety. 

2. For each variety V and for every closed ideal I we have 

= , = .V V I I

3. For every family of varieties Vα, and for every family of 
ideals Iα we have 

Ann ( ) =  Ann ,Ann ( ) =  Ann V V I I   
  
  

Ann ( ) =  Ann ,Ann ( ) =  Ann V V I I   
  
  

We note that in this theorem the – possibly infi nite – sums 
denote the closure of the corresponding set consisting of all 
fi nite sums. For the proof of this theorem and for further facts 
about the annihilator correspondence we refer to [4]. 

Here we show a simple example for the above concepts 
which may illustrate how to apply these ideas to solve systems 
of convolution–type functional equations. 

Let G be an arbitrary commutative topological group, m : 
G C a continuous function and y an arbitrary element in G. We 
introduce the measure 

; 0= ( ) .m y y m y  

Let Γ denote the set of all measures ∆m,y with y in G and we 
consider the system of equations (4). Let Mm denote the closure 
of the ideal in Mc(G) generated by Γ. If f is a solution of (4), then 
we have 

( ) = ( ) ( )f x y m y f x

for each x, y in G. With x = 0 we have ( ) = (0) ( )f y f m y , hence 

(0) ( ) = (0) ( ) ( )f m x y f m x m y

holds for each x, y in G. If f(0) = 0, then f = 0, the trivial solution. 
If (0) 0f  , then 

( ) = ( ) ( )m x y m x m y                  (5)

And f = f(0)m. It follows, that if (4) has a nontrivial 
solution, then m satisfi es equation (5). The nonzero continuous 
functions satisfying (5) are called exponential functions, or 
simply exponentials on G: they play a fundamental role in the 
theory of convolution–type functional equations. 

Summarizing, if m is not an exponential in (4), then (4) 
has only trivial solutions, that is, the solution space is V = {0}. 
Accordingly, the annihilator, that is the set of all measures 
annihilating V, is the whole measure algebra Mc(G). 

On the other hand, if m is an exponential, then the solution 
space of (4) is = { : }V c m c C  , the constant multiples of 
m, which is a one dimensional variety. It follows that its 
annihilator ideal is a closed maximal ideal, which will be 
denoted by Mm. These ideals and their powers play a basic 
role in our investigation, as they are connected with some 
important function classes which serve as building blocks of 
the solution spaces of systems of convolution–type functional 
equations. The measure ∆m;y is called the modifi ed diff erence, 
and for m = 1 it is called simply diff erence and we write ∆y for 
∆1;y. The corresponding convolution operators 

; *m yf f

are called modifi ed diff erence operators, resp. diff erence operators 
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if m = 1. We shall use the iterates of these operators: we write 

; , , ,1 2m y y yn
   for 

; ; ;1 2
* * * .m y m y m yn

  

In the case m = 1 we use the simpler notation , , ,1 2y y yn
  . If 

1 2= = = =ny y y y , then we write ;
n
m y , resp. 

n
y  if m = 1. For 

more about modifi ed difference operators see [3-5].

2. Basic function classes

The example con sidered in the previous section can be 
generalized. We may consider any variety V in C(G) – it is always 
the solution space of a system of convolution–type functional 
equations, namely, of the following one: 

* = 01 .f cm V  

If V is Mc(G), then the solution space is {0}. If, however, V 
is a proper ideal, then it is included in a maximal ideal M. If M 
is a closed maximal ideal, then M is a nonzero subvariety of V, 
and, by the maximality of M, it can be shown that M  is one 
dimensional. It is very easy to see that in this case M = Mm with 
some exponential m. 

What happens, if every maximal ideal, which includes 
V is non-closed? Clearly, if a maximal ideal is non-closed, 
then it is dense, and in this case V includes no exponential: 
the corresponding system of convolution–type functional 
equations has no exponential solution. This case is somewhat 
pathological: on some very large discrete abelian groups there 
are systems of convolution–type functional equations having 
no exponential solution. The exact characterization of these 
groups is given in [6]. 

Observe, that the exponentials are exactly the 
eigenfunctions of all translation operators, or more generally, 

of all convolution operators of the form *f f , where μ is 

in the measure algebra. We can express this property by saying 
that the intersection of the kernel of all modifi ed difference 
operators corresponding to m is the space of constant multiples 
of m. It is quite natural to ask about the kernel of the powers 
of modifi ed difference operators, i. e. about the solution space 
of the system 

; , , ,1 2 1
* = 0m y y yn

f


                    (6)

for each 1 2 1, , , ny y y   in G , where m is a given exponential 

and n is a natural number. Clearly, the solution space of this 

system is 
1n

mM 
. In the case m = 1 the functional equation (6) is 

the so-called Fréchet equation (see [1,7]), the solutions of which 
are called generalized polynomials of degree at most n. The case 
n = 1 is related to the classical Cauchy functional equation 

( ) = ( ) ( ),f x y f x f y                    (7)

which implies 

,1 2
* = 0y y f                    (8)

with the additional property f(0) = 0. These functions are the 
so-called additive functions – they are actually homogeneous 
generalized polynomials of fi rst degree. The general solution of 
(8) is of the form f = a+c, where a is additive and c is a complex 
number. These functions are called linear functions. 

Observe, that the set of all linear functions is exactly the 

variety 
2

1M . Indeed, f is the solution of (8) if and only if it is 

annihilated by all elements of M1 · M1, which means 

1 2 1 2( ) ( ) ( ) ( ) = 0f x y y f x y f x y f x      

for each x, y1, y2 in G. With x = 0 we get 

1 2 1 2( ) ( ) ( ) (0) = 0,f y y f y f y f   

which can be written as 

1 2 1 2( ) (0) = ( ) (0) ( ) (0),f y y f f y f f y f    

that is, f – f(0) is additive. 

Going back to (6), its solutions are called generalized 
m - exponential monomials of degree at most n. By a simple 
calculation one can verify that f is an m - exponential monomial 
if and only if it is a generalized polynomial multiplied by m: f = 
p · m, where p is a generalized polynomial. Of course, the degree 
of f is equal to the degree of p. 

It is obvious, that linear combinations of generalized 
polynomials are generalized polynomials, but what about 
the linear combinations of m-exponential monomials with 

different m’s? What happens if f is annihilated by 1 2m mM M  

with different m1 and m2 ? The answer is given by the following 
theorem:

Theorem 2 The continuous function f : G → C can be written in 
the form 

1 1 2 2= k kf p m p m p m                      (9)

where the pj ’s are generalized polynomials and the mj ’s are 

different exponentials, if and only if f is in 
11 11 2

1 2
( )nn n k

m m mk
M M M     

where 1 2, , , kn n n  are natural numbers. 

Proof. Assume fi rst that f has the given form (9). We have 
seen above that the annihilator of the functions of the form p · 
m, where p is a generalized polynomial of degree at most n, is 
Mn. Using statement 3. in Theorem 1, we get that f is annihilated 

by 
11 11 2

1 2

nn n k
m m mk

M M M     , where 1 2, , , kn n n  are the 

degrees of the generalized polynomials in (9). As the powers 
of different maximal ideals are co-prime, and the intersection 
of co-prime ideals is equal to their product (see e.g. [8]), the 
necessity part of the theorem follows. 
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The converse statement follows exactly by the same 
argument (see also [3]). 

Functions f of the form (9) are called generalized exponential 
polynomials. Here the degree can be defi ned as the multi-index 

1 2( , , , )kn n n . 

A natural question arises in connection with these function 
classes we have introduced: why do we use the adjective 
"generalized"? In fact, the class of generalized polynomials 
has a subclass, which is more important from the point of 
view of systems of convolution–type functional equations: a 
generalized polynomial is called a polynomial, if its variety is 
fi nite dimensional. In general, the variety of the function f in C(G) 
is the smallest variety containing f: it is the intersection of all 
varieties containing f, and it is denoted by τ(f). For instance, 
every nonzero additive function a is a polynomial of degree  
1, as τ(a) is the two dimensional space generated by 1 and a. 
However, if G = Zω, the direct sum of countable many copies 
of the integers, then there are genralized polynomials on G, 
which are not polynomials. Roughly speaking, G is the set of all 
infi nite sequences of integers, with only fi nitely many nonzero 
terms. A simple example for a generalized polynomial, which 
is not a polynomial is the following: let ai : G → Z denote the i-th 
projection of G, defi ned by 

( ) =i ia x x

for every x in G and for each i in R, then clearly, ai is an additive 
function. We defi ne 

( , ) = ( ) ( )i i
i

B x y a x a y

for every x, y in G. The sum is fi nite for every x, y in G, and it is 
obvious that B is additive in both variables. We let 

( ) = ( , ),f x B x x

then it is easy to check that 

, ,1 2 3
* = 0y y y f

for every 1 2 3, ,y y y  in G, hence f is a generalized polynomial. 

On the other hand, a simple calculation shows that τ(f) is 

generated by the functions 1, ,ia f  for i in R. As the functions 

ai are linearly independent, hence τ(f) is of infi nite dimension 
(see [9]). 

Having introduced the concept of "polynomial", we also 
omit the adjective "generalized" from "generalized exponential 
monomial" and "generalized exponential polynomial", if 
the corresponding variety is fi nite dimensional. It follows 
that polynomials, exponential monomials and exponential 
polynomials on G have a nice description, as it is presented in 
the following result:

Theorem 3 Let G be a commutative topological group. 

1. The function f : G → C is a polynomial of degree n if 
and only if there exist lineraly independent additive 

functions 1 2, , , ka a a  and a complex polynomial p : Ck 
→ C such that 

1 2( ) = (( ( ), ( ), , ( )),kf x P a x a x a x x G

2. The function f : G → C is an exponential monomial if 
and only if there exists an exponential m : G → C and a 
polynomial p : G → such that f = p · m. 

3. The function f : G → C is an exponential polynomial if and only 
if there exist different exponentials 1 2, , , :km m m G C  

and polynomials 1 2, , , :kp p p G C  such that 

=1
= k

i iI
f p m . If the ip

’s are nonzero, then this 
representation of f is unique. 

The basic property of exponential polynomials is expressed 
by the following theorem (see [10, Corollary 11], [3, Theorem 
12.31]).

Theorem 4 Let G be a commutative topological group and f : G 
→ C a continuous function. The variety of f is fi nite dimensional if and 
only if f is an exponential polynomial. 

Proof. Here we prove the suffi ciency – for the proof of the 
necessity see [10, Corollary 11]. Clearly, it is enough to show 
that if f is a polynomial, then τ(f) is fi nite dimensional. Indeed, 
if p is a polynomial and m  is an exponential, then a simple 
calculation shows that ϕ is in τ(p) if and only if ϕ · m is in τ(p · m). 
On the other hand, the variety of the exponential polynomial 

1 1 2 2= k kf p m p m p m     

is included in the sum of the varieties ( )i ip m   for = 1,2, ,i k . 

On the other hand, it is easy to check that if the polynomial 
p has the form 

1 2( ) = ( ( ), ( ), , ( )),kp x P a x a x a x

where p is a complex polynomial in k variables, and 1 2, , , ka a a  
are additive functions, then τ(p) is generated by the fi nitely 

many polynomials 1 2( ( ), ( ), , ( ))kx P a x a x a x  , where α is a 
multi-index in Nk. 

We shall see that the characteristic property of exponential 
polynomials generating fi nite dimensional varieties is of 
utmost importance in solving systems of convolution–type 
functional equations.

3. Spectral analysis and synthesis

In his fundamental paper [12] in 1947, Laurent Schwartz 
proved th e following theorem:

Theorem 5 Given any continuous complex valued function on 
the reals, all exponential polynomials in its variety span a dense 
subspace. 

To understand the importance of this result we observe 
that if the variety of the function f is C(R), then the statement 
is obvious: by the Stone-Weierstrass theorem even the 
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polynomials form a dense subspace in C(R). The interesting 
case is the one where the variety of f is not the whole space 
C(R): in this case f is called a mean periodic function. The above 
theorem says that every mean periodic function f can uniformly 
be approximated on compact sets by exponential polynomials, 
which satisfy every system of convolution–type equations, 
which is satisfi ed by f. Roughly speaking, if we know all 
exponential polynomial solutions of a system of convolution–
type equations, then we know all solutions of that system. 

It is quite reasonable to ask if this property holds on 
more general commutative topological groups. If we have a 
look at the example above, where we presented a generalized 
polynomial which is not a polynomial, then we can see that the 
variety of the function f defi ned by 

( ) = ( , )f x B x x

for x in Zω is a counterexample. Indeed, we established that 
the variety of f is generated by the functions 1 , the additive 
functions ai for i in Z, and the function f itself, which is not a 
polynomial. The only exponential polynomials in this variety 
are linear functions, and it is obvious, that limits of linear 
functions are linear functions as well, hence f cannot be the 
limit of polynomials, which are in the variety. In the paper [13] 
the authors showed that if G is a discrete abelian group and 
there are infi nitely many linearly independent additive function 
on G, then there are varieties on G for which the statement of 
Schwartz’s theorem does not hold. 

In order to dig deeper we introduce some defi nitions. We 
always assume that G is a commutative topological group. Our 
fi rst observation is that if V is a variety on G and a generalized 
exponential polynomial is in V, then all the exponentials from 
which it is built up belong to V, as well. However, we mentioned 
above that there are commutative groups such that some 
systems of convolutio–type equations do not have exponential 
solutions. In other words, it may happen that a variety does not 
include any exponential: of course, in this case the exponential 
polynomials cannot span a dense subspace. We shall say that 
spectral analysis holds for a variety V, if every nonzero subvariety 
of V includes an exponential. We say that spectral analysis holds 
on the group G, if spectral analysis holds for each nonzero variety 
on G. This is equivalent to the property that every maximal ideal 
in the measure algebra is closed. We say that a variety V on G is 
synthesizable, if the exponential monomials in V span a dense 
subspace of V. We say that spectral synthesis holds for V, if every 
subvariety of V is synthesizable. Finally, we say that the group 
G is synthesizable, or spectral synthesis holds on G, if every variety 
on G is synthesizable. Clearly, spectral synthesis for a variety 
implies spectral synthesis for it, but the converse is not true: in 
[6] the authors proved that on a discrete abelian group spectral 
analysis holds if and only if the torsion-free rank of the group 
is less than the continuum, and in [13] it has been proved that 
on a discrete abelian group spectral synthesis holds if and only 
if the torsion-free rank of the group is fi nite. 

In the non-discrete case the situation is more complicated. 
The fi rst natural question is whether Schwartz’s result can 
be extended for functions in several variables – in other 

words, does spectral synthesis hold on n for n > 1? Somewhat 
surprisingly, the answer is negative. In fact, in [14] the author 
presents two counterexamples in R2. In the fi rst case a system 
of convolution–type equations – consisting of two equations 
– is given such that the exponential monomials do not span 
a dense subspace in the solution space. In the second case 
another system of six convolution–type equations is presented 
such that the solution space is nontrivial, but the system has 
no exponential solution. In the light of these negative results 
the most interesting question arises: how to characterize those 
commutative topological groups having spectral synthesis? 

In our recent work [15] we introduced a method, called 
localization of ideals in the Fourier algebra of a locally compact 
abelian group. The main idea is to consider diff erential oparators 
on the Fourier algebra, which are polynomials of fi rst order 
derivations. Given an ideal we say that it is localizable, if it 
has the following property: if a function is annihilated by 
all differential operators, which annihilate the ideal, then 
this function belongs to the ideal, as well. The ideals of the 
Fourier algebra correspond in a one-to-one way to the ideals 
of the measure algebra, hence this localizability concept can be 
applied for the ideals of the measure algebra. Our main result 
in this respect is that a closed ideal of the measure algebra is 
localizable if and only if its annihilator variety is synthesizable. 
This simple criteria for synthesizability leads to a complete 
characterization of those locally compact abelian groups having 
spectral synthesis in the following two results (see [15]).

Theorem 6 The compactly generated locally compact abelian 
group G is synthesizable if and only if it is topologically isomorphic to 
Ra × Zb × C, where ,a b  are nonnegative integers with a ≤ 1, and C is a 
compact abelian group. 

In the next theorem B denotes the closed subgroup of 
compact elements in the group G: those elements, which 
generate a compact subgroup.

Theorem 7 The locally compact abelian group G is synthesizable 
if and only if G/B is topologically isomorphic to Ra × Zb × D, where a, b 
are nonnegative integers with a ≤ 1, and D is a discrete abelian group 
of fi nite rank. 

Conclusion

Now we can offer a method for solving systems of 
convolution–type functional equations on locally com pact 
abelian groups. Given the system (4) fi rst we fi nd its exponential 
solutions: these exponentials m form the spectrum of the system. 
These are the common roots of the Fourier transforms of the 
measures μ in Γ. The next step is to fi nd the "multiplicities" of 
these roots: these are realized by the exponential monomials p 
· m corresponding to the spectrum, and they form the spectral 
set of the system. Here p is a polynomial, which can be written 
in the form 

1 2( ) = ( ( ), ( ), , ( )),kp x P a x a x a x

where the additive functions are supposed to be linearly 
independent, and p is a complex polynomial in k variables. 
Substituting p · m into the system we obtain 
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( * )( ) = ( ) ( ) ( ) = 0pm x p x y m x y d y  

for each x in G and for every μ in Γ. To fi nd the polynomial 
solutions of this system is a purely algebraic job. By the above 
theorems, if G satisfi es the assumptions, then the solution 
space of the system consists of the limits of convergent 
sequences formed by the elements of the spectral set. We note 
that, if G does not satisfy the conditions of the above theorems, 
still there is a possibility that spectral synthesis holds for the 
given system – it depends on the localizability of the ideal in 
question. 

For more about the history, classical problems and results 
related to spectral analysis and synthesis see e.g. [16-23].
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