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Abstract

This paper presents the application of discrete variational mechanics to spacecraft attitude dynamics using quaternion state variables. A general method is introduced 
for spacecraft dynamic system by deriving a variational integrators and quaternion state variables. The designed integrators demonstrate the behaviour of momentum and 
realistic energy which is comparable computational cost and less than a low order Runge-Kutta methods, it is suggestable for both real- time estimation and simulation 
of control application. The performance of integrators exemplifi es rigid bodies with momentum actuators, internal viscous damping. In addition, Extended Kalman Filter 
(EKF) is presented for the purpose of attitude determination and on-orbit manufacturing operations. 

Nomenclature

C: Dampling constant kg. m2. s−1; F: Quaternion generalized 
force, Kg.m2.s−2; Fd: Discrete generalized force, Kg. m2.s−1; f, q: 
Unit quarternions; h: Time step, s; I: Inertia matrix in body−
fi xed axes, kg.m2; J: Augumented inertia matrix in body−
fi xed axes, kg.m2; k: Time index; L: Lagrangian, kg.m2.s−1; Ld: 
Discrete Lagrangian, kg.m2.s−1; m: Rotor mass, kg; p: Angular 
momentum in body−fi xed axes, kg..m2.s−1; S: Action, kg..m2.s−1; 
Sd: Discrete action, kg..m2.s−1; t: Time, s; x: Rotor position 
in body−fi xed axes, m; γ, ϕ: Three parameter incremental 
rotations; δ: Variational derivative; : Small scalar; η: Arbitary 
perturbation; ρ: Rotor angular momentum in body fi xed axes, 
kg..m2.s−1; τ: External torque in body−fi xed axes, kg.m2.s−1; ω: 
Angular velocity in body−fi xed axes, rad.s−1  

1. Introduction

The equation of motion for a mechanical system can be 
solved using variational integrators, which provide advantages 
over traditional algorithms such as Runge–Kutta methods. 
Instead of deriving the continuous-time differential equations 
of motion and then discretizing them, variational approaches 
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begin by discretizing the Lagrangian and the action integral of 
the system. The tools of variational mechanics are then applied 
to derive discrete-time equations of motion.Integrators 
derived in this way retain many of the essential properties 
of the continuous system, such as momentum and energy 
conservation [1]. These integrators are symplectic, preserve 
energy in Hamiltonian conservative systems, and remain 
highly accurate for long-term integration. In addition, they 
are computationally effi cient and stable, even for relatively 
large fi xed time steps, making them well suited for real-time 
estimation and control applications. 

Examples of integration methods that respect motion 
integrals of mechanical systems, often called geometric or 
symplectic integrators, have been known for decades. The 
classic example is the Stormer-Verlet and Galerkin Variational 
Integrators (GVI) [2,3]. GVI approach is non-symplectic 
integrators also reducing simulation time signifi cantly for 
long integration periods and also noted, errors start growing 
proportionally to the square root of time [3]. These early 
methods were often devised in ad hoc ways that do not 
generalize well to arbitrary mechanical systems or higher 
orders of accuracy. More recently, systematic methods for 
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deriving symplectic integrators using discrete-time versions 
of ideas from variational mechanics have been introduced [1]. 
These methods are straightforward applications of Lagrangian 
and Hamiltonian dynamics, and they can generate integration 
schemes of any desired order of accuracy.

Discrete variational mechanics has previously been applied 
to problems in optimal control and rigid-body dynamic 
control by using rotation matrices to parameterize attitude 
[4-6]. Momentum-preserving integrators have also been 
derived by other (non-variational) means for rigid-body 
dynamics using quaternions to parameterize attitude [7-11]. 
The primary contribution of this paper is the application of 
discrete variational mechanics to spacecraft attitude dynamics 
using quaternion state variables. The emphasis on quaternions 
over other attitude parameterizations here is due to both 
the compact and elegant derivations they enable and their 
prevalence in the implementation of spacecraft guidance, 
navigation, and control algorithms. Specifi cally, they lend 
themselves to straightforward feedback control and estimation 
schemes of practical relevance in fl ight software.

The paper proceeds as follows. Section 2 gives a brief review 
of quaternions and outlines the notation used throughout the 
paper. Section 3 derives the classical Euler equation of rigid-
body dynamics in continuous time using Hamilton’s principle. 
Next, Section 4 presents this derivation in discrete time, 
leading to the variational integrator presented in Section 5. 
Sections 6-8 incorporate several extensions to the basic rigid-
body integrator, including reaction wheels, external torques, 
and internal damping. Finally, in Section 9, several numerical 
examples are presented, including an extended Kalman fi lter 
for attitude determination.

2. Background

Attitude dynamics and rotations are parameterized with 
quaternions throughout this paper. A brief review of their 
properties is presented in this section. A more thorough 
treatment is given by Altmann [12].

Quaternions form an algebra with a noncommutative binary 
product operation. It is often convenient to think of them as 
four-dimensional objects composed of a three-dimensional 
vector v and a scalar  s:

=
s

q  
 
 v

                    (1)

This representation allows the quaternion product to be 
written in terms of scalar and vector products: 

1 2 1 2 2 1
1 2

*
=
v v s v s v

q q
  

  1 2 1 2s s v .v
                (2)

Note that 1 2 2 1q q q q . Throughout the paper, quaternion 

products are indicated by juxtaposition, whereas scalar and 
vector products are indicated in the usual way, with the   and 
× symbols, respectively.

Rotations can be conveniently represented by unit-length 
quaternions. If r is a unit vector in 3  representing the axis 
of rotation and θ is the angle of rotation, then the quaternion 
representing the rotation is as follows:

sin( )
2=

cos( )
2

q





 
 
 
 
  

r

 

                 (3)

Both q and −q correspond to the same rotation, making the 
unit quaternions a ``double cover'' of the group of rotations.

The conjugate of a quaternion is denoted with a superscript 
† and represents the rotation about the same axis r by −θ: 

† =
v

q
s
 
 
 

                 (4)

Two rotations can be composed by multiplying their 
quaternion representations. A quaternion q3 representing a 
rotation q1 followed by a rotation q2 is simply q3 q2q1. The 
rotation of a three- dimensional vector x by a unit quaternion 
q is

†ˆ ˆ' = q qx                    (5)

where x  indicates the formation of a quaternion with zero 
scalar part from the vector x.

ˆ =
0
x 
 
 

x                   (6)

Analytic functions can be defi ned for quaternion arguments 
in much the same way as for complex numbers and matrices. 
In particular, the quaternion exponential has a simple closed-
form expression in terms of the quaternion’s scalar and vector 
parts:

=0

(| |)
= = | |

!
(| |)

n
q s

n

v sin vqe e v
n

cos v

  
 
 
  

                (7)

The formula for a rotation quaternion in Eq. (3) can be 
compactly written in terms of the exponential:

 
 

/ 2 2

2

sin
ˆ =

cos
e






 
 
  

r r
                 (8)

Finally, in addition to the purely algebraic properties of 
quaternions outlined so far, the subsequent analysis requires 
some kinematic identities relating quaternion derivatives to 
vector quantities more familiar in rigid-body dynamics. First, 
the time derivative of a body’s attitude quaternion is related to 
its angular velocity in the following way:

†ˆ = 2q q                   (9)

Second, the quaternion generalized force corresponding to 
a torque on the body is [13,14]. 
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ˆ= 2F q                (10)

Schaub and Junkins provide a thorough discussion of rigid-
body dynamics using quaternions [15].

3. Euler’s equation from Hamilton’s 
principle

This section presents a detailed derivation of the classical 
Euler equation using Hamilton’s principle. Although the results 
are not new, the techniques used provide the foundation for 
the development of the variational integrators in the following 
sections. A more in- depth treatment of variational mechanics 
on Lie groups, including the rotation group SO (3), is given by 
Holm [16]. 

The derivation begins with the Lagrangian for a free rigid 
body, which, in the absence of a potential, is simply its kinetic 
energy:

1 1 ˆ ˆ= =
2 2

L I J                         (11)

J is the following augmented inertia matrix:

11 12 13

21 22 23

31 32 33

0
0

=
0

0 0 0 0

I I I
I I I

J
I I I

 
 
 
 
 
 

               (12)

Following the standard approach in variational mechanics 
[17,18], an action integral is constructed and its variational 
derivative is taken: 

0

1 ˆ ˆ= . . . = 0
2

t

t
S f J dt                     (13)

At this point, care must be taken to vary ω in such a way that 
the quaternion unit-norm constraint is maintained. There are 
several ways to explicitly enforce the constraint in the action 
integral [14,19]. An alternative is to incorporate the constraint 
directly into the variation [4,6,16]. From the fact that the 
exponential of a quaternion with zero scalar part is always a 
unit quaternion, a varied unit quaternion can be defi ned as

ˆ=q qe                (14)

Where a left superscript ε is used to denote a varied quantity. 
Next, εq is differentiated with respect to time:

 ˆ ˆ ˆ=q qe qe                 (15)

Equations (14) and (15) can be substituted into the identity 
in Eq. (9) to obtain the desired variation of ω, keeping in mind 
that only terms linear in   need to be retained:

 ˆ ˆ†ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= 2 = 2q q e e                            (16)

Using Eq. (16), the variational derivative of the action 
integral in Eq. (13) is 

0
ˆ ˆ ˆ ˆ ˆ= | = 0 . .(2 . .(2 2 ) = 0

t f

t

dS J J dt
d

        


             (17)

Following the usual procedure, integration by parts is used 
to eliminate ̂ , noting that variations must be zero at the 
endpoints of the integration interval:

0
ˆ ˆ ˆ ˆ ˆ= 2 . . 2 . . = 0

t f

t
S J J dt                       (18)

Because all of the quaternions in Eq. (18) have scalar parts 
equal to zero, it can be converted to vector form:

0
ˆ= . .( ) . . = 0

t f

t
s I n I dt                     (19)

Using the fact that cyclically permuting the factors in a 
scalar triple product does not change its value, Eq. (19) can be 
rewritten as

 
0

= ( ) = 0
t f

t
s I I dt                         (20)

Finally, recognizing that equality must hold for all 
perturbations   results in Euler's equation:

. . = 0I I                                               (21)

4. Discrete-time Euler's equation

This section derives an algebraic equation that is a discrete-
time analogue of Euler’s equation. The ideas used, collectively 
known as discrete mechanics, are presented in detail by 
Marsden and West [1]. The derivation here roughly follows that 
of Lee et al. [4] but uses quaternions where they have used 
rotation matrices.

The point of departure from classical mechanics is the 
action integral in Eq. (13). It is fi rst broken into fi nite short 
segments of length h, with 0=kt t kh :

1 1

0 =0

1 1ˆ ˆ ˆ ˆ= . . = . .
2 2

Nt tf k

t tkK
S J dt J dt   

 

               (22)

The integral of the Lagrangian over a single time step h 
inside the summation on the right-hand side of Eq. (22) is 
known as the exact discrete Lagrangian [1]:

1 1 ˆ ˆ= . .
2

tkE
d tk
L J dt 



                (23)

The next step is to approximate E
dL  using a quadrature 

rule. Any quadrature rule for approximating integrals can be 
used for this purpose, with higher order rules generally leading 
to higher order variational integrators [1]. The resulting 
approximation is known as the discrete Lagrangian of the 
system. In general, different quadrature rules lead to different 
discrete Lagrangians. For simplicity and clarity, the rectangle 
rule is used here. First, a fi nite difference approximation of ω 
is defi ned:
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† † 1 = 1ˆ = 2 2 ( ) = 2( )k k k
k k k k

q q fq q q
h h

  
             (24)

The quaternion rotation from qk to qk+1 is denoted by 
†

1=k k kf q q  . Substituting the approximation for ˆk  into Eq. 

(23), applying the rectangle rule, and simplifying leads to the 
following discrete Lagrangian:

2= . .d k kL f J f
h

                 (25)

Using Eq. (25), the discrete action sum for the system can 
be formed:

1 1

=0 =0

2= = . .
N N

d d k k
K K

S L f J f
h

 

                 (26)

Equation (26) approximates Eq. (22) and serves the 
same role in discrete mechanics as the action integral does 
in traditional variational mechanics [1]. Analogously to the 
continuous case, Hamilton's principle is applied to the action 
sum. First, a varied fk that obeys the unit quaternion constraint 
is needed:

ˆ ˆ†
1 1ˆ ˆ= = ( )f q k k k k k k kk k

q e f f f f   
                 (27)

Using fk
 , the variation of the action sum is set equal to 

zero:

1 1

=0 1
=0 =0

2 4 ˆ ˆ= | . . = . .( = 0
N N

d fk k k k k k
K K

dS fk J f J f f
d h h

  
 

    


  (28)

The next step is to eliminate 1k   from the right-hand side 
of Eq. (28) by performing the discrete equivalent of integration 
by parts, which amounts to some simple index manipulation:

1

1 1 0 0 0 1 1
=1

4ˆ ˆ ˆ ˆ= . . . . = . .( = 0
N

d N N N k k k k k
K

S f J f f J f f J f f
h

    


      

                 (29)

Using the fact that variations at the endpoints must be zero, 
just as in the continuous case, the fi rst two terms in Eq. (29) 
can be eliminated:

 
1

1 1
=1

4 ˆ ˆ= = 0
N

d k k k k k
k

S f J f f
h

  


                (30)

At this point, Eq. (30), which implicitly includes unit-
norm constraints on the quaternions, is converted to an 
unconstrained vector equation by parameterizing fk in the 
following way:

=
1 .

k
k

k k

f 
 

       

               (31)

This parameterization is only valid for <1k  . Therefore, 

h must be chosen small enough to ensure that the incremental 
rotations between adjacent time steps are less than 1800. A 
number of other three-parameter attitude representations 
could be used instead (modifi ed Rodrigues parameters, for 

example); however, Eq. (31) is a natural choice that leads to 
simple and elegant expressions. In terms of  φk, Eq. (30) is 

1

=1 1 1 1 1 1

1 . . . . .( )
= 0

1 . . . . .( )

N
k k k k k

K k k k k k k k

n I I

I I

     

      



    

   
 
     

            (32)

Recognizing that Eq. (32) must be true for all k  and 
performing some simple vector algebra reveals an algebraic 
equation relating the incremental rotation from the last time 
step to the current time step φk to the incremental rotation 
from the current time step to the next time step φk+1: 

1 11 . . . = 1 1. . . 1k k k k k k kI I k I I k                   

              (33)

As a brief aside, Eq. (33) bears some resemblance to the 
classical Euler’s equation. Taking its limit as h goes to zero 
does, in fact, recover Eq. (21). This result confi rms that the 
discrete-time equation converges to the true differential 
equation for small time steps and establishes consistency with 
the continuous theory.

5. Variational integrator for the free rigid 
body

This section uses Eq. (33) as the starting point for the 
development of a variational integrator for the unforced rigid 
body. The additional ingredients needed are a way to initialize 
the integrator given an attitude q0 and angular velocity ω0, a 
way to update the attitude qk+1  and angular velocity ωk+1 after 
solving for φk+1, and a way to solve Eq. (33) for φk+1 given φk. 
Although it might seem simple enough to approximate φ0 
in any number of ways given ω0, ad hoc approaches do not 
maintain the variational integrator's conservation properties. 
The discrete Legendre transform [1] gives a consistent way to 
convert between φk and ωk. Similar to the classical Legendre 
transform [17], it maps from k (which is effectively the 
discrete-time velocity variable) to pk, the momentum at time 
k, which can then be multiplied by I−1 to recover ωk. Unlike the 
continuous version, there are actually two discrete Legendre 
transforms for a given time step [1]:

1)( ,
= .d k k

kk
k

L q q
p q

q





 


              (34)

1
1

1

( , )= dd k k
k k

k

L q qp q
q

 







               (35)

Applying these transformations to the discrete Lagrangian 
in Eq. (25) reveals that kp

  and  pk correspond to the left and 
right sides of Eq. (33):

2= 1 . . .k k k k k kp I I
h

                      (36)

1 1 1 1 1
2= 1 . . .k k k k k kp I I
h

                          (37)
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This result leads to several key conclusions. First, Eqns. 
(36) and (37) provide a new interpretation of the discrete-
time equation of motion as a momentum balance between 
adjacent time steps. Second, Eq. (36) can be used to initialize 
the integrator by solving for φ0 given I and ω0. Lastly, pk, and 
hence ωk, can be calculated at any point during the integration 
using either Eqns. (36) or (37).

The fi nal missing piece of the integrator is a method 
for solving Eq. (33), which is both implicit and nonlinear. 
Newton’s method, which amounts to solving successive linear 
approximations of the equation until a desired level of accuracy 
is achieved [3,20], provides an effi cient solution in this case. 
The necessary linear approximation is the Jacobian matrix of 
Eq. (37),

1 1 1 1

1 1 1

2 1 . . 1=
( ) ( )

k k k k k

k k k

p I I I k
p h skew I skew

    
 

   

  

      
 

    

 

           (38)

where skew φ indicates the skew-symmetric matrix-
multiplication equivalent of the cross-product operation:

1 3 2

2 3 1

3 2 1

0
= 0

0
skew

  
  
  

   
      
      

             (39)

Three or four Newton iterations are suffi cient to reach 
machine precision in all of the examples presented in Section 
9 using standard 64-bit fl oating-point arithmetic. Once φk+1 is 
computed, the attitude can be updated by simple quaternion 
multiplication with the previous attitude, 1 =k k kq q q .

In summary, given an inertia  and initial conditions q0 and 
ω0, the integrator is initialized by computing the momentum 

0 0= I p   and an initial guess for �0. A reasonable guess is 

0 02
h  .

The true value of φ0 is then calculated to machine precision 
using Newton’s method with Eqns. (37) and (38). From φ0, p1 is 
calculated using Eq. (36), followed by ω1 and q1. The process is 
then repeated as desired.

6. Gyrostats

A gyrostat is a system of coupled rigid bodies whose relative 
motions do not change the total inertia tensor of the system 
[21]. A practical example is a rigid body with internal rotors or 
momentum actuators that can spin relative to the carrier body, 
such as a spacecraft with reaction wheels. Using the variational 
framework developed in the preceding sections, both the 
classical equations of motion and a variational integrator 
are straightforward to derive. The Lagrangian for a gyrostat 
system is 

2

=0

1 1 1= . . ( ). .( ) ( )
2 2 2

N

B B B B r r B r r B r
r

L I I m x            
                  (40)

where IB and ωB are the carrier body’s inertia tensor and 
angular velocity, the Ir are the rotor inertia tensors, the ωr are 
the rotor angular velocities relative to the carrier body, and the 
Xr are the rotor positions relative to the carrier body’s center 
of mass. The Lagrangian can be simplifi ed by introducing a 
modifi ed body inertia.

0
BI , which includes the rotor masses,

1 2

=1
= ( )

N

B B r r
r

I I m skew x                (41)

Substituting 0
BI  into Eq. (40) eliminates the last term, 

giving the simpler expression

'

=1

1 1= . . ( ). .( )
2 2

N

B B B B r r B r
r

L I I                   (42)

The rotor angular velocities ωr are treated as exogenous 
inputs to the system that can be set arbitrarily (e.g., by a 
controller), and so variations need only be taken with respect 
to ωB. This fact makes the derivation for the gyrostat nearly 
identical to the free rigid body. The only difference is that a few 
extra terms involving Ir and ωr are carried through. Using  ωB to 
vary the action and following the rest of the steps in Section 3 
results in the following differential equation:

' '

=1
. . . . . . = 0

N

B B B B B B B b r B r r b r r
r

I I I I I I                 

                  (43)

Two new defi nitions help simplify Eq. (43). First, the 
gyrostat inertia IG is

' 2

=1 0
= = ( )

N N

G B r B r r r
r

I I I I I m skew x                (44)

Second, ρ is the total angular momentum stored in all the 
rotors: 

=1
= .

N

r r
r
I                   (45)

Substituting IG  and ρ into Eq. (43) results in the classical 
equation of motion for the gyrostat [21]:

. ( . ) = 0G B B G BI I                     (46)

The steps involved in deriving the discrete-time equivalent 
of Eq. (46) are now briefl y highlighted. If ωB is approximated 
as in Eq. (24) and the rectangle rule is used, the discrete 
Lagrangian for the gyrostat is

   , ,2 2
=1

2 ˆ ˆ=
N

' h h
d k B k k r k r k r k

r
L f J f f J f

h
  

     
 

           (47)

where 0
BJ  and Jr are the augmented 4 × 4 equivalents formed 

as in Eq. (26) and its variation taken using εfk  of 0
BI  and Ir. The 

discrete action sum Sd can then be formed as in Eq. (26) and its 
variation taken using εfk from Eq. (27):
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 

   

                 (48)

Following the rest of the steps in Section 4 and substituting 
in IG and ρ results in the discrete-time gyrostat equation:

1 1 1 1 1 1 1

1 . . . =
2 2

1 . . .
2 2
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k k G k k k G k k

k k G k k k G k k

h hI I

h hI I

 
       

               (49)

Equation (49) can be directly substituted into the variational 
integrator developed in Section 5. The only other change 
necessary is to the Jacobian in the Newton iteration:

1

2= 1 ( ) ( ) ( )
2 21 1k

p I h hI skew I skew I skew
h

     
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



 
      

   

 


 

 

                  (50)

7. External torques

External torques can be incorporated into the variational 
framework using the Lagrange–d’Alembert principle (often 
known simply as d’Alembert’s principle) [17,18]. In particular, 
its integral form [1,22]:

0 0
. = 0

t tf f

t t
Ldt F qdt                   (51)

is most readily applied here, where the term on the left is 
simply the variation of the action δS and the term on the right 
is the integral of the virtual work done by a generalized force 
F. To apply the Lagrange–d’Alembert principle to a rigid body, 
the expression for the quaternion generalized force given in 
Eq. (10), as well as the variational derivative of the attitude 
quaternion δq, are substituted into the second term of Eq. (51):

0 0
ˆˆ= 2 ( )

t tf f

t t
F qdt q q dt                (52)

A little algebra reveals that ˆˆ ,q q     further simplifying 
the expression. Combining this result with the action term 
from Eq. (18) leads to the following equation: 

 
0

ˆ ˆ ˆ ˆ ˆ ˆˆ2 2 2 = 0 . =
t f

t
J J dt F qdt                      (53)

It is then straightforward to work through the rest of the 
steps in Section 3 to arrive at the forced Euler equation:

. . =I I                  (54)

Incorporating forcing into the discrete variational 
framework is a bit more subtle than in the continuous case. 
The discrete version of the Lagrange–D’Alembert principle is

1
=1 =1

. . = 0
N N

d d k d k
k k
L F q F q    

           (55)

where dF
  and Fd are known as discrete generalized forces 

[1]. Similar to what is encountered with the discrete Legendre 
transform, there are two discrete generalized forces 
corresponding to the beginning and end of a time step:

1 1 ( )= ( , ).
2

tk

d
t kk

q tF F q q dt
q


 

           (56)
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1
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2
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d
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q tF F q q dt
q







              (57)

As with the discrete Lagrangian, the integrals in the 
defi nition of the discrete generalized forces are approximated 
by quadrature. Here, the rectangle rule is used, though more 
accurate quadrature rules can lead to more accurate integrators 
at the expense of increased computational burden:

ˆd k kF hq                  (58)

1 1ˆd k kF hq 
                  (59)

Substituting the approximations for dF
  and Fd , as well as 

the discrete Lagrangian for the rigid body from Eq. (25), into 
Eq. (55) results in

1 1 1
=0 =0

2 ˆ ˆ. . . . = 0
N N

k k k k k k
k k

f J f hq k q q
h

                    (60)

Carrying out the variational derivatives leads to the 
following:

1 1 1
=0

4 ˆ ˆˆ ˆ. ( ) . . = 0
N

k k k k k k k k k
k

f J f f h h
h

                      (61)

Eliminating the 1k   terms again requires a “discrete 
integration by parts.” Manipulating indices results in

1 1
=0

4 ˆˆ. ( ) 2 . = 0
N

k k k k K k k
k

f J f f h
h

                    (62)

Retracing the remaining steps in Section 4 yields the 
discrete-time equation of motion for the forced rigid body:

   
2

1 1 1 1 1 11 ( ) = 1 ( )
2k k k k k k k k k k k
hI I I I                             

                  (63)

This result can also be readily applied to the forced gyrostat 
by adding the same torque term onto the right-hand side of 
Eq. (49).

8. Gyrostat spacecraft with damping

The tools developed up to this point enable the construction 
of a variational integrator for a gyrostat with an internal 
energy-dissipating mechanism. The mechanism considered 
here is known as a Kane damper and consists of a spherical 
mass immersed in a viscous fl uid inside a spherical cavity in 
the spacecraft body [23]. The torque exerted on the spacecraft 
by the damper is
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= ( )D BC                (64)

where C is a damping constant, ωD is the damper angular 
velocity, and ωB is the body angular velocity. The basic approach 
taken here is to treat the body and damper as separate rigid 
bodies coupled through the viscous damping force. Equation 
(64) is approximated by fi nite differences in the usual way, 
giving

2 ( )k k kC
h

                   (65)

where 1 1 1 1 1
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2 2
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          

k k G k k k G k

k k G k k k

h hI I

hI I is the incremental body rotation defi ned in Eq. (31) 
and γk is the analogous incremental rotation for the damper. 
Substituting this approximation into Eq. (63) yields a set of 
coupled equations for the gyrostat–damper system:
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                (66)

1 1 1 1 11 . = 1 . . ( )k k D k k D k k kI I hC                      (67)

These equations take advantage of the fact that the damper 
is spherical, and thus has an inertia tensor that is a scalar 
multiple of the identity, to eliminate the cross-product term 

in Eq. (67).

Equations (66) and (67) must be solved simultaneously for 
φk+1 and γk+1. Once again, Newton’s method is used, this time 
with both equations combined to form a single six-dimensional 
system. The necessary 6×6 Jacobian matrix is easily derived in 
terms of Eqs. (38) and (50). In addition to the steps outlined 
in Section 5, a subtlety arises in the implementation of this 
integrator in that the components of the damper’s angular-
momentum vector must be rotated by fk at the end of each time 
step to keep them aligned with the spacecraft body frame.

9. Numerical examples

This section presents some numerical examples to 
demonstrate the performance of the variational integrators 
derived in Secs. IV–VIII. Comparisons are made to the second-
order fi xed-step midpoint rule and MATLAB's ODE45 and 
ODE15s variable-step Runge–Kutta solvers with default error 
tolerances [24]. The computational cost of the midpoint 
rule roughly equals that of the variational integrators.In all 
simulations, the following inertia matrix is used:

1 0 0
= 0 2 0

0 0 3
I

 
 
 
                 

         (68)

A. Rigid body

The fi rst test compares the energy and momentum behavior 
of the integrator in Section 5 with the midpoint rule and ODE45 

by simulating a free rigid body with an initial angular velocity 

0 4 5 6= , , rad/sT     . The time steps for the midpoint rule and 
the variational integrator are chosen to be h = 0.2 s to make the 
run time for both roughly equal to that of ODE45. Because this 
system is conservative, both the inertial angular-momentum 
vector components and the total energy should remain constant 
throughout the simulation.

The performance of the proposed variational integrator is 
fi rst evaluated against conventional nonsymplectic schemes. 
Figure 1 illustrates the applied input torque components in the 
body frame. The sinusoidal profi les represent externally applied 
control or disturbance torques driving the rigid-body dynamics. 
These torque excitations are critical for benchmarking 
integration schemes since they generate oscillatory responses 
that challenge numerical stability. The smooth representation 
of all three components confi rms that the variational integrator 
correctly captures torque transmission without introducing 
spurious oscillations or numerical artifacts, which are often 
observed in nonsymplectic methods at larger time steps.

Figure 2 shows the normalized internal rotor momentum 
evolution. Here, the momentum components remain bounded 

Figure 1: Input torque components applied in the body frame, providing the 
excitation for rigid-body dynamics simulation.

Figure 2: Normalized internal rotor momentum evolution, demonstrating the 
momentum-preserving property of the variational integrator.
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and follow physically consistent oscillations over the entire 
simulation horizon. This behavior highlights the momentum-
preserving property of the variational integrator. In contrast, 
classical Runge–Kutta solvers gradually accumulate drift due 
to truncation errors, causing artifi cial energy injection or 
dissipation into the system. The fact that the variational results 
align almost exactly with the reference solution demonstrates 
that the scheme inherently respects conservation laws of rigid-
body motion, even under long-duration simulations.

Figure 3 presents the body angular velocity components 
across an extended propagation interval. The oscillatory 
motion refl ects the natural rotational dynamics of the 
system under the applied torques. The variational integrator 
maintains stable angular velocity trajectories for over one 
million integration steps, showing no evidence of instability 
or exponential error growth. The slight long-term drift is 
attributable solely to round-off error from fi nite-precision 
fl oating-point arithmetic. Importantly, this error remains 
bounded and grows at a much slower rate compared to 
nonsymplectic integrators, which typically amplify drift due to 
loss of symplectic structure. This confi rms that the variational 
scheme is particularly well suited for long-duration attitude 
propagation, where numerical stability is critical.

Figure 4 depicts the inertial angular momentum 
components, which remain nearly constant throughout the 
simulation. This invariance is a direct consequence of the 
variational integrator’s geometric structure, which enforces 
conservation of fi rst integrals such as angular momentum. 
Even over long integration windows, the deviation between 
the variational and reference solutions remains negligible. By 
contrast, conventional Runge–Kutta methods introduce gradual 
dissipation or amplifi cation of momentum because they do 
not explicitly preserve invariants of motion. The near-perfect 
overlap of the momentum curves in Figure 4 demonstrates that 
the variational framework not only stabilizes the numerical 
solution but also guarantees physical consistency, making it a 
robust tool for spacecraft dynamics simulations.

Together, Figures 1-4 confi rm that the variational integrator 
preserves key invariants of motion and provides long-term 

numerical stability. While higher-order Runge–Kutta schemes 
can reduce truncation error, they do so at substantially higher 
computational cost. The variational method strikes a more 
effective balance, delivering computational effi ciency while 
rigorously maintaining the system’s physical properties. 
This makes it particularly suitable for spacecraft attitude 
propagation and real-time guidance, navigation, and control 
applications.

B. Damped rigid body

The second numerical experiment incorporates the 
spherical damper described in Section 8 into the rigid-body 
simulation. The damper inertia is set to ID = 0.2 and the 
damping constant C is varied from 0.1 to 100. The classical 
midpoint rule is excluded from the comparison, since it rapidly 
diverges as C increases and requires prohibitively small step 
sizes to maintain stability.

Figure 5 presents the total system energy over time for 
the case C = 100. Both ODE45 and the proposed variational 
integrator capture the dissipative behavior of the damped 
rigid body, showing a monotonic decay of energy. However, 
the variational integrator achieves this with a fi xed time step 
of h = 0.3s, whereas ODE45 must continually adapt its step 
size to ensure stability. Despite this, the results remain nearly 
indistinguishable, confi rming that the variational method can 
reproduce dissipative dynamics with high fi delity while being 
computationally more effi cient.

Figure 6 shows the evolution of attitude quaternion 
components expressed in terms of system momentum. The 
variational integrator maintains consistency with ODE45 across 
all components, accurately refl ecting the coupled dynamics 
between the body and the internal damper. Importantly, the 
momentum oscillations remain physically interpretable, and 
no artifi cial drift is introduced by the variational scheme, even 
under strong damping conditions.

Figure 7 depicts the rotor momentum components. These 
plots demonstrate the energy exchange between the damper 

Figure 3: Body angular velocity components over extended integration, showing 
stable trajectories with bounded round-off error growth.

Figure 4: Inertial angular momentum components, illustrating near-constant 
conservation under the variational integrator.
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and the primary body dynamics, where the damper dissipates 
rotational energy and stabilizes the system response. The 
smooth decay of momentum confi rms that the variational 
framework is able to correctly capture the dissipative interaction 
between subsystems, a task that often destabilizes traditional 
integrators unless extremely small step sizes are employed.

Figure 8 presents the body angular velocity components. 
While both ODE45 and the variational scheme produce nearly 
identical results, ODE45 requires adaptive step refi nement 
to avoid instability, whereas the variational method achieves 
stability with a fi xed step size. This robustness highlights a 
signifi cant advantage for real-time spacecraft applications, 
where computational budgets are limited and adaptive step 
solvers may not be practical.

Together, Figures 5-8 validate that the variational integrator 
not only conserves momentum and energy in conservative 
systems (as shown in Section 9A), but also extends naturally 
to dissipative dynamics without loss of accuracy or stability. 
This dual capability makes the method particularly attractive 
for modeling spacecraft equipped with passive damping 
mechanisms, where long-duration, stable simulations are 
essential.

C. Extended kalman fi lter

The fi nal test case demonstrates the advantages of 
variational integrators in a real-time estimation application. A 
spacecraft attitude determination problem is simulated where 
a multiplicative extended Kalman fi lter (MEKF) [25,26] is used 
to estimate the attitude quaternion from noisy measurements 
of two inertial reference vectors. This situation is typical on 
CubeSats, for example, where magnetometer and sun vector 
measurements are commonly used for attitude determination.

A simulated truth model is constructed by integrating 
the rigid-body equations of motion with initial conditions 

00;0;0;1
Tq  and 0 4; 5;6 deg/sT   using ODE45 in MATLAB. 

Simulated vector measurements are then generated and 
Gaussian noise is added. Attitudes for fi lter initialization are 
computed from the fi rst pair of noisy measurement vectors 
using the triad of vectors (TRIAD) algorithm [27]. Figures 8-10 
compare a standard EKF to one using a variational integrator 
to perform its state prediction step. The two fi lters have nearly 
identical performance at high sample rates but show very 
different behaviors as the sample rate decreases. The underlying 
reason for this performance difference is the quality of the 
linearization that the variational integrator yields. Equation 

Figure 5: Total system energy for the damped rigid body at C=100, comparing 
dissipative behavior captured by ODE45 and the variational integrator.

Figure 6: Evolution of system momentum expressed through quaternion 
components, highlighting consistency between ODE45 and the variational 
integrator.

Figure 7: Rotor momentum components showing smooth energy exchange and 
dissipation by the internal damper.

Figure 8: Body angular velocity components under damping, illustrating stability of 
the variational integrator with a fi xed step size.
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(38) and the corresponding Jacobian of Eq. (36) lead to the true 
linearization of the map from φk to φk+1.

1

1

1

=k k k

k k k

  
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





   
    

              (69)

This linearization is completely independent of the step size 
taken. As a result, fi lters built around variational integrators 
are highly insensitive to sample rate and can maintain good 
performance and convergence at much lower rates than 
standard extended Kalman fi lters. 

10.  Conclusion

The integrators developed in this study offer physically 
realistic momentum and energy behavior while maintaining 
modest computational costs. This study also highlights the 
importance of selecting appropriate control points in the 
quaternion curve and the quadrature points. Such choices lead 
to increased computational effi ciency by enabling larger time 
steps. The quaternion approach has the potential to become an 
excellent tool for computing spacecraft orbital trajectories in 
proximity operations.

Additional problems may also benefi t from using this type 
of integrator for long-term orbital motion propagation, such 
as the computation of trajectories for small moons around 
asteroids, orbital trajectories of small landers or non-propelled 

small satellites, and dust/particle ejection from an asteroid. It 
is worth noting that research is currently underway in this 
area, promising a bright future for symplectic implicit methods 
such as quaternion variational methods [28,29].
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