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Abstract

Electrochemical corrosion protection of metallic structures, particularly, in oil storage tanks, is a problem of great industrial importance. This paper proposes a 
mathematical model based on partial differential equations, which can be simplifi ed to an ordinary differential equation with variable coeffi  cients, under certain conditions. 
The latter is solved using Laplace transform, resulting in a solution expressed in terms of modifi ed Bessel functions.
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Introduction

A problem of great importance to industry—specifi cally 
the oil industry—is the protection of its metallic structures 
against electrochemical corrosion. In recent literature, various 
approaches to solve this problem can be found. These include 
the use of corrosion inhibitors [1-3], including those derived 
from natural extracts such as Caesalpinia spinosa and Ilex 
guayusa, which have shown promising results in mitigating steel 
corrosion [3]. Other strategies involve constructing structures 
from specially engineered alloys with enhanced resistance to 
corrosion, such as nitrogen-alloyed VCoNi systems developed 
for tribocorrosion conditions [4]. Additionally, the use of 
smart materials has gained attention for their self-healing 
and responsive capabilities, offering innovative possibilities in 
corrosion protection [5].

One of the most widely used techniques to achieve this 
objective is the use of sacrifi cial anodes, which must be placed 
in precise locations to maximize protection and minimize 
installation costs.

This paper examines the corrosion protection of ANCAP’s oil 
storage tank roofs (the state-owned oil company of Uruguay), 
which are located at the Eastern Terminal, near Punta José 
Ignacio, a cape on the Uruguayan Atlantic coast [6].

Although oil does not conduct ions –therefore it is not a 
corrosive medium– it should be noted that crude oil is typically 
accompanied by water, which accumulates at the bottom of the 
aforementioned storage tanks. The design of anodic protection 
involves choosing the appropriate material, calculating their 
mass, the position, and number of anodes to be used. This 
paper summarizes the key steps of the mathematical modeling 
of the problem. This model corresponds to an elliptic PDE in 
cylindrical coordinates, accompanied by nonlinear boundary 
conditions [7,8]. After several simplifi cations, it results in a 
second-order ODE with variable coeffi cients.

The simplifi ed equation is solved by Laplace Transform, 
resulting in a general solution, expressed as a linear 
combination of Bessel functions plus a constant. This solution 
will serve as the fundamental input for an analytical-numerical 
method, in which the radii at which the sacrifi cial anodes will 
be located are calculated using an implicit iterative method, to 
be developed in further research.

The mathematical model

In this section, we will succinctly describe how the 
mathematical model used to determine the distribution of the 
anodes within the tank was obtained.
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Firstly, a mass balance is performed in a control volume 
[9] within the electrolyte. In the case of species i this balance 
gives:

ci J Ri it


   
               

(1)

Similarly, the overall balance for all species involved is:

 ci i J Ri ii it
     

              (2)

Equation (2) is transformed into a charge balance by 
multiplying by the charges of the species zi and the Faraday 
constant F. This charge balance is presented in Equation 3.

     
z ci i iF F z J F z Ri ii i i it

     
             (3)

Since in this case we study an electrochemical system 
with reaction at the interface, it can be assumed that there 
is no generation in the control volume (then Ri = 0). Also, 

  0
z ci i iF
t

 


 due to the steady-state condition, and so, we 

obtain:

  0 F z J ji i i


                  (4)

where j


 is the current density vector.

Secondly, j


 is developed considering migration, diffusion, 
and advection [10], which initially results in a three-summand 
equation [8], like in the following equation: 

           0      j z u c E F D z c Fv z ci i ii i i i i i i i


               

                 (5)

Where v is the local velocity of the fl uid, Di is the diffusivity 
of species i, and ui is the ionic mobility. 

Equation (5) is simplifi ed under the assumptions that the 
solution is an isotropic medium (so the ionic conductivity and 
diffusivity of the species have zero gradients) and applying the 
electroneutrality condition (thus the convective term vanishes). 
Because of this, Equation (5) further simplifi es to:

 2 2 ÷ E  0    j F D z c Fv z ci ii i i i i


                   (6)

Where x is the electrolyte conductivity?

Due to the condition of electroneutrality, the convective 
term is zero, and then, Equation (6) can be simplifi ed one more 
time to give:

2 2 ÷ E 0  j F D z ci i i i


                   (7)

Moreover, in primary or secondary current distributions, it 
can be assumed that there is no concentration gradient and so 

Equation (7) is converted into:

2 ÷ E 0j


                    (8)

Equation (8) gives rise to the following elliptic PDE:

2 0E                  (9)

Since our system is a cylindrical tank with D = 60 m and h = 
0.015 m (average height of the conductive electrolyte present, 
the heigh tank is 20 m), it is more convenient to use cylindrical 
coordinates [11], and we obtain:

2 2 21 1  02 2 2 2
E E E E

r rr r z

   
   

  
             (10)

Due to symmetry reasons, the derivatives with respect to 
the polar angle  can be canceled, obtaining:

2 21 02 2
E E E

r rr z
  

  
 

               (11)

Furthermore, for symmetry reasons, there is no fl ow in the 
center of the tank; therefore,

0
0

E
r r




 
                (12)

The other boundary condition is given by the experimental 
polarization curves (electrochemical potential vs. current 
density), obtained in the laboratory and piecewise linearized.

Finally, a new boundary condition is obtained at the oil/
water interface, where there is no fl ow, and therefore,

0E
r





 Evaluated at z = L                (13)

In this system, the Frumkin condition for unidirectional 
fl ow is satisfi ed [12] for unidirectional fl ow is satisfi ed, which 
simplifi es the differential Equation (11) to give

2 1 02
E E

r rr
 

 


               (14)

If Equation (14) is written in terms of the electrochemical 
potential (  ), the equation results:

2 1 2  2 iSr r Lr
   
  


               (15)

being is the normal current to the metallic surface.

The boundary condition can be piecewise linearized, using 
appropriate software, or manually. The only condition is that 
the curve can be locally considered as a straight line segment 
with an approximation error below the predetermined error 
margins. 
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The result of this process is given by

0
i a bSz z

 
  

 
              (16) 

In Equation (16), a and b are the parameters corresponding 
to the piecewise linearization of the boundary condition. 

After a change of variable x = r / R, Equation (15) becomes:

2 21 2  2
a bR

x x b Lx
           

              (17)

Equation (17) is of the form

1'' '  y y Ky AK
x

                   (18)

Where 
22 KbR
L

  and  a A

b
  depend on the piecewise 

linearization of the experimental polarization curves, the 
geometric characteristics, and the conductivity of the medium.

The general solution

The homogeneous equation associated with Equation (18) 
is: 

1  0y y Ky
x

   
             

(19)

If we put K = a2 in equation (19), and multiplying by x we 
obtain: 

2  0xy y a xy                  (20)

Let be Y(s) the Laplace transform of y(x), then:

              2, ' ,y x Y s y x sY s y x s Y s s         
 

                
(21)

Notably, since x = r / R, then x =  [0,1], therefore, the 
functions y(x), y′ (x), y′′ (x) possess compact support, thereby 
ensuring convergence of their Laplace transforms  0s   .

Therefore, the transformed equation becomes:

         dx y x y x Y s
ds

                 (22) 

And,

         2  2  d xx y x y s Y s sY s
ds

       
           

(23)

Then by applying Laplace transform, the ODE (20) becomes:

     2 2  0a s Y s sY s                   (24)

Separating variables and integrating we obtain:

  1.
2 2

Y s C
s a




              (25)

the inverse Laplace transform of which is C.Io (a x), where Io(a 
x) is the modifi ed Bessel function of the fi rst kind, with order 
zero [13].

From Equation (25) it is easy to obtain the general solution 
of the homogeneous ODE as:

   .  .  1 0 2 0c I a x c K a x                (26)

where Io(x) and Ko x) are modifi ed Bessel functions of order zero.

It can be shown that y(x) = −A is a particular solution of the 
non-homogeneous ODE (18) and therefore the general solution 

of (18) is of the form: 

     .  .  1 0 2 0y x c I a x c K a x A  
 

             (27)

Some considerations on the use of the gene-
ral solution

To determine the optimal electrode placement radii for 
placing the sacrifi cial electrodes, it is necessary to divide the 
domain of variable x = r / R into several intervals

 , ,  ,  , ,  , 0 1 1 2 1x x x x x xnn
                         (28) 

where the coeffi cients of the ODE (18), K and A take different 
values, depending on the piecewise linearization of the 
experimental polarization curves. 

As a consequence, the constants c1, c2 of the general solution, 
take also different values in each interval.

Considering that there are more unknowns than equations, 
it is necessary to add other equalities, which can arise from 
deriving (27), to obtain:

     . .  . .  1 1 2 1y x c a I a x c a K a x                   (29) 

since

     0 1
d I x I x
dx

  and      0 1
d K x K x
dx

   [13]         (30)

The derivative at the internal nodes (xi, i = 1, 2, … , n − 1) 
can be equated to the bilateral numerical derivative to obtain 
more equations, which would allow obtaining an analytical-
numerical method to fi nd the positions of the electrodes. 

However, if this iterative process is performed forward, it 
becomes unstable. Therefore, it is better to use these equations 
to obtain a more complicated, but more stable, implicit, 
backward method.

Conclusion

In this work, a model was developed for calculating the 
positions of the sacrifi cial electrodes for tank protection in 
the petroleum industry. The proposed equation admits an 
analytical solution using the Laplace transform and modifi ed 
Bessel functions. This improves previous results [8], presented 
in the form of power series, which are not easy to implement 
in the solution of experimental problems.
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The proposed solution is both simpler and more elegant; 
however, the number of unknowns, which exceeds the number 
of equations, requires the addition of new numerical-analytical 
equalities. 

Since forward methods proved unstable, in order to use 
those equations, the iterative method must be a backward 
analytical-numerical method. This implicit backward method 
must be carried out by dividing the interval (x =  [0,1]) into 
subintervals, where the obtained analytical solution and its 
derivative will be applied. The analytical derivative will be 
matched to the bilateral numerical derivative in all the internal 
nodes of the partition. 

The proposed method could be applied to other cylindrical 
geometries where the unidirectional fl ow condition is satisfi ed, 
making it readily adaptable to similar cylindrical corrosion 
problems.
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