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Abstract

Let 
3D    be a bounded domain with a smooth boundary S, 

= 0,  = 0 in ,Lu av bu Mv D  

= = 0 on .u v S

Assume that L and M are positive elliptic Dirichlet operators of second order, a > 0 and b > 0 are constants. We prove that under these assumptions, the unique solution 
is u = v = 0 in D. 
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1. Introduction

This paper offers a partial solution to Open Problem 2 from 
[1] is given. In [2] and [3] the millennium problem related to 
the Navier-Stokes equations is solved.

Let D be a bounded domain in R³ with smooth boundary S. 

= 0 in ,Lu av D                  (1)

= = 0 on .u v S                  (2)

= = 0 on ,u v S               (3)

Assume that L and M are second order Dirichlet elliptic 
operators with real-valued coeffi cients, the bilinear form (Lu, 
u) is positive-defi nite for u ≠ 0.

( , ) > 0 for 0,Lu u u                    (4)

( , ) > 0 for 0,Mv v v                    (5)

a and b are constants, 

> 0, > 0.a b                    (6)

Theorem 1. If assumptions (1)–(6) hold, then u = v = 0 in D. 

This problem concerns the uniqueness of solutions to 
coupled elliptic PDE systems with variable coeffi cients, a 
fundamental topic in mathematical analysis [1]. The full 
problem allows a(x), b(x) to vary spatially, increasing its 
generality and complexity. In the general formulation, the 
coupling coeffi cients a(x) and b(x) are positive continuous 
functions. a = a(x) > 0 and b = b(x) > 0.

2. Proofs

 Lets defi ne the inner product (u, v) over the domain D as 

( , ) :=u v uvdxD . From our assumptions one derives, multiplying 
(1) by u and integrating by parts, the relation: 

( , ) ( , ) = 0,Lu u a v u                 (7)

and multiplying (2) by v and integrating by parts, the 
relation: 
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( , ) ( , ) = 0.b u v Mv v                 (8)

Combining the previous inequalities and assumptions 
yields from the assumptions (4)–(6) and from the inequalities 
(7) and (8) one gets, which can lead to the inequality: 

( , ) 0, ( , ) 0.v u u v                  (9)

As u and v are real-valued functions, it follows that, one has 

( , ) = ( , ).v u u v               (10)

Therefore 

( , ) = ( , ) = 0v u u v                (11)

Consequently, 

( , ) = ( , ) = 0.Lu u Mv v              (12)

From (12) and our assumptions (4)–(5) it follows that u = v 
= 0 in D. Theorem 1 is proved. 

Remark. Note that in Theorem 1 there are no restrictions on 
the size of the constants a and b or | |a b .

It is possible to show that the solution to problem (1)–(5) 
with a = a(x) and b = b(x), where a(x) and b(x) are continuous 
functions in the closure of D and 

| ( ) ( ) |< ,sup a x b x
x D




             (13)

where v is a suffi ciently small constant, is equal to zero in 
D.

Let us prove this conclusion. From (1)–(2) it follows that 

( , ) ( ( ) ( )) ( ) ( ) ( , ) = 0.Lu u a x b x u x v x dx Mv vS                (14)

From (4)–(5) it follows that 

2 2( , ) > , ( , ) ,Lu u c u Mv v c vL M               (15)

where 
2 = ( , ).u u u 

From our assumption (13) it follows that 

| ( ( ) ( )) ( ) ( ) | .a x b x u x v x dx u vS                   (16)

From (14)–(16) one derives: 

2 20 > .c u c v u vL M                   (17)

Choosing < c cL M  , ensures that inequality (17) leads 

to = = 0u v    , so = = 0u v  in D . 

Open problem: We pose the following open question: Does 
the conclusion of Theorem 1 remain valid if the assumption that a,b 
are constants is replaced by the assumption that = ( ) 0a a x   and 

= ( ) 0b b x   are continuous functions?

3. Conclusion

This result confi rms that  no non-trivial solution exists 
under constant coupling terms, contributing to PDE theory. 
Representing a coupled elliptic system with Dirichlet boundary 
conditions (1)–(3). The basic assumptions are: a > 0 and b > 0 
are constants, L and M are positive elliptic operators such that 
(Lu, u) = 0 implies u = 0, and (Mv, v) = 0 implies v = 0.

This result contributes to the broader understanding of 
stability and uniqueness in PDE modeling across physics and 
engineering.
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