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Abstract

This work examines the utilisation of artifi cial intelligence, particularly soft computing and machine learning, to augment robustness, enhance modelling precision, 
and facilitate swift assessment in nanofl uid-based heat transfer systems. This research utilizes the Levenberg-Marquardt algorithm alongside Artifi cial Backpropagation 
Neural Networks to assess the effi  cacy of nanoparticles in convective heat transfer mechanisms.

The emphasis is on creating a comparison between Al2O3-H2O nanoparticles and γ-Al2O3 in diverse base fl uids, such as ethylene glycol and water, across an extensive 
surface area.The boundary layer fl ow is analysed under the effects of magnetohydrodynamics (MHD), incorporating slip boundary conditions and γ-Al2O3 nanofl uids. This 
research examines a subject that has not been before investigated. The viscosity and thermal conductivity models for γ-Al2O3 nanofl uids are established using empirical 
data, whereas thermal radiation effects are included into the Brinkman viscosity and Maxwell thermal conductivity models for Al2O3 nanofl uids.The governing partial 
differential equations of magnetohydrodynamics are converted into ordinary differential equations using a suitable transformation. The dataset for the LMT-ABPNN model 
is produced using the Shooting method, which alters physical parameters across several situations, functioning as benchmarks for model training, validation, and testing. 
The effi  cacy of the LMT-ABPNN is assessed using measures like Mean Squared Error (MSE), error histograms, and regression analysis. The research examines the impact 
of many parameters on temperature, concentration, and velocity profi les. The Mean Squared Error (MSE) of the LMT-ABPNN model is assessed for several confi gurations 
of the Local Nusselt number in the Al2O3 -water system, with the Modifi ed Local Nusselt number yielding the most precise prediction. The Sherwood number is employed 
to evaluate the model's effi  cacy in forecasting the power generation of waste heat recovery systems. The model has signifi cant adaptability, with its gradient and learning 
rate underscoring its effi  cacy. The error histogram reveals negligible mistakes, suggesting possible avenues for additional optimization. The regression analysis of the 
alumina-water combination is illustrated in four graphs, which not only exhibit the model's present effectiveness but also highlight its potential for further enhancement.
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1. Introduction

Traditional heat transfer fl uids, like mineral oils and 
water, have limited thermal conductivity, adversely impacting 
industries such as chemical processing and transportation. 
Nonetheless, effi ciency may be enhanced by the use of solid 
particle suspensions and fl uids. Particles can be categorised 
in several manners, including distinctions based on metallic, 
non-metallic, and polymeric constituents. However, the 
widespread adoption of suspensions across several enterprises 
poses a series of challenges. These studies encompass the 
examination of factors such as the impact of erosion on 

thermal conductivity and the obstruction of fl ow pathways 
due to inadequate suspension stability. Furthermore, there is 
a gradual and persistent decline in pressure that intensifi es 
these issues [1-3]. Researchers' efforts encompass the 
dispersion of particles at the millimetre or micrometre 
scale inside liquid media, a technique initially presented by 
Maxwell in 1873. The rapid sedimentation of larger particles 
in fl uid systems is a signifi cant challenge. Consequently, 
there is a growing focus on innovations designed to stimulate 
interest in nanotechnology heat transfer fl uids, also known 
as "nanofl uids." [4-8]. Nano fl uids are utilized to evaluate 
the accuracy of engineering assertions and offer several 
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advantages compared to conventional suspensions. These 
advantages encompass improved stability, augmented thermal 
conductivity, and diminished pressure loss. The examination 
of fl ow and heat transfer over a stretched sheet is a vital 
phenomenon with considerable ramifi cations for numerous 
industrial applications, where the effective regulation of heat 
and fl uid fl ow is crucial for enhancing performance and energy 
effi ciency [9-12]. These settings encompass several processes, 
including the cooling of metallic sheets, the facilitation of 
crystal growth in cooling solutions, the manufacture of plastic 
and rubber sheets, the creation of paper and glass fi bres, 
and the enhancement of polymer and metal removal. In 
1873, Maxwell fi rst introduced the idea of improving thermal 
and electrical conductivity by the use of metallic particles. 
However, Choi's work done in the 1980s demonstrated that 
the use of conventional particles in micro-channel fl ow routes 
was impractical [13-15].  Recent research endeavours have 
investigated the behaviour of nanofl uids in boundary layer fl ows 
across stretched surfaces. This research has examined a variety 
of nanoparticles composed of various metals and oxides. This 
work examines an enhanced version of Buongiorno's model 
and presents explicit thermo-physical correlations to assess 
the impact of Darcy-Forchheimer and Lorentz forces on the 
effi ciency of alumina and water nanofl uid fl ows that produce 
radiation. The study investigates the fl ow dynamics occurring 
across a curved, polished surface, constrained by various 
convective limitations [16-18].  Samia, et al. [19] employed 
the fi nite volume methodology to investigate the motion of 
micropolar nanofl uids within a lid-driven cavity. Moreover, 
progress has been made in the creation of novel hybrid 
fi lms that combine 2D and 3D graphene oxide with diamond 
microcomposites included in polyimide. This innovation 
seeks to enhance the conductivity of electrical and thermal 
energy. The exceptional thermal conductivity of this advanced 
technology renders it an excellent option for dissipating heat 
in the electrical components of electric machines [20]. Sabir, 
et al. [21] conducted a numerical investigation of the fl ow 
characteristics of a two-dimensional Sutterby fl uid. The fl uid 
was restricted to the vicinity of a spot exhibiting no fl ow and was 
subjected to an angled magnetic fi eld and thermal radiation. 
Concurrently, Rehman, et al. [22] conducted an alternative 
computational analysis on the behaviour of a pseudo-plastic 
nanofl uid near a fl exible Riga sheet situated at a stagnation 
point. Ramesh, et al. [23] investigated the behaviour of an 
incompressible non-Newtonian fl uid in stagnation-point fl ow 
across a non-isothermal stretching sheet.

Baag and colleagues, as cited in [24] developed numerical 
techniques to investigate the fl ow characteristics of 
magnetohydrodynamics. Polarisable fl uids directed towards a 
stagnation point on a vertical surface. Effi cient cooling rates are 
essential for industrial applications, including the cooling of 
metal sheets, crystal formation, and manufacturing processes. 
The quality of the output depends on the issues related to 
fl ow and heat transfer from stretched surfaces. Recent studies 
have mostly investigated the behaviour of nanofl uids within 
the boundary layer over stretched surfaces. Nonetheless, there 
has been little research regarding the specifi c case of gamma 
alumina nanofl uids [25-31]. Artifi cial Neural Networks (ANN) 

are powerful artifi cial intelligence systems that utilise several 
processors to assess and process data. These technologies 
are utilised in several fi elds such as bioinformatics, systems 
control, and temporal data forecasting. They enable activities 
including pattern recognition, regression analysis, modelling, 
and mapping. Artifi cial neural networks (ANNs) facilitate the 
minimisation of costs and time related to laboratory trials.
Backpropagation, developed by Paul Werbos in 1974, minimises 
network error by gradient descent, whereas the Levenberg-
Marquardt algorithm guarantees convergence and stability of 
artifi cial neural networks in fl uid dynamics issues. Khan, et al. 
[32] used the Levenberg-Marquardt technique with an artifi cial 
backpropagated neural network (LMT-ABPNN) to investigate 
the heat transfer of nanoliquid fl ow between two parallel 
plates, considering Brownian and thermophoretic infl uences.
Aljohani and associates [33] created a wire coating model 
employing LMT-ABPNN to replicate the behaviour of Eyring 
Powell liquid under diverse situations. Shah, et al. [34] have 
successfully modelled the fl ow of cross magneto nanoliquid 
under the infl uence of a magnetic force and a permeable 
cylindrical structure utilising LMT-ABPNN.

Novelty of the work

This paper presents an innovative methodology that 
combines the Levenberg-Marquardt Technique (LMT) with 
Artifi cial Backpropagation Neural Networks (ABPNN) to 
examine Magneto hydrodynamic (MHD) Stagnation Point Flow. 
This unique methodology, in contrast to standard methods, 
considers the dynamic interactions among stagnation point 
fl ow, concentration profi les, and the infl uence of magnetic 
fi elds, utilizing ethylene glycol and water as base fl uids. This 
approach's distinctive feature is the synergistic integration 
of various components to develop a more precise and 
comprehensive model of MHD fl ows. Additionally, the study 
utilizes the shooting method to produce datasets for the 
training, validation, and testing stages, guaranteeing precise 
approximations of system dynamics. This work signifi cantly 
contributes by a comprehensive investigation of fl ow behaviors, 
velocity profi les, concentration distributions, and temperature 
variations under diverse situations. Essential factors are 
altered to investigate the intricate connections among these 
variables—an element frequently overlooked in conventional 
models. This facilitates a comprehensive understanding of the 
system by concurrently evaluating many impacting aspects. 
The model's robustness is evidenced by accuracy assessments, 
error histograms, and regression analysis, establishing a 
strong basis for verifying the LMT-ABPNN technique. This 
distinguishes it from current models regarding reliability 
and performance. This work's originality lies in its capacity 
to manage nonlinear dynamics and accurately forecast 
complicated behavior patterns, establishing it as an essential 
instrument for future MHD research. The use of LMT-ABPNN 
in this scenario signifi es a groundbreaking advancement, with 
no analogous investigation in the existing literature, so setting 
a new standard for future research.

The Levenberg-Marquardt Technique integrated with 
Artifi cial Backpropagation Neural Networks (LMT-ABPNN) is 
employed to estimate heat transfer in alumina-water Nano 
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fl uids. This innovative amalgamation of approaches provides 
deep insights into the complex dynamics of Nano fl uid fl ows 
infl uenced by magneto hydrodynamics, representing a notable 
advancement in the area.

2. Mathematical modeling

Examine a theoretical situation with a two-dimensional 
laminar boundary layer characterized by incompressible fl ow. 
This fl ow presumes uniform physical qualities and entails the 
movement of water and ethylene glycol Nano fl uids along an 
extended surface. The principal fl uids examined in this context 
are water and ethylene glycol (C2H6O2). The fl ow of Nano fl uids is 
generated by sheet stretching along the x-axis, affected by two 
forces of similar size but differing directions. The stretching 
velocity indicates that the fl ow is restricted to the area where 
y is positive. The exterior velocity of the boundary layer fl ow 
is typically denoted as, which may be properly articulated as, 
where a constant value is indicated.
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Radiative heat fl ux is estimated using the Rosseland 
approximation. utilizing variables such as u  and v , which 
denote the x and y velocity components, respectively, and 

, which signifi es fl uid density. Furthermore, pC


 denotes the 
specifi c heat at constant pressure.
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Now introducing the stretching velocity U  is given by 
( )=U x ax  where a is constant. Equation (1) is true by that the 

stream function is given by
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                   (7)

3. Thermo physical properties

The thermo-physical parameters, particularly the heat 
capacity of Nano fl uids, substantially affect their thermal 
performance. These nanoparticles, dispersed in a base fl uid, 
alter their thermal conductivity, specifi c heat capacity, and 

viscosity, infl uencing their capability to store thermal energy 
and manage temperature variations. This variable substantially 
infl uences heat transfer rates and system effi ciency.
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The dynamic viscosity of Nano fl uids can be expressed as
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4. Similarity transformation

The similarity transformation, as delineated in Equation 
(11), is frequently utilized in the analysis of boundary layer fl ow 
issues. This transformation enables fl ow variables, including 
velocity, temperature, and concentration, to be articulated 
in terms of dimensionless variables, thus streamlining the 
analysis and diminishing its complexity. This transformation 
converts the governing partial differential equations (PDEs) 
into ordinary differential equations (ODEs), making them more 
amenable to solution. Within this paradigm, the subsequent 
relations are derived:
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5 . Momentum equation
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6.  Energy equation
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7.  Concentration equation
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8. B oundary conditions

The boundary conditions that correspond to this are 
provided as.
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9. C ritical engineering parameters for ana-
lysis

The skin friction coeffi cient and the Nussle number are 
essential physical parameters in the analysis of fl uid dynamics 
and heat transfer across various systems. The skin friction 
coeffi cient measures the shear stress imposed by the fl uid on 
the surface, serving as a critical indicator of fl ow resistance. 
Conversely, the Nussle number is a dimensionless quantity 
that delineates the ratio of convective to conductive heat 
transfer in fl uid fl ow. Both parameters are indispensable for 
comprehending and enhancing heat transfer rates, especially 
in industrial applications involving Nano fl uids. The interaction 
between these parameters can profoundly infl uence thermal 
effi ciency and frictional losses in systems such as heat 
exchangers, internal combustion engines, and fl uid transport 
systems. The skin friction coeffi cient and the Nusselt number 
are the signifi cant physical interest parameters for the problem. 
Cf is given as
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The Nussle number is defi ned as
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The Sherwood number is expressed as:
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Table 1 presents the results of the LMT-ABPNN model for 
the local Nussle number (N. number), skin friction coeffi cient 
(S. friction), and Sherwood number (Sh. number) using 
alumina-water Nano fl uids.

 The Table 1 displays the results of the Levenberg-Marquardt 
method utilizing Artifi cial Backpropagation Neural Networks 
(LMT-ABPNN) for three principal physical parameters: the 
local Nusselt number (φ1), skin friction coeffi cient (φ2), and 
Sherwood number (φ3), pertaining to alumina-water (Al2O3-
H2O) nanofl uids. The table presents Mean Squared Error 
(MSE) values for training, validation, and testing, showing a 
substantial decrease from training to testing, which signifi es 
effective model generalization. The performance measure, 
indicative of the model's overall effi ciency, is shown for each 

Table 1: Results of LMT-ABPNN for local Nusselt number ϕ1(N.number), ϕ2 
skin friction coe_cient (S.friction), and ϕ3 Sherwood number (Sh.number) with 
nanoparticle ϕ1 (Al2O3 = H2O).

 Phys.  MSE  Training  Validation  Testing  Performance  Grad 

 φ1  1.30×10-8  3.24×10-9  1.20×10-10  1.31×10-6  1.89×10-5  1.00×10-8

 φ2  5.77.30×10-11  4.45×10-9  6.09×10-10  2.99×10-9  1.08×10-8  1.00×10-7

 φ3  2.66×10-7  3.40×10-8  2.60×10-8  2.64×10-7  1.94×10-5  1.00×10-7
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quantity, displaying values from 1.31×10-6 to 2.64×10-7. The 
gradient (Grad) values, essential for model optimization, 
together with the μ (Mu) values for each physical quantity, 
are also included. The results validate the LMT-ABPNN's 
capacity to precisely forecast the heat and mass transport 
characteristics of nanofl uids, affi rming the model's effi cacy 
throughout several training phases.

Numerical results

Code validation: Table 2 presents a complete comparison 
of the values of -f''(0) for the Al2O3-water combination. 
This evaluation is predicated on the fi ndings delineated 
independently by Hamad, et al. [14], Vishnu, et al. [35], and 
Abbas, et al. [36]. The consistency with prior fi ndings supports 
the validity of the current computational approach. The graphic 
images reinforce this consensus by visually representing the 
previously provided facts. The authors investigate the impact 
of nanoparticle volume fraction on several characteristics, 
including velocity and temperature profi les, skin friction 
coeffi cient, and reduced Nusselt number, utilizing visual aids.

Variation in parameters infl uences the local Nusselt 
numbers, skin friction, and Sherwood numbers through 
ANN

The Figure 1(a) displays the Mean Squared Error (MSE) 
depiction of LMT-ABPNN, which is based on several variations 
of the Local Nussle number for the Al2O3-water system. Its 
formula is: 

MSE = (1/n) * Σ (ypredi − ytruei)²

The fi ndings indicate that the LMT-ABPNN model, 
incorporating the Modifi ed Local Nussle number, has the 
lowest Mean Squared Error (MSE). The fi ndings suggest 
that the Modifi ed Local Nussle number is the most accurate 
parameter for predicting the Local Nussle number using the 
LMT-ABPNN model.

The graph 2(a) displays the average standard error (MSE) 
representation of the LMT-ABPNN model, considering several 
modifi cations of the skin friction coeffi cient number. The 
Mean Squared Error (MSE) quantifi es the discrepancy between 
the expected and actual values of the skin friction coeffi cient. A 
smaller mean squared error (MSE) signifi es superior predictive 
ability of the model in estimating the skin friction coeffi cient 
value. The graph indicates that the LMT-ABPNN model, when 
using the original skin friction coeffi cient number, has the 
lowest Mean Squared Error (MSE). These fi ndings suggest that 
the initial skin friction coeffi cient value is the most accurate 
parameter for forecasting the skin friction coeffi cient value. 

Table 2: Comparison of Results.

 φ  Hamid [14]  Vishnu, et al. [35]  Abbas, et al. [36]  Present work 

 0.05  1.00538  1.00537  1.00530  1.00530 

 0.10  0.99877  0.99877  0.98866  0.98867 

 0.15  0.98185  0.98184  0.97132  0.97131 

 0.20  0.95992  0.95991  0.94581  0.94580 

 

  

 

 
 

Figure 1: Graphical illustration of LMT-ABPNN based on several variations of Local Nussle number for the $Al2O3-water$(a) MSE representation (b)Results of the transition 
state,(c) Histogram for error analysis (d) Regression.
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The fi gure above discusses the LMT-ABPNN model. The 
alternative forms of the skin friction coeffi cient, including 
the modifi ed, normalized, and logarithmically transformed 
versions, exhibit worse performance compared to the original 
skin friction coeffi cient. This implies that these deviations are 
less successful in capturing the intricate correlations between 
the input and output variables of the LMT-ABPNN model.

The Sherwood number 3 (a) is a useful metric for assessing 
the effi cacy of a deep learning model in forecasting the power 
generation of a waste heat recovery system. A greater Sherwood 
number signifi es the model’s enhanced ability to accurately 
represent the intricate connections between the input and 
output variables. Nevertheless, it is crucial to acknowledge that 
the Sherwood number alone represents a single measure of 
model performance. Additional criteria, such as the precision 
and resilience of the model, should also be taken into account. 
The graphic displays the gradient and learning rate for the era. 
The gradient quantifi es the extent to which the weights of the 
model are adjusting in relation to the training data. A smaller 
gradient suggests that the model is approaching a solution. 
The learning rate is a parameter that governs the magnitude of 
the adjustments made to the weights of the model. An elevated 
learning rate can accelerate the model’s learning process, but 
it can also result in overfi tting. Reducing the learning rate will 
result in a slower learning process for the model, but it will 
decrease the likelihood of overfi tting.

The graphs 2(b) indicate a decreasing gradient, a suitable 
reduction in mu, and a plateauing of the validation checks. These 

fi ndings indicate that the deep learning model is acquiring 
knowledge effi ciently and demonstrating strong adaptability 
to unfamiliar material. In summary, the graphic indicates that 
the deep learning model is undergoing effi cient training and is 
prepared for deployment in a production environment.

The graph 3 (b) shows that the gradient is initially high, 
but it decreases over time as the model converges. Mu is 
also high at fi rst, but it is gradually reduced to prevent the 
model from overfi tting the training data. The validation 
checks initially increase, but they plateau towards the end of 
training. This suggests that the model is learning to generalize 
well to unseen data. Figure1(c) displays error histograms 
is a useful tool for evaluating the performance of the LMT-
ABPNN model. The prevalence of minor errors implies that the 
model can effectively forecast the local Nussle number for the 
Al2O3–water system. Nevertheless, the existence of certain 
signifi cant fl aws indicates that the model is not fl awless, and 
more enhancements can still be made. In summary, the error 
histogram demonstrates that the LMT-ABPNN model. The 
model successfully predicts the local Nussle number for the 
Al2O3-water system with high accuracy. Figure display 2(c) The 
error histogram, consisting of 20 bins, is constructed using 
many changes of the skin friction coeffi cient for the Al2O3-
water system. It displays the frequency of mistakes taken in 
each bin. The error histogram indicates that the bulk of errors 
fall below 0.001, with a prominent peak occurring at about 
0.0005. There exist a few mistakes over 0.001, however, they 
constitute a minority. The LMT-ABPNN model’s performance 

(a) (b) 

 
(c ) 

(d) 
 

Figure 2: Graphical illustration of LMT-ABPNN based on several variations of Local Nussle number for the $Al2O3-water$(a) MSE representation (b)Results of the transition 
state,(c) Histogram for error analysis (d) Regression.
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can be evaluated using the error histogram. The model’s small 
errors indicate accurate prediction of the Al2O3-water system’s 
skin friction coeffi cient. However, larger errors suggest room 
for improvement. To enhance performance, more training data 
and a different neural network architecture could be used, as 
the LMT-ABPNN is simple.

Figure 3(c) the error histogram, based on 20 bins of 
Local Sherwood Number (LSN) variations, is a useful tool 
for error analysis in LMT-ABPNN. It helps identify common 
error magnitudes, compare the performance of different LSN 
variations, and analyze the error distribution. The histogram 
shows a skewed distribution, suggesting the LMT-ABPNN is 
overestimating outputs. The most common error magnitude 
is around 0.0004, indicating the LMT-ABPNN is predicting 
outputs within 0.4%.

Figure display1, 2, 3(d) regression task is shown four graphs 
depicting the performance of the LMT-ABPNN model on the 
Al2O3-water regression problem, utilizing different changes 
of the local Nussle number. The plots display the training, 
validation, and overall datasets, respectively. The LMT-ABPNN 
model exhibits strong concordance with the target data across 
all four graphs, as evidenced by a correlation coeffi cient (R) of 1 
in each instance. This suggests that the model possesses a high 
capacity to comprehend the correlation between the input and 
output variables. Nevertheless, there exist nuanced variations 
in the model’s performance across the various data sets. On the 
training and validation data sets, the slope of the LMT-ABPNN 

fi t line is marginally lower than the slope of the target data 
line. This indicates that the model is inadequately fi tting the 
training data to a certain degree. The slope of the LMT-ABPNN 
fi t line is marginally greater than the slope of the target data 
line, as observed on the test and all data sets. This indicates that 
the model is excessively fi tting the training data to a certain 
degree. Nevertheless, the disparity in gradient is minute, and 
the total correlation coeffi cient remains exceptionally high.

Effects of velocity and temperature profi le: As shown in 
Figure 4 depicts the changes in velocity of different Nano fl uids 
as the concentration of nanoparticles rises. The results suggest 
that there is a direct relationship between the amount of 
nanoparticles in oxide Nano fl uids and the velocities in water.

Nano fl uids composed of γ - Al2O3 exhibit enhanced 
fl uid velocity due to the presence of a comparatively thicker 
momentum barrier layer. The momentum boundary layer refers 
to the fl uid layer adjacent to a solid surface, wherein the fl uid 
velocity is infl uenced by the presence of the surface. A larger 
momentum boundary layer facilitates enhanced fl uid-particle 
interaction duration, resulting in enhanced velocity. Nano 
fl uids comprising ethylene glycol exhibit enhanced fl uidity 
compared to Nano fl uids composed of water. The reason for 
this phenomenon is attributed to the increased viscosity of 
ethylene glycol in comparison to water, resulting in a slower 
fl ow of the fl uid through a solid surface. This process results in 
an increase in the thickness of the outer layer of momentum, 
thereby leading to an increase in speed. The dissimilarity in 

(a)  
(b) 

 
(c)  

(d) 
 

Figure 3: Graphical illustration of LMT-ABPNN based on several variations of Local showered number (a) MSE representation (b)Results of the transition state,(c) Histogram 
for error analysis (d) Regression.
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momentum boundary layer thickness is evident, as water-
based Nano fl uids exhibit a narrower layer compared to 
ethylene glycol-based Nano fl uids. The discrepancy in velocity 
is evident, as Al2O3 – water Nano fl uids exhibit a lower velocity 
in comparison to γ – Al2O3 – ethylene glycol Nano fl uids.

Figure 5 shows how nanoparticle volume fraction affects 
Nano fl uid temperature profi les. Al2O3 and γ – Al2O3 Nano fl uids, 
higher nanoparticle volume fractions improve temperatures. In 
comparison to base fl uids, the temperature profi le is elevated 
to a greater extent in Nano fl uids based on water, whereas 
it is relatively lower in Nano fl uids based on ethylene glycol. 
The reason for the difference stems from the fact that water 
exhibits a considerably lower Prandtl number in comparison 
to ethylene glycol, indicating that water possesses a better 
thermal diffusivity than ethylene glycol. After conducting a 
comparison of nanoparticles, it becomes apparent that the 
temperature profi le of Al2O3 – water Nano fl uids is higher in 
magnitude when compared to that of γ – Al2O3 – water Nano 
fl uids. Nevertheless, when considering Nano fl uids based on 
ethylene glycol, the temperature profi le of γ – Al2O3 is shown to 
be higher compared to that of Al2O3.

The graphical representation depicted in Figure 6 illustrates 
the inclination of the velocity as infl uenced by variations in the 
stagnation parameter. As the value of the stagnation parameter 
increases, there is a corresponding increase in the velocity of 
the Nano fl uids. Nevertheless, throughout this procedure, there 
is a rise in both temperature and nanoparticle volume fraction. 
When the stream velocity is held constant, an increase in the 
stagnation parameter value results in a decrease in the stretch 
velocity of the system. This statement suggests that there is 
an intricate relationship between the stagnation parameter, 
velocity, temperature, and nanoparticle volume fraction in the 
phenomena of Nano fl uid fl ow.

Figure 7 illustrates the impact of radiation heat fl ux on the 
velocity profi le of three distinct fl uids: water, ethylene glycol, 
and Al2O3-water Nano fl uid. The velocity profi le is represented 
on the x-axis of the graph, while the radiative heat fl ow is 
represented on the y-axis. The graph displays three distinct 
curves, each representing a different fl uid. The graph clearly 
demonstrates that the radiative heat fl ow rises in correlation 
with velocity for all three fl uids. The Al2O3-water Nano fl uid 
exhibits the maximum radiative heat fl ow, followed by ethylene 

Figure 4: Variation of Velocity profi le with Nanoparticle Volume Fraction 𝚽.

Figure 5: Variation of temperature profi le with Nanoparticle Volume Fraction 𝚽.

Figure 6: Stagnation points effect with velocity profi le.

Figure 7: Impacts of Radiative Heat R Flux on velocity Profi le.

glycol and then water. The enhanced radiation absorption and 
scattering properties of the Nano fl uid can be attributed to 
the presence of Al2O3 nanoparticles. The impact of radiative 
heat fl ow is especially signifi cant at low velocities. At elevated 
speeds, the infl uence of convective heat transfer becomes 
increasingly prominent.

Figure 8 illustrates the results obtained by varying the 
radiative heat fl ux parameter, denoted as R. The temperature 
profi le exhibits enhancement as the radiative heat fl ux 
increases, while conversely, the velocity profi le experiences 
a decline. Although there is a slight decrease observed in 
the velocity profi le for specifi c values of improved thermal 
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radiation, there is also a slight increase noticed for another 
range of values. These outcomes indicate that manipulating 
the parameter R, which represents thermal radiation, has a 
negligible impact on fl uid velocity. This holds true even though 
the velocity profi le displays a minor declining tendency. 
Indeed, it is a fact that fl uid viscosity tends to increase when 
faced with heightened resistance to distortion, leading to a 
decrease in the velocity profi le. Conversely, there is a tendency 
for fl uid viscosity to decrease as both internal heat production 
and thermal radiation experience an upsurge (Figure 9).

The fi ndings about the temperature profi le are depicted 
in the fi gures referred to as ref.9. It is clear that there is a 
connection between the slip parameter, which is denoted by 
the letter a, and the similarity variable, which is designated by 
the letter η, in terms of the velocity and temperature profi les. It 
is important to note that a decrease in the Nano fl uid’s velocity 
results from an increase in the slip velocity parameter. At the 
same time, an increase in the same parameter is equivalent to 
an increase in the temperature.

Figure 10 demonstrates a direct correlation between water’s 
magnetic fi eld and its velocity, wherein the magnetic strength 
heightens as velocity increases. This phenomenon stems from 
heightened water molecule polarization resulting from swifter 
motion, thereby generating a magnetic fi eld. Furthermore, 
the the extent of polarization escalates in tandem with the 
concentration of Al2O3 in the water. This alignment is due to 
Al2O3's paramagnetic nature, indicating its affi nity for magnetic 
fi elds. The graph further shows that the incline of the curve 
reduces as the concentration of Al2O3 grows. This outcome 
arises from the intensifi ed polarization of water molecules in 
the presence of Al2O3, leading to a dampened increment in the 
magnetic fi eld as velocity increases.

Variation in parameters infl uences the local Nusselt 
numbers, skin friction

The variations in the local skin friction coeffi cient and 
the compact Nussle number are depicted in fi gures referred 
to as ref. 11 and ref. 12, respectively. On the horizontal axis of 
both images is the representation of the nanoparticle volume 
percentage. On the vertical axis of images 8 and 9, respectively, 
is the presentation of the local skin friction coeffi cient and the 
lowered Nussle number. There is a clear correlation between 

Figure 10: Impacts of Magnetic Field$ on Velocity Profi le.

Figure 11: Frictional Effi  ciency of Skin as a Function of 𝚽.

Figure 12: Frictional Effi  ciency of Nussle number as a Function of 𝚽.Figure 8: Impacts of Radiative Heat R Flux on velocity Profi le.

Figure 9: Infl uence of Slip Parameter$ on Velocity Profi le.
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an increase in the phi values and a matching rise in the skin 
friction coeffi cient as well as the Nussle number. This was 
demonstrated. Therefore, the skin friction coeffi cient for 
γ – Al2O3 Nano fl uid is somewhat larger than it is for Al2O3. 
When various base fl uids are taken into consideration, the skin 
friction coeffi cient that results from Al2O3 with water as the 
base fl uid has a higher value than the skin friction coeffi cient 
that results from Al2O3 with ethylene glycol as the base fl uid.

On the other hand, it seems that the gamma – Al2O3 
nanoparticles are following the opposite pattern. Notably, the 
Nussle numbers of Nano fl uids that use ethylene glycol as their 
base fl uid are signifi cantly greater than those of Nano fl uids 
that use water as their base fl uid. In addition, as compared 
to the other nanoparticle options available, gamma – Al2O3 
nanoparticles display noticeably elevated Nussle values.

10. Conclusion

This paper introdu ces a unique methodology for examining 
convective heat transport in nanofl uids, with particular 
emphasis on comparing Al2O3-H2O and γ-Al2O3 nanoparticles in 
diverse base fl uids. We need to understand the complex system 
behind this phenomenon. under magnetohydrodynamic 
(MHD) circumstances by utilising the Levenberg-Marquardt 
algorithm and Artifi cial Backpropagation Neural Networks 
(LMT-ABPNN), therefore overcoming defi ciencies in prior 
studies. The effi cacy of the LMT-ABPNN model is evidenced 
by comprehensive assessment metrics, such as Mean Squared 
Error (MSE), error histograms, and regression analysis, 
validating its robust fl exibility and accuracy in forecasting 
critical heat transfer parameters.The results underscore the 
precision of the Modifi ed Local Nusselt number as an essential 
metric for assessing the thermal effi cacy of the nanofl uid 
system. Furthermore, the Sherwood number demonstrates 
effi cacy in predicting the energy output of waste heat recovery 
systems. The low error rates seen in the model's predictions 
indicate considerable possibilities for enhancing the modelling 
of heat transfer in nanofl uid-based systems. Future research 
may explore on enhancing these models, investigating 
other nanoparticle forms, and broadening their applicability 
to a wider range of industrial uses. The use of AI-driven 
methodologies like LMT-ABPNN in nanofl uid heat transfer 
modelling facilitates effective thermal management solutions, 
with prospective applications in energy systems, electronic 
cooling, and industrial heat exchangers.
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