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This study focused on the transformation of an exponentially growing divergent function sin(RIn(x)) into a convergent function by its complementary exponential
function x!in such a manner that the sizes of positive and negative areas under sin would be the same. The transformation will provide the entire sin function with self-
compensatory behavior. The exponent's value was computed and found to be -1/2, which is the only exponent, which lets entire product of the function converge to
zero (sum of area for positive real numbers and sum of products for natural numbers). The exponent -1/2 is algebraically and geometrically inevitable for the function
x'sin(RIn(x)) converging to zero. This result directly impacts the position of the critical line in the Euler-Riemann zeta function.

Introduction

The critical line was defined as the entire real section of
the recognized non-trivial zeros for the Euler-Riemann zeta
function with complex numbers equal to -1/2. All non-trivial
zeros exist on the critical line, according to the Riemann
hypothesis, which is regarded as one of mathematics' most
challenging open problems, providing the study’s motivation
(Figure 1) [1-3].

Result and discussion

First, a helper harmonic periodic function was constructed
above the sin (RIn(x)) curve using simplification, which I
named linus (Figure 2). The linus function was developed by
subtracting nm, which is equivalent to arcsine(sin(RIn(x))
function (which I termed assRIn(x) function), where R is any
real number over 10. This allowed linus values to remain within
the range between an interval of -m/2 to +m/2.

I made further simplifications and created another
helper harmonic periodic function, which I named trianglus
sustaining, from straightforward right-angled triangles filled

under the linus function in order to facilitate precise area
calculations under the linus curve (Figure 2).

Local minima m, which have a value of zero, are shared by
all the functions. Local positive and negative maxima M have
values of +7/2 for linus and trianglus and +1 for sinus.

It was assumed that the area ratio A to B would remain
constant between the sinus, linus, and triangle harmonic
periodic functions as well as in their harmonic derivatives
produced by their respective exponentially complementary
functions (for evidence read further).

In order to calculate local maxima and minima, I first
defined the following formulas: local max sin(Rln(x)) = 1,
RIn(x) must equal (2n+1) 7/2; local min sin(RIn(x)) = 0, RIn(x)
must equal (2n) 7/2. As an illustration, consider the following:
local maximum M65 = exp(65 1/2R), local minimum M66 =
exp(66 m/2R), and local minimum M67 = exp(67 7m/2R). In
conclusion, the distribution of the local maxima and minima
is exponential.

Subsequently, I computed the triangular areas rations B to
A, which are determined by the local maxima M65 and M67
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and equal exp(m/2R) (Figure 2) . Similarly, C to A is equal to
exp(27m/2R), and D to A is equal to exp(37/2R). In conclusion,
the areas in divergent periodic harmonic sin(RIn(x)) function
grow exponentially.

At this point, using a complementary exponential function,
The aim was to transform the divergent sin(RIn(x)) by
complementary exponential function into convergent sin
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function, which would compensate for the exponential growth
of the area in each periods and achieve a 1:1 ratio between area
segments A and B .

The conditions were satisfied by the simple exponential
function xt, which is also coherent with the imaginary function
in the Euler-Riemann zeta function with complex numbers
(Figure 1). The exponent t for the A and B areas could be

determined using the triangular simplification, and it was
found to be equal to -1/2 (Figure 2).

Euler-Riemann zeta function with complex numbers first 6 non-trivial zeros:

critical line t = -1/2 with all none-trivial zeros t +iR

-1/2£i14.13..
-1/2£121.02..
-1/2 £i25.01..
-1/2 £i30.42..
-1/2+132.93..
-1/2 £i37.58..

Finally, I examined the x' exponential complementary
function on sin(RIn(x)) with an exponent of -1/2. As I had
assumed, sin(RIn(x)) could be treated using the output of the
harmonic periodic function trianglus and linus. The area-ratio
B to A under the x**sin(RIn(x)) curve is 1 (proven integral
calculus) (Figure 4). Nevertheless, in the x>sin(Rln(x))
function, the areas A to C continue to rise exponentially by
exp(2m/2R).

R = pt iR

nR =[exp(In(n))] ® = exp(iRIn(n)) = cos(RIn(n)) + isin(RIn(n))
n*R =n'n® = n'cos(RIn(n)) + n'isin(RIn(n))

Function for Imaginary part: n'sin(RIn(n))

Figure 1: Euler—Riemann zeta function with complex numbers. Short introduction

for derivation of the sin(R In(x)) function from complex numbers in Euler zeta
function.

Transformation of a divergent harmonic function sin(R In{x))

B helper harmonic periodie function (linus): B Indx) - nee bebd in an interval +/- 22
B divergent harmonic sin function (sinas): sin(R 1nix)
1 helper hasmonic function {irianglus): filled areas under linus function by simple right-angled wiangles
all the functions shase local minima (with rer value) and bocal positive and negative Maxima (with +/- 22 values for linus and trianglus: and +/- 1 for sinus)

for local max M6S of sin(RIn(x) = |, therefore Rinx = (2ns 112 therefone
for local min mé6 of sin(RIn{x)) = 0, therefore. Rlnx = (2nim2 Ratlon of Areas A and B, absolute values
an B & eapitil ai2R) - expitbai2Ry) /2
A milexplfb ni2R) - expl63 nf2RIN 2
¥
1 exp(6iT 2l2R) S
B . _cxplbxlR) ____  _ cpn2Ry = LI7s.
1] A 1 . explbs =2R)
expian T2R)

transformation of an exponentially growing divergent function sin(B In(x))
into convergent function by its complementary exponential function x*

B/ A= exp(ai2R) exponent L iwhich is needed 1o get aren A be equal to area B) could be
caloulated:

convergent harmonic sinus function X sin(R In(x))

ith compensated e ential area-erowth in each periods B {expi6 mi2R) - expl6h xi2R1) « explSa2RY .
with compensated exponential area-growth in cach periods A u{ explfh a2R) - exp(6s 2R expl6T 2R}
expini2R) ¢ expl-Mw2R) = 1
- T |
o t=-12

aeros 1o the eritical line -1/2
ration stay 10 be conserved in the harmenic functions and in all their
harmonic derivates generated by their own complementary functions, see next figure.

complementary functions
B complementary functions -x*2

Figure 2: Transformation of a divergent harmonic function sin(R In(x)). Transformation of an exponentially growing divergent but harmonic function sin(R In(x)) into
convergent function by its complementary exponential function x.

for local extrems, derivations are equal to 0: [shM™" sin(R In(shM)]' =0
=> sin (R In(shM)) = 2R cos (R In(shM)}

tz (R In(shM)) = 2R
=> | shM | = exp( (arctg(2R)+2nm/2) /R)

Convergent exponential harmonic function x' sin(R In(x)) R e 1A,
for R, = 14,13..

is exact self-compensatory by A and B areas

(R, is a constant from none-trivial zeros of the Euler-Riemann zet function with complex numbersy
shi 65 | = expl (arcigi2R, } +64n/2) / R;) = 1367 81.. M5 = cxp(65 a/2R )= 1371
- shifted local Maxima shM are consequence of the degreasing compensatary function x 172 shil 67 | = expl (arcigi2R, }+66m/2)/ ) = 1708,25 explbh R/2R=1532

« local minima m are inherited from the divergent harmonic function sin(R Inix)) exp(5T wAR)=1713
arctg(2R,) = assR, InishM) = 1,5354.,

arctg(2ZR,;) = 2 -1(2ZR,) Gin limit: arcig 2R, = 22 -172R, = =12}

sin (R, In{shM,, ) = sin ( arcig(2R +2nmu/2) ) = 2R, /( 1+4R )7 = 0,999375..

shMeT?
A from j 2 sin(R In(x)) dx (integration by parts)

Area up to any local maximum shM equal to 0
shM = 2shM™ ( sin(R InishM)) - 2Reos(R In(shM))W(1+4R?)

again from qutation for local maxima, derivation = 0
[shM-“2 sin{R In(shMW]'=0 => siniR InishM)) - 2Rcos(R In(shM)) =0
shM = 2shM'2 (0 )J/(144R%) =0

Area up to any local minimum m define local area A and B, which are equal:
because sin(R Infm)) =0
m = 2m*2 (- 2Reos(R In(m)p{1+4R?)

for mb6 = exp(66 R2R,) = 15324150
Area up 1o m66 = 2m66'* (- 2R, cos(R, In(m66))/(1+4R,?) = 2,7660..

Figure 3: Self-compensatory property. Convergent exponential harmonic sin function x-1/2 sin(R In(x)) has self-compensatory due its positive A and negative B areas.
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The degreasing compensating function x> induces
deformation of the sin curve through shifted local maxima
shM. These can be calculated from derivation [x-¥2sin(RIn(x))]'
equal zero. That means that tg(RIn(shM)) = 2R and |shM|=
exp((arctg 2R+2nm/2) / R). As a result, the 2R value modifies
the shape of the sinus curve x*?>sin(RIn(x)) by which defines
a horizontal shift for the local maxima . Nonetheless, the
local minima m are inherited from the divergent sin function
sin(RIn(x)) (Figure 3).

Due to the compensatory function, the transformed
function x2sin(RIn(x)) is a periodic harmonic function that
converges to zero (values of R tested between 10-20; results
for R < 10 were omitted , therefore not sure about validity
for R below 10, data not included ). This is only true for
continuous functions, where the real numbers in the input are
continuous. In contrast, an n*?sin(RIn(n)) function, where
n are natural numbers, the function becomes discontinuous,
introducing imperfections in the otherwise harmonic functions
x2sin(RIn(x)) and x*?ass(RIn(x)) (particularly with initial
values in an intrinsically disordered region, IDR) (Figure 4).

The position of the sinus curve n-2sin(Rln(n)) with regard
to the natural numbers (the raster), influences how much
volume is produced in the areas A and B under the sinus curve
(strips formation under sin).

As a result, practically all of n*?sin(Rln(n)) converge
away from zero due to accumulated imperfections . The only
functions that employ non-trivial zero constants R, accrue
exactly the same volumes A and B under sinus including their
imperfections, and converge to zero. The 2R_ define their
shifted maxima; sinus shape deformation decreases as R value
increases, whereas frequency increases as R value increases
(Figure 3).

Regions A and B have almost identical volumes after the
intrinsically disordered region (IDR) , despite the fact that
n->sin(RIn(n)) is still an exponentially expanding function and
that the region A and B accommodate the exponentially growing
counts of the natural numbers with their imperfections.
Crucially, because of imperfection links to the natural numbers
by both size and counts, the self-compensation effect applied
on imperfection as well (Figure 4).

Outside of the IDR region, the n->sin(Rln(n)) continual
area-summations to the local minima grow exponentially
by exp(m/2R), while the continual area-summations to the
local maxima degrease exponentially by exp(-m/2R) and
importantly, approach zero at the local maxima . This behavior
does not hold true for other exponents (Figure 5).
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Continual area-summations from n=1 to the local minima
of the w sin(R, In(a}), exponential growth by exp(w/ZR,) after IDR region

Continual area-summations from n=1 to the local shifted maxima
of the 0 'sin(R In(n)), exponential degrease by exp(-mi2R ) afier IDR region

Compensation of the imperfection in pars areas (A with B, and € with D)

Detail on intrinsically disordered region DR
Iransformation from compromised i/ sin(R, 0(n)) in to ideal X*Zsin(R 1N in the sinus i Sin(R,Intn)) and linus n*Zass(R, In(n) from Figure |

\ A e seserereees

NS

Figure 4: Continual area-summations from n=1 to the local shifted maxima of the

n-1/2sin(R,In(n)).

Sums from n=1 up 1o shifted maximum shM84 for n'sin(R In(n)) function

_L.hM‘»'iu{R‘ln{shM)Julx

area calculus upto shM

L espnen ShMB4 Sum [shMsin(R | In(shM)) |'=0

n=l wshMid  shifted maxima shM calculus

-01 12652,0619  +19.8622
-02 126457315+ 58895
-03 12630,4056  + 15199
-0.4 12633,0845  + D31IE

- 0.2uin(R I shv1)) + R costt (e = A (0. Bsin(2, In(shM IntshMONI0 6448,y £ 0

= 0.Asin(R, IntshM)) + R,costR, In(shM)1 = 0

shM®e (0. Gein(R, In(shM ol InMYMI0 364R, 1) £ O

-05 12626769  + 0,0065 0. 55in(R,tneshM1 + B cosiR, InishMp = O - 260 -0, Siin( csiB MM LR = 0
-06 126204607 - 0.0549 - O.6sintR, In{shM)) + R, costR, In(shMy = 0 - shMO* 0. dsingR InishM11 + R cosiR nshMOMOI6:R, ) # 0
-0.7 126141588 - 0.0543
-DB 126078645 - 0.0479 «0.BainCR, InfshM)) + R costR, In(shM = MO (4).25inR (shM)) + R eontR InshMIMO0S4R 1) 7 0
-09 12601,5782 - D.0446
= sin(R InfshM)) + R cosiR, In(shM)) = 0

*real local shifted maxima correspond to reverse core values of the integral calculus:
SHMBA o, =EXPI{84°P1/2+ARCTG(18.13/0,8))/

= 14,13°C05{14,13°| 1H0.4°SIN(14,13 Ln(shmB4 11 =0

but 14,137C05(14,13"Ln{ w04} FO,67SIN(14,13" LnshMBA .o ) = -0,199919964

SHMBA ,_, ., =EXP{{84°PI/2+ARCTG(14.13/0,6])/14,13) = 12620,4607
= 14,13*CO5{14,13*LnishM84, o I-0,6*SIN(14,13*Ln(shMa4 .
but 14,13°C0S(14, 13*Ln(sNM84 .. o ,))-0,4"SINI14,13"La(shM

=

o
snl) = 0,199820054

Figure 5: Sums from n=1 up to shifted maximum shM84 for n'sin(R,In(n)) function.

In conclusion, this study offers a rational explanation in
this study for unique position of the Riemann critical line
for all non-trivial zeros, what is one from seven well-known
complex mathematical problems called Millennium Problem.

Limitations of this study and directions for future work

The values of R-constants in Euler—Riemann zeta function
represent number distributions, suggesting a balance of chaotic
and harmonic behaviors in a convergent function along both
sin and cos functions at once. The observed mirror effect is an
open question for the next.
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