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Abstract

This study focused on the transformation of an exponentially growing divergent function sin(Rln(x)) into a convergent function by its complementary exponential 
function xt in such a manner that the sizes of positive and negative areas under sin would be the same. The transformation will provide the entire sin function with self-
compensatory behavior. The exponent's value was computed and found to be -1/2 , which is the only exponent, which lets entire product of the function converge to 
zero (sum of area for positive real numbers and sum of products for natural numbers). The exponent -1/2 is algebraically and geometrically inevitable for the function 
xtsin(Rln(x)) converging to zero. This result directly impacts the position of the critical line  in the Euler-Riemann zeta function.
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Introduction

The critical line was defi ned as the entire real section of 
the recognized non-trivial zeros for the Euler-Riemann zeta 
function with complex numbers equal to -1/2. All non-trivial 
zeros exist on the critical line, according to the Riemann 
hypothesis, which is regarded as one of mathematics' most 
challenging open problems, providing the study’s motivation  
(Figure 1) [1–3].

Result and discussion

First, a helper harmonic periodic function was constructed  
above the sin (Rln(x)) curve using simplifi cation, which I 
named linus (Figure 2). The linus function was developed by 
subtracting nπ, which is equivalent to arcsine(sin(Rln(x))  
function (which I termed assRln(x) function), where R is any 
real number over 10. This allowed linus values to remain within 
the range  between an interval of -π/2 to +π/2. 

I made further simplifi cations and created another 
helper  harmonic periodic function, which I named trianglus 
sustaining, from straightforward right-angled triangles fi lled 

under the linus function in order to facilitate precise area 
calculations  under the linus curve (Figure 2).

Local minima m, which have a value of zero, are shared by 
all the functions. Local positive and negative maxima M have 
values of ±π/2 for linus and trianglus and ±1 for sinus.

It was assumed that the area ratio A to B would remain 
constant between the sinus, linus, and triangle harmonic 
periodic functions as well as in their harmonic derivatives 
produced by their respective exponentially complementary 
functions (for evidence read further).

In order to calculate local maxima and minima, I fi rst 
defi ned the following formulas: local max sin(Rln(x)) = 1, 
Rln(x) must equal (2n+1) π/2; local min sin(Rln(x)) = 0, Rln(x) 
must equal (2n) π/2. As an illustration, consider the following: 
local maximum M65 = exp(65 π/2R), local minimum M66 = 
exp(66 π/2R), and local minimum M67 = exp(67 π/2R). In 
conclusion, the distribution of the local maxima and minima 
is exponential.

Subsequently, I computed the triangular areas rations B to 
A, which are determined by the local maxima M65 and M67 
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and equal exp(π/2R) (Figure 2) . Similarly, C to A is equal to 
exp(2π/2R), and D to A is equal to exp(3π/2R). In conclusion, 
the areas in divergent periodic harmonic sin(Rln(x)) function 
grow exponentially.

At this point, using a complementary exponential function, 
The aim was to transform  the divergent sin(Rln(x)) by 
complementary exponential function into convergent sin 

function, which would compensate for the exponential growth 
of the area  in each periods and achieve a 1:1 ratio between area 
segments A and B .

The conditions were satisfi ed by the simple exponential 
function xt, which is also coherent with the imaginary function 
in the Euler-Riemann zeta function with complex numbers 
(Figure 1). The exponent t for the A and B areas could be 
determined using the triangular simplifi cation, and it was 
found to be equal to -1/2 (Figure 2). 

Finally, I examined the xt exponential complementary 
function on sin(Rln(x)) with an exponent of -1/2. As I had 
assumed, sin(Rln(x)) could be treated using the output of the 
harmonic periodic function trianglus and linus. The area-ratio 
B to A under the x-1/2sin(Rln(x)) curve is 1 (proven integral 
calculus) (Figure 4). Nevertheless, in the x-1/2sin(Rln(x)) 
function, the areas A to C continue to rise exponentially by 
exp(2π/2R).

Figure 1: Euler–Riemann zeta function with complex numbers. Short introduction 
for derivation of the sin(R ln(x)) function from complex numbers in Euler zeta 
function.

Figure 2: Transformation of a divergent harmonic function sin(R ln(x)). Transformation of an exponentially growing divergent but harmonic function sin(R ln(x)) into 
convergent function by its complementary exponential function xt.

Figure 3: Self-compensatory property. Convergent exponential harmonic sin function x-1/2 sin(R ln(x)) has self-compensatory due its positive A and negative B areas.
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The degreasing compensating function x-1/2 induces 
deformation of the sin curve through shifted local maxima 
shM. These can be calculated from derivation [x-1/2sin(Rln(x))]' 
equal zero. That means that tg(Rln(shM)) = 2R and │shM│= 
exp((arctg 2R+2nπ/2) / R). As a result, the 2R value modifi es 
the shape of the sinus curve x-1/2sin(Rln(x)) by which defi nes 
a horizontal shift for the local maxima . Nonetheless, the 
local minima m are inherited from the divergent sin function 
sin(Rln(x)) (Figure 3).

Due to the compensatory function, the transformed 
function x-1/2sin(Rln(x)) is a periodic harmonic function that 
converges to zero (values of R tested between 10–20; results 
for R < 10 were omitted , therefore not sure about validity 
for R below 10, data not included ). This is only true for 
continuous functions, where the real numbers in the input are 
continuous. In contrast, an n-1/2sin(Rln(n)) function, where 
n are natural numbers, the function becomes discontinuous, 
introducing imperfections in the otherwise harmonic functions 
x-1/2sin(Rln(x)) and x-1/2ass(Rln(x)) (particularly with initial 
values in an intrinsically disordered region, IDR) (Figure 4). 

The position of the sinus curve n-1/2sin(Rln(n)) with regard 
to the natural numbers (the raster), infl uences how much 
volume is produced in the areas A and B under the sinus curve 
(strips formation under sin). 

As a result, practically all of n-1/2sin(Rln(n)) converge 
away from zero due to accumulated imperfections . The only 
functions that employ non-trivial zero constants Rx, accrue 
exactly the same volumes A and B under sinus including their 
imperfections, and converge to zero. The 2Rx defi ne their 
shifted maxima; sinus shape deformation decreases as R value 
increases, whereas frequency increases as R value increases 
(Figure 3).

Regions A and B have almost identical volumes after the 
intrinsically disordered region (IDR) , despite the fact that 
n-1/2sin(Rln(n)) is still an exponentially expanding function and 
that the region A and B accommodate the exponentially growing 
counts of the natural numbers with their imperfections. 
Crucially, because of imperfection links to the natural numbers 
by both size and counts, the self-compensation effect applied 
on imperfection as well (Figure 4).

Outside of the IDR region, the n-1/2sin(Rln(n)) continual 
area-summations to the local minima grow exponentially 
by exp(π/2R), while the continual area-summations to the 
local maxima degrease exponentially by exp(-π/2R) and 
importantly, approach zero at the local maxima . This behavior 
does not hold true for other exponents  (Figure 5).

In conclusion, this study offers a rational explanation  in 
this study for unique position of the Riemann critical line 
for all non-trivial zeros, what is one from seven well-known 
complex mathematical problems called Millennium Problem. 

Limitations of this study and directions for future work

The values of R-constants in Euler–Riemann zeta function 
represent number distributions, suggesting a balance of chaotic 
and harmonic behaviors in a convergent function  along both 
sin and cos functions at once. The observed mirror effect is an 
open question for the next.
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Figure 5: Sums from n=1 up to shifted maximum shM84 for ntsin(R1ln(n)) function.

Figure 4: Continual area-summations from n=1 to the local shifted maxima of the 
n-1/2sin(R1ln(n)).


