
029

Citation: Powell JR. Heuristic Approach to Quantum Gravity in Terms of Incremental Curvature of Spacetime. Ann Math Phys. 2025;8(2):029-034. Available from: 
https://dx.doi.org/10.17352/amp.000143

https://dx.doi.org/10.17352/ampDOI: 

M
A

T
H

E
M

A
T

IC
S

 A
N

D 
P

H
Y

S
IC

S
 G

R
O

U
P

2689-7636ISSN: 

Abstract

Physicists since Einstein have pondered how gravitation and quantum mechanics could be connected fundamentally given widely differing scales and mathematical 
formalism. Gravitational bending of light in null geodesics around an isolated point mass, curved incrementally to Compton’s wavelength is proposed to associate semi-
classical particle interactions with quantum wave phenomena. Although a basic methodology rather than a full quantum theory of gravity, this path leads to a simple 
expression of gravity at the quantum level in terms of constants ħ, c, and G, with mass as the source of gravitational curvature. When taken further to the Planck scale, 
quantized spacetime curvature is the square of the inverse Planck length which is a constant and the canonical inner boundary of spacetime. This elementary thought 
experiment of spacetime curvature taken to the Planck limit arrives at the ultimate state where quantum gravity existed in the very early universe. This state may also exist 
at the smallest scales in the current universe as curvature entanglement at nearly undetectable low energy due to the relative strength of gravity.
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Introduction

A theory of Quantum Gravity (QG) has remained elusive for 
100 years since Einstein fi rst wondered how the new theory of 
quantum mechanics could possibly combine with gravitation 
in a unifi ed fi eld theory. This paper proposes a rudimentary 
approach to QG from fi rst principles independent of currently 
presumed models or mathematical formalism, which might 
be verifi able experimentally as gravitational action at the 
quantum level. It is axiomatic that this investigative path 
should lead to the Planck scale as the realm of quantum 
gravity, and connect seamlessly with macro-gravitational 
theory by Bohr’s correspondence principle so that quantum 
calculations somehow link with classical [1]. A simple thought 
experiment based on the gravitational bending of light as 
a variation of Compton’s scattering experiment takes the 
gravitational curvature of spacetime to the quantum level. This 
natural progression to the Compton wavelength, then further 
extrapolated to the Planck scale, shows how this may be a form 
of quantum gravity. Combinations of ħ, c, and G are quantum-

gravitational in terms of Planck units lP, mP, and tP, altogether 
postulated as the natural domain of quantum gravity [2] 
(Figure 1). 

The Planck units of mass, length, and time mark the scale 
where quantum effects of the gravitational interaction are 
expected to become important. Smolin’s commonsense ‘naive 
realism’ would offer that we are limited in what we can know 
about extreme conditions at the beginning of the universe in the 
standard model of cosmology, or at the center of black holes, 
which are both beyond observation and experiment suggesting 
more intuitive approaches [3]. The very early universe (VEU) is 
such an extreme state at Planck energy ~ 1019 GeV at an initial 
Planck redshift, z ~ 1032 according to the standard model of 
cosmology. Distant galaxies can only be observed out to z ~ 
101.045 = 11.1 [4]. Similarly, the Large Hadron Collider (LHC) 
can generate proton collision energies approaching 14 TeV, or 
about 13 orders of magnitude below the Planck energy at length 
scales well above the Planck length, Hossenfelder [5]. “The 
scale where quantum gravity is necessary to describe space and 
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time is the Planck scale” [6]. The proposed heuristic thought 
experiment is a straightforward alternative to theoretical 
extrapolations and models with ever-increasing layers of 
mathematical formalism which can lose meaning and are 
unverifi able. We begin with a spherically symmetric geometry 
around a central point mass to isolate gravitational action in 
terms of the curvature of spacetime, which is then taken to 
the quantum scale to understand the quantum-gravitational 
connection at a fundamental level. Compton states in his 1923 
paper, “This remarkable agreement between our formulas and 
the experiments can leave but little doubt that the scattering 
of X-rays is a quantum phenomenon” [7]. This means that the 
defl ection of light due to curvature of spacetime as scattering 
around a central mass is also a quantum phenomenon. 
Quantum-gravitational curvature as the physically meaningful 
observable desired in [3] is also being addressed by other 
authors, see e.g. [8]. This heuristic approach to gravity at the 
quantum level as a form of quantum gravity is one of Smolin’s 
“Three roads to quantum gravity” on “the road from relativity 
to include quantum phenomena” [6]. 

Quantum-level gravitational curvature of spacetime 

Compton’s scattering experiments with X-rays in the early 
days of quantum mechanics combined classical collisions of 
particles with wave behavior to explain observed wavelength 
shifts using his famous equation [7]. Compton’s wavelength 
as the quantum property of a particle may also be used to 
explore quantum wave behavior in terms of gravitational 
curvature in the region of a point mass, Figure 2, as a heuristic 
thought experiment that is also scattering in a broader sense. 
Gravitational curvature of spacetime around an isolated, non-
spinning point mass can be simply written as

K(r) = – Gm/(c2r3)                     (1)

(4.4.1) [9], where K(r) is spacetime curvature at a distance 
r from the point mass m, with G and c constants of gravitation 
and the speed of light. The minus sign denotes inward 

curvature. Berry states that this equation emerges rigorously 
from the spherically symmetric Schwarzschild spacetime 
solution to Einstein’s general relativity equations [9,10] as 
shown in the Appendix. Equation (1) is similar in form and 
simplicity to gravitational lensing as angle,  = 4GM/(c2b) [11-
13] as the impact factor b, or distance from the central point 
mass, m. Our thought experiment begins with Compton’s 
laboratory confi guration, but with an offset photon path, and 
no particle ‘collision’ in the classical sense, just ‘curvature 
scattering’. We can then shift the photon path closer to central 
mass m in incremental steps. This is accomplished by taking 
equation (1) to the quantum level by scaling r from large-scale 
General Relativity to the quantum Compton wavelength, C = h/
(mc) [7] with h the non-reduced Planck’s constant. Then K(r) 
at the limit of the Compton wavelength, quantum mechanical 
by defi nition,

K(C) = – Gcm4/h3 = – Gcm4/(8π3ħ3)                (2)

This is gravitational spacetime curvature at the Compton 
length from a point particle of mass m in terms of the constants 
G, c, and h or ħ and mass m with the constraint of spherically 
symmetric geometry, just as with the Schwarzschild solution to 
Einstein’s equations, and given C >> the characteristic size of 
m. The right-hand equation is in terms of the reduced Planck’s 
constant. The Compton wavelength is thus a connection 
factor between quantum radiation and classical particle 
interactions as derived by Compton in his x-ray scattering 
experiments. Equation (2) has all the constants expected of a 
quantum gravity equation, and although a simple expression, 
it quantifi es gravitational curvature at the necessary quantum-
Compton wavelength scale. Since the central mass and photon 
are interacting gravitationally in terms of curvature K(C), 
(2) could be considered ‘gravitational entanglement’, and is 
unifying in the sense it incorporates constants of gravitation, 
relativity, and quantum mechanics which are also the constants 
of the Planck scale as well as quantum gravity. Mass can also 
be considered a constant, and thus (2) is constant for a given 
central point particle, and there are arguments suggesting that 
mass can be considered an operator in quantum mechanics [14-
16]. An operator m as a component of energy and momentum 
operators would make (2) a fully quantum expression, or at 
least semiclassical as a hybrid representation of quantum-
gravitational curvature. Spacetime curvature surrounding a 
central mass is the same effect as the gravitational defl ection 
of light/gravitational lensing fi rst proposed by Einstein [11] as 
mentioned above and shown below in Figure 2, but in terms of 
defl ection angle   in radians rather than K(r) in m–2. To compare 
with (2), this defl ection angle is

(b) = 4GM/(c2b)                   (3)

Figure 1: Quantum Gravity in terms of ħ, c, and G at the Planck Scale (universe-
review.ca).

Figure 2: Trajectory of a Light Ray.
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where b is again the impact factor or radial distance from the 
central mass M, or as the center of an extended spherical mass, 
but with characteristic size rm < b as with an ideal point particle. 
Any ‘wobble’ of M due to the slight momentum effect of the 
traversing photon is disregarded in the reference frame of M. 

Scattering here is thus a more general defi nition of 
defl ection of light without displacing the central particle as in 
Compton’s experiment. This is the same effect as gravitational 
redshift or decreasing photon energy with a corresponding 
increase in wavelength. Gravitational redshift is defi ned as z 
 (0 − e)/0 = (e − 0)/e = GM/(c2r) (2.3.4) [9] as an energy 
loss caused by the gravitational fi eld effect on the photon, and 
although dimensionless, the right-hand side here is similar in 
form to (1) and Compton’s wavelength equation in [7].

Quantum gravitational curvature at the planck scale of 
quantum gravity

Compton gravitational curvature in equation (2) expresses 
spacetime curvature at the quantum level with all the constants 
expected for quantum gravity just like Planck units for mass, 
length, and time as unique combinations of ħ, c, and G, with 
mass the source of curvature at r = C. Using the experimental h 
as used by Planck in his initial proposal of universal units [17], 
as an example we take the central mass to be an electron which 
Compton used in the derivation of his scattering equation and 
wavelength,

K(Ce) = – Gcme
4/h3 = – 4.74 x 10–23 m–2,              (4)

which is the gravitational curvature of a geodesic path at the 
Compton length from the electron. Since it has long been 
established that quantum gravity exists at the Planck scale 
where gravity and quantum effects necessarily combine, the 
Planck scale curvature of equation (2) is

K(CP) = – GcmP
4/ħ3 = – c3/(ħG) = – lP

–2 ≈ 3.91 x 1069 m–2,   (5)

here with the reduced Planck’s constant and disregarding the 
factor of 8π. This is an important result that validates equation 
(2) to the extreme curvature of the Planck scale far from what 
is measurable in the current large-scale universe. If we apply 
the Planck mass and length directly in equation (1) [9],

K (lP, mP) = – GmP/(c
2lP

3) = – c3/(ħG) = – lP
–2,            (6)

we arrive at the same result as in (5) as the geodesic path is 
reduced to the Planck core of spacetime, and again a constant 
which means there can be no further curvature increase beyond 
this limit. This is consistent with Birrell and Davies who state 
that the square of the inverse Planck length appears in the role 
of coupling constant in K(r) in units of m-2 which may mark 
the threshold of a full theory of quantum gravity [18]. This 
demonstrates how the heuristic path leads to the Planck scale 
of quantum gravity, and points to an ultimate limit which may 
be the boundary or foundation of spacetime. The connection 
to the early universe of the Planck scale is signifi cant since 
the spherically symmetric Schwarzschild solution is ideally 
suited to this era. The Planck length here connects large-scale 
gravitation to the limit of quantum theory (∆E∆t ~ ħ → EPtP = 

ħ at the Planck scale near the beginning), only combined in 
the domain where quantum gravity once existed in the early 
universe at the extreme limits of the Planck scale.

We note that the form of (5) and (6) is K(l) = 1/l 2, length l as 
a radius which is the same as for a sphere with K  1/R2 (4.3.2) 
[9], R the radius of a sphere, except that (2) and (4)-(6) are 
negative as inward curvature contrasted with positive curvature 
for the sphere. Berry clarifi es that for spherical geometry 
curvature may be negative which means that the circumference 
C exceeds that of a circle of 2πa, and the negative-curvature 
surface would be inward-curving or somewhat ‘saddle-shaped’ 
when embedded in a three-dimensional space. Accordingly, 
this negative inward curvature ‘saddle-shaped sphere’ of 
radius lP has extreme curvature of magnitude 1/lP

2 ~ 1/1070 m-2. 
This assumes that shape or even particles themselves other 
than photons retain any meaning at the Planck scale. 

QG spacetime curvature calculations

We can test equation (2) at energies well below the Planck 
scale with more approachable calculations. If we choose 
the central particle to be an electron, we can approximate 
Compton’s scattering experiment with the high-energy photon 
path offset at r. The Compton wavelength for an electron is

Ce- = h/(mec) = 2.42 x 10–12 m                (7)

which is much greater than the radius of an electron, re ~ 
10–15 m, so within the constraint that r is much greater than 
the characteristic radius of the particle. For the gravitational 
curvature in the case of the electron in (4),

K(Ce) = – Gcme
4/h3 =   4.74 x 10−24 m−2                            (8)

which is the curvature of spacetime for a photon passing by an 
electron at the Compton radius as shown earlier. For an order 
of magnitude comparison with spacetime curvature around the 
sun as fi rst determined by Eddington on May 29, 1919 [19], we 
can replicate his calculation using Berry’s equation (1),

K(R⊙) = − GM⊙/(c2R⊙3) = − 4.38 x 10−24 m−2,               (9)

which is close to (8). Values in (8) and (9) would be detectable 
by current experimental apparatus much advanced beyond 
Eddington’s possibly with gravitational wave detectors 
or other means. His observation was made during a total 
eclipse of the sun to test Einstein’s prediction from general 
relativity that light should travel in curved geodesic paths in 
spacetime warped by an object’s gravitational fi eld, here just 
skirting the edge of the sun or bending 1.75” as observed by 
Eddington. Although an example calculation, it demonstrates 
that the more testable conditions of QG curvature of equations 
(4) and (8) are within the scope of observation as with (9), 
providing an empirical framework for our thought experiment 
before extrapolating to the Planck scale which is not currently 
observable or testable with existing equipment.

To extend QG curvature to black holes, Hawking radiation is 
quantum gravitational as derived from quantum fi eld theory as 
an extension of our thought experiment. Spacetime curvature 
at the Schwarzschild radius of a black hole is K(RS) where RS 



032

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics

Citation: Powell JR. Heuristic Approach to Quantum Gravity in Terms of Incremental Curvature of Spacetime. Ann Math Phys. 2025;8(2):029-034. Available from: 
https://dx.doi.org/10.17352/amp.000143

= 2GM/c2. Hawking radiation has a thermal spectrum at TBH 
as the Bekenstein-Hawking temperature [2,20] emitted at the 
Schwarzschild radius with spacetime curvature K(RS). If we 
take equation (9) to RS, then

K(RS) = − GM/(c2RS
3) = − c4/(8G2M2) = − (1/2)(1/RS

2)           (10)

where M is the mass of the black hole. This is consistent with 
our earlier analysis quantifying curvature of spacetime as 1/
R2 in (5) and (6) and just before Section 2. As above, we know 
from Hawking [20] and Wald [21] that a black hole radiates 
a thermal spectrum at Bekenstein-Hawking temperature, 
Pathria and Beale [22], 

TBH = ħ/(2πckB) = ħc3/(8πkBGM),               (11) 

where surface gravity  = c4/(4GM) (14.3.8) [21]. Wald states that 
the temperature in (11) is precisely that for a perfect blackbody 
emitter. Since a blackbody spectrum requires the discrete 
constant h in Planck’s equation to match the observed thermal 
spectrum, and this radiation arises from surface gravity (), 
then (11) is a quantum gravity equation and general expression 
beyond the black hole case. We can rewrite (11) in terms of both 
classical/statistical thermal radiation and quantum energy, 
and separating terms,

kBTBH = ħc3/(8πGM) = (ħc/G)(c2/8πM) = mP
2c2/(8πM),     (12)

with (ħc/G) the mP
2 connection to the Planck scale. The 

left side is classical thermal radiation energy kBT at the 
equipartition value, and the right side is quantum gravitational 
energy at the Planck scale. If we now let the black hole mass M 
be equal to mP, then

kBTBH = mPc
2/8π ≈ (ħc5/G)1/2 = EP,             (13)

the Planck energy at ~ 1019 GeV. Primordial black holes (PBHs) 
postulated by Hawking in the very early universe [23] with 
Planck mass as the limit, would emit a blackbody spectrum 
at Planck temperature (Planck mini-black holes that possibly 
existed in the primordial universe would have evaporated by 
now). So, from the Bekenstein/Hawking equation for black 
hole temperature, necessarily quantum gravitational, we 
again arrive at the Planck scale of quantum gravity at extreme 
Planck energy and temperature. This is consistent with the 
Bekenstein/Hawking temperature of a PBH of Planck mass 
near the Planck scale, TBH (mP) = TP/8π. Detecting Hawking 
radiation is an interesting variation of the thought experiment 
since Hawking photon escape from a black hole is gravitational, 
thermodynamic, and quantum in nature, and therefore 
Bekenstein-Hawking temperature is quantum-gravitational 
[2]. Equation (13) is semi-classical with temperature being 
a classical statistical parameter, but depends on Planck’s 
constant in Hawking’s temperature equation.

Finally, Jacob Bekenstein wrote his universal entropy bound 
as

S/E 2πkBR/(ħc)               (14)

[24], here including Boltzmann’s constant for dimensional 
consistency; and where S and E are the entropy and energy in 

a spherical volume of radius R. If we invert this expression as 
an equality with  some unknown entropy factor (possibly with 
an initial range 1/(2π) ≤  ≤ 2π, the left side of the inequality 
at the Planck scale, and right side for current large-scale 
entropy). Then,

E/S = ħc/(2πkBR)                (15)

where this is now a ratio of energy to entropy in a spherical 
volume written as an equality. If we then let R → RS = 2GM/c2 as 
a characteristic gravitational radius associated with any mass 
M from Schwarzschild’s solution to Einstein’s fi eld equations, 
then

E/S = ħc3/(8πkBGM) = TE/S = TBH,               (16)

setting  = 2 near the upper limit of  in (15), and showing 
that equation (16) is also the Bekenstein-Hawking temperature 
of a black hole. Equation (15) is, therefore, a more general 
expression describing the thermodynamic energy-to-entropy 
ratio in a system, or the margin of energy order over disorder, 
rather than merely the temperature of a Schwarzschild black 
hole. If (16) is a more general expression of temperature as a 
measure of ‘energy order’ from Bekenstein’s entropy bound, 
then it may extend to the Planck scale of quantum gravity. If 
we let the only variable M be equal to the Planck mass, then 
E/S = TP, the Planck temperature (neglecting factor 8π). This 
shows the consistency of (15) to the Planck scale as the scale 
of quantum gravity, and equations (15) and (16) can reasonably 
be considered equations of thermal quantum gravity with all 
the appropriate constants. An experiment has been proposed 
by the University of Maryland-NIST [25] to test gravitational 
entanglement with the superposition of states at two locations 
in the gravitational fi eld using a double-slit interferometer 
combined with a single atom pendulum. This is intended to 
show how a massive particle can indeed be entangled by gravity 
as shown by its interference pattern. An expectation is that the 
intensity of this QG interference pattern will be proportional 
to gravitational spacetime curvature and carried by gravitons 
as the exchange particle (if they exist) like photons in the 
electromagnetic fi eld. This experiment is planned for the sub-
atomic level near the Compton wavelength where we derived the 
heuristic path above, and where it seems necessary to pursue 
quantum gravity. Another approach to QG at energies below 
the Planck scale is proposed in Wallace’s recent “Quantum 
Gravity at Low Energies” (LEQG) [26]. This paper parallels the 
above discussion as a synthesis of ideas such as effective fi eld 
theory, with constraints of ‘nonrenormalizability’, but with 
inevitable breakdown at the Planck scale. We have associated 
the curvature of spacetime, here at the Schwarzschild radius, 
to quantum-level curvature at the Compton length in equations 
(2) and (4), with the inverse of Bekenstein’s entropy bound 
an indicator of energy order in (15) and (16), and how these 
converge quantum-gravitationally to the Planck scale.

Conclusion

We know from general relativity that the curvature of 
spacetime, K(r) is a measure of gravitational strength at 
radius r. As r is reduced to the Compton wavelength we are 
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necessarily in the quantum realm. K(C) in equation (2) is a 
quantized form of gravitational curvature at the Compton 
wavelength dependent on the only variable, mass as the 
source of curvature. In this sense, a quantum of gravitational 
curvature is quantum gravity. Although not incorporating all 
associated quantum characteristics desired in a full theory of 
quantum gravity, this is a baseline approach to QG in a simple 
form as ‘gravitationally induced curvature entanglement’. It is 
possible that fully unifi ed quantized gravity may have existed 
only in the VEU when it was appropriately small at high energy 
at the Planck scale. It is natural then to take Equation (2) to 
the Planck scale in the domain of quantum gravity which 
results in K(lP) = −1/lP

2 at the presumed Planck horizon limit 
of spacetime, which is a constant. Equations (2) and (4) − (6), 
as quantum-gravitational interactions include the expected 
constants c, ħ, and G of quantum gravity. The simple intuitive 
arguments and equations proposed here show how macro and 
micro scales were once merged in the VEU, but a merger which 
now either no longer exists, or is undetectable in the current 
large-scale universe requiring subatomic-level approaches 
such as in [25] and LEQG in [26]. A variation of Compton’s 
laboratory result is a proposed thought experiment and 
analytical path to a fundamental expression of gravitational 
curvature at the quantum level in (2) with the objective 
of providing an analytic basis for quantum-gravitational 
curvature of spacetime as canonical quantum gravity. Smolin 
references Leibniz’ “Principle of Suffi cient Reason” (PSR) 
which applied here would mean that a complete understanding 
of gravity would be as curvature of spacetime [3]. Quantum 
gravity could then be gravitational curvature at the quantum 
level valid to the Planck scale. Rovelli states “Quantum gravity 
is the name given to any theory that describes gravity in the 
regimes where quantum effects cannot be disregarded.” [27]. 
Equation (2) certainly applies. Rovelli continues, “Simple 
dimensional arguments show that the physical phenomenon 
where quantum gravitational effects become relevant are 
those characterized by the length scale lPlanck = (ħG/c3)1/2 ~ 10-33 
cm, called the Planck length.” This is confi rmed by equation 
(5). Freeman Dyson has said we live in the classical world of 
gravitation which is deterministic and involves measurements 
that are historical; and the quantum world is inherently 
future and probabilistic, not directly accessible until observed 
and measured, which then becomes classical. He also said 
that the two worlds do not appear to be (fully) unifi ed as 
observed, and why do they have to be [28]. There is no physical 
principle requiring quantum mechanics and general relativity 
to be combined into one all-encompassing theory other than 
supposed for a grand unifi ed theory of all interactions, and 
merging GR and QM may not include the full mathematical 
formalism of either. Gravity and quantum mechanics have 
remained distinct theories with unique mathematical 
descriptions separated by scale and the probabilistic nature of 
quantum mechanics, and historical time and scale of relativity 
since the epoch of the very early universe. It remains to be seen 
how Einstein’s general relativity equations and the energy-
momentum tensor could be conformed to a purely quantum 
mechanical description with the mathematical formalism of 
the wave equation, superposition of states, entanglement, and 

Heisenberg uncertainty. Gravitational entanglement in terms 
of incremental, quantum-level spacetime curvature proposed 
here is offered as a fresh, provisional approach. 

“After all, atoms do fall, so the relationship between gravity 
and the quantum is not a problem for nature.” Lee Smolin [6]. 
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