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Abstract

In this paper, by applying the measure of noncompactness a common fi xed point for the maps T and S is obtained, where T and S are self-maps continuous, 
commuting continuously on a closed convex subset C of a Banach space E and also S is a linear map. Then as an application, the existence of a solution of an integral 
equation is shown.
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1. Introduction

The compactness plays an essential role in the Schauder's 
fi xed point theorem and however, there are some important 
problems where the operators are not compact. G. Darbo 
in 1955 [1], extended the Schauder theorem to noncompact 
operators . The main aim of their study is to defi ne a new class 
of operators that map any bounded set to a compact set. The 
fi rst measure of noncompactness was defi ned and studied by 
Kuratowski [2] in 1930. 

Suppose (X, d) be a metric space the Kuratowski measure of 
noncompactness of a subset 

A  X defi ned as

    0;      1 1
nA inf A A for some A withdiam A for i ni i ii           

                   (1)

where diam (A) denotes the diameter of a set A  X namely

    sup , ; ,  .diam A d x y x y A 

Also, in recent years measures of noncompactness have 
been used to defi ne new geometrical properties of Banach 
spaces which are interesting for fi xed point theory [3]. In this 
paper fi rst, some essential concepts and results concerning the 
measure of noncompactness are called [4-7]. In the second 
section, a common fi xed point for the maps T and S where T 
and S are self-map continuous, commuting continuous on 
a closed convex subset C of a Banach space E and also S is a 
linear map is shown. In the third section, we apply our result 
to obtain a coupled fi xed point [8-11] . Finally by applying our 
results a solution of an integral equation is obtained [12-15].

Now, we recall some basic facts concerning measures of 
noncompactness. Suppose R denotes the set of real numbers 

and put [0, )R    and let ( , . )E  be a Banach space. The 

symbol ,  ConvX X  will denote the closure and closed convex 

hull of a subset X of E , respectively. Moreover, let EM indicate 

the family of all nonempty and bounded subsets of E and EN

indicate the family of all nonempty and relatively compact 
subsets.
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We begin by recalling some needed defi nitions and results.

Defi nition 1.1 A mapping   : E R M is said to be a 

measure of noncompactness in E if it satisfi es the following 
conditions:

1. The family   ker : 0EX X   M  is nonempty and 

ker    EN .

2. ( ) ( )X Y X Y    .

3.   ( )X X  .

4.   ( )Conv X X  .

5.     1   (1 ) ( )X Y X Y            for  [0,1] .

6. If  nX  is a sequence of closed sets from EM such that 

1  n nX X   for 1,2,n   , and if  lim 0nn
X


 , then 

1
0n

n

X X





 

Theorem 1.1 (Schauder [9]) Let C be a closed and convex 
subset of a Banach space E. Then every compact and continuous 

map :F C C has at least one fi xed point.

In 1955, G. Darbo [1] used the measure of noncompactness 
to generalize Schauder's theorem to a wide class of operators, 
called k-set contractive operators, which satisfy the following 
condition 

   ( )T A k A 

for some [0,1)k . In 1967 Sadovskii generalized Darbo's 

theorem to set-condensing operators [16,17].

Defi nition 1.2 Let E1 and E2 be two Banach spaces and μ1 

and μ2 be arbitrary measures of noncompactness on E1 and E2 

respectively [5] . An operator T from E1 to E2 is called a (μ1, μ2) 
condensing operator if it is continuous and for every bounded 

noncompact set 1  E  the following inequality holds

    2 1 .T   

The following lemmas and theorems from [16-18] are 
necessary for the main results.

Theorem 1.2 (Darbo's fi xed point theorem) Let Ω be a 
nonempty, bounded, closed, and convex subset of a Banach 

space E and let  :T  be a continuous mapping such that 

there exists a constant  0,1k with the property [18].

     ;TX k X 

For any nonempty subset X of Ω Then T has a fi xed point 
in the set Ω.

Lemma 1.3 For every nondecreasing and upper 

semicontinuous function :  R R   The following two 
conditions are equivalent:

i.   lim 0n

n
t


  for any 0t  .

ii.  t t   for any 0t  .

The following theorem is an extension of Darbo's fi xed 
point theorem.

Theorem 1.4 [7] Let C be a nonempty, bounded, closed, 

and convex subset of a Banach space E and :  T C C  be a 
continuous operator satisfying

    ( )T X X                  (2)

for any subset X of C, where μ is an arbitrary measure of 

noncompactness and :   R R    is a nondecreasing and upper 

semicontinuous function such that  t t   for all 0t  . Then  
T has at least one fi xed point.

2. Common fi xed point 

Theorem 2.1 Let C be a nonempty, bounded, closed, and 
convex subset of a Banach space E.

and let , :T s C C  be continuous operators and S be a 

linear operator such that    ( )S T X T X and also

       (max , ( ) )T X X S X    ,

for each  X C , where μ is an arbitrary measure of 

noncompactness and :  R R   is a nondecreasing function 

such that  t t   for each 0t   and  0 0  . Then T, S have a 
common fi xed point in C.

Proof. Set

0C C

And

1 0  C ConvTC

in general, set

1 n nC ConvTC 

For n = 1,2, … 

Then we have 

 1   ( )n n n nC C and S C C   *

for ever n = 1,2,3, …

Indeed it is clear that 1 0  C C  and 

       1 0 0 1         S C Conv ST C Conv T C C   . 

So () holds for n = 1.
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Assuming now that () is true for  1n .

Then

     1 1n n n nC Conv T C Conv T T C   

And

       1 1( ) ( ) ( )n n n n nS C S Conv T C Conv S T C ConvT C C    

We obtain

0 1 2    .C C C  

Now if there exists an integer 0N   such that   0NC  , 

then CN is relatively compact and since 1   N N NTC ConvTC C  , 

thus Schauder's fi xed point theorem implies that T has a fi xed 

point. So we assume that   0nC   for 0n  . By assumptions 
we have

 1 (  )n nC ConvTC  

    ( )nTC

               (max , ( ) )n nTC STC  

       ( ( )nTC  )

    ( )nTC

    ( )nC

which implies that ( )nC  is a positive decreasing sequence 

of real numbers thus, there is an 0r   so that ( )nC r   as 

 . n We show that r = 0 . Suppose, in the contrary, that 

0r  . Then we have

 1 (  )n nC ConvTC  

    ( )nTC

      ( )nTC 

         ( )nC 

         1(  )nConvTC  

         1( )nTC  

         2
1( )nC  

      .

      .

      .

       0 .n C 

By Lemma 1.3 and assumption with choose  0C t  , we 
have

      1 0lim  lim lim 0n n
nn n n

r C C t     
   

for any t > 0.

So r = 0 and hence ( ) 0nC   as  n . Since 1  n nC C   

and   n nTC C  for all 1n  , then from (6), 
1

 nn
C C

 
 is a 

nonempty convex closed set, and C C  . Moreover, the set 

C  is invariant under the operator T and belongs to ker μ. Thus, 
applying Schauder's fi xed point theorem, T has a fi xed point. 

Now, suppose that  :TF x C Tx x   . The set FT is closed by 

the continuity of T, by the assumption we have   T TSF F  then 

Sx is a fi xed point of T for any Tx F  and

     (max ( ), ( ) )T T T TF TF F SF     

   ( )TF 

  ( )TF

then   0TF   and have FT is compact.

Then by Schauder's fi xed point theorem, we deduce that 

S has a fi xed point and set    , F S x C Sx x    is closed 

by the continuity of S. Also, since   T TSF F  by Schauder's 

fi xed point theorem, we have Tx is a fi xed point of S for each 

Sx F . Since  T S TF F F C   is a compact subset, then 

, :        T S T ST s F F F F  are continuous self maps, now by 

Schauder's fi xed point theorem we have a common fi xed point 
in C.

Corollary 2.2 Let C be a nonempty, bounded, closed, and 
convex subset of a Banach space E and let ,  :T S C C  be 
continuous operators and be a linear operator such that

   ( )S T X T X

and

       , ,TX k max X SX  

for each  X C , where μ is an arbitrary measure of 

noncompactness and [0,1)k . Then T, S have a common fi xed 
point in C.

Proof. Let   t kt   in the Theorem 2.1 .

Corollary 2.3 Let C be a nonempty, bounded, closed, and 

convex subset of a Banach space E and let , :T S C C  be 
continuous operators and S be a linear and condensing operator 
such that. 

 ( ) ( )S T X T X

and

 ( ) ( )TX X   ,

For each    X C , where μ is an arbitrary measure of 

noncompactness and    R R    is a nondecreasing function 

such that  t t   for each 0t   and  0 0  . Then T, S have a 
common fi xed point in C.
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Proof. The result is followed by Defi nition 1.2 and Theorem 
2.1.

Corollary 2.4 Let C be a nonempty, bounded, closed, and 

convex subset of a Banach space E and let , :T S C C  be 
continuous operators and S be a linear operator such that T and 
S be two commuting map and

         , ,T X max X S X   

For each X C , where μ is an arbitrary measure of 

noncompactness and :   R R   is a nondecreasing function 

such that  t t   for each  0t   and  0 0  . Then T, S have a 

common fi xed point in C [19-23].

Proof. The proof is similar to the proof of Theorem 2.1.

Defi nition2.1 Let X be a Banach space. An operator (not 

necessarily linear) :F X X is compact if the closure of F(Y) 

is compact whenever Y X is bounded.

Corollary 2.5 Let C be a nonempty, bounded, closed, and 

convex subset of a Banach space E and let :F C E  be a linear 

and continuous operator such that T and S be two commuting 
map and

 ,Fx Fy x y                  (3)

where :  R R    is a nondecreasing function such that

   t t   for each  0t   and  0 0  . Assume that :G C E  

is a compact, continuous operator. Defi ne    : ( )T x F x G x   

and assume that ( )T x C  for all x C . Then T, S have a 
common fi xed point in C.

Proof. Let :   E R M  be the Kuratowski measure of 

noncompactness defi ned by (1). Moreover, assume that X is a 
nonempty subset of C. As  is non-decreasing, from (3), we 
have

     ,, ,Fx Fy sup x y sup x yx y X x y X      

so

     .diam F X diam X               (4)

By the defi nition of Kuratowski measure of noncompactness, 

for every 0  , there exist 1, , nA A such that     1
nX Aii 

and    diam A Xi    . As   1
  ( )n

ii
F X F A


   and by 

assumption,  is a non-decreasing function, from (4) we have

        ( ) ( ( ) ( )
 

i iF X diam F A diam A X       

and

     .F X X                  (5)

On the other hand, as G is compact, from (5) we obtain 

    (( )( ))  ( ( ))  ( ( )) ( ( )) ( ( )).T X F G X F X G X F X G X X            

Now, by Theorem 1.4, T has a fi xed point in C, Now, suppose 

that  :TF x C Tx x    is closed by the continuity of T.

On the other hand, since S commuting with T, we see that   

Sx is a fi xed point of T for any Tx F .

Thus T TSF F  and since

    ( ) (max , ( ) )T T T TF TF F SF     

   ( )TF 

  ( )TF

then   0TF   and have FT is compact.

Then by Schauder's fi xed point theorem, we deduce that 

S has a fi xed point and set  ,SF x C Sx x    is closed by the 

continuity of S . Also, since S commutes with T, we have Tx is a 

fi xed point of S for each  Sx F , therefore Fs is invariant by T or 

( )S ST F F . Since Fs is convex closed and bounded and for any 

SD F  we have

       ( ) ( , )T D max D S D   

         .D 

Then by Corollary 2.4, T and S have a common fi xed point 
in D. 

Corollary 2.6 Let C be a nonempty, bounded, closed, and 

convex subset of a Banach space E and let , :S G C C  be 

continuous operators and S be a linear operator and G be a 

compact operator, defi ne    : ( )T x S x G x  and assume that 

( )T x C  for all x C , such that T and S be two commuting 

map. Then T, S have a common fi xed point in C  [2,24-27].

Proof. Since G is a compact operator, we have    0G C   

and so     ( )T C S C   so T, S have a common fi xed point 
in C.  

Example 2.1 ([7]) Let C[a,b] denote the Banach space 
consisting of all real-valued functions, defi ned and continuous 
on [a,b]. The space C[a,b] is furnished with the standard norm

 ( ) : [ , ]x max x t t a b 

for every [ , ]x C a b .

A measure of noncompactness can be defi ned as follows. 
To this end let us fi x a nonempty bounded subset X of C[a,b]. 

For x X  and 0   let us denote by ( , )x   the modulus of 

continuity of the function x on the interval [a,b], i.e

      , ( ) : , , ,x sup x t x s t s a b t s      

    , , :X sup x x X    
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 0 0
lim ( , )X X


  




and

    : .X t x t x X 

It is easy to prove that 0 is a measure of noncompactness 
and

   0
1 .
2

X X 

In the following, we will show some examples of the results.

Example2.2 Let  0,1  C  a nonempty, bounded, closed, and 

convex subset of a Banach space , , :   R T S C C be continuous 
operators and S be a linear operator where

  ( )S TX T X

and also

         , ,T X max X S X   

For each X C  is holed.

Then consider 2
xSx  , 3

xTx
x


  and : R R    by 

 
2
tt  is a nondecreasing function such that  t t   for 

each 0 t  and  0 0  .

Let μ be the same measure of noncompactness in Example 

2.1. Then by Theorem 2.1, T, S have a common fi xed point 0x   
in C.

Example 2.3 Let R be a Banach space and we defi ne: 

, :T S C C

 
2

    0 1
2

0     

1          

     

 

 

1

 0

2

x

  

xT x x x

x

  





 









      0 1
1           1

0            x 0

 
S x x x

x
  









And

: R R  

by 

 

2
  0 1

2

         1
 2

tt t
t

t t



   

 

is a non-decreasing function such that  t t   for each 0 t   

and  0 0  . Clearly T, S are commuting maps and with 

corresponding Corollary 2.4, for any subset D R , obviously 
we have

        , .TD max D S D   

Then T, S have a common fi xed point x = 0. 

3. Common coupled fi xed point 

Defi nition 3.1 [8]  An element ( , )X Y X X   is called a 

coupled fi xed point of the operator :  F X X X   if  ,F x y x  

and   , .F x y y

Defi nition 3.2 The operators , :T S C C C   is called 
commuting operator if

         , , , , , ,T S x y S y x S T x y T y x

for all , .x y C

Theorem 3.1 [7] Suppose 1 2 , , , n   be measures of 

noncompactness on, Banach spaces 1 2, , , nE E E  respectively. 

Moreover assume that the function : nF R R   is convex and 

 1, , 0nF x x   if and only if 0ix   for 1,2, ,i n  . Then

       1 1 2 2( , , , )n nX F X X X    

defi nes a measure of noncompactness on 1 2 nE E E   where 

Xi denotes the natural projections of X into Ei for 1,2, , .i n 

Remark 3.1 [4]  Let μ be a measure of noncompactness on a 
Banach space E considering

   1 , ,F x y max x y  and  2  ,F x y x y   

for   2,  x y R  then conditions of Theorem 3.1 are satisfi ed. 

Therefore,

   1 21 : ( ), ( )  X max X X

And

   1 22 : ( )X      

Defi ne measures of noncompactness in the space E E  
where ,  1,2iX i   denote the natural

projections of X into E.

Theorem 3.2 Let C be a nonempty, bounded, closed, and 
convex subset of a Banach space E

and let , :T S C C C   be continuous operators and S be a 

linear operator such that

   ( ) ( ) ( )S T X T Y T X T Y  

and
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         ( ) ( , , )T X Y max X Y S X Y                      (6)

for each  ,X Y C , where μ is an arbitrary measure of 

noncompactness and  : R R   is a non-decreasing function 

such that  t t   for each 0 t   and   0 0  . Then T, S have a 

common coupled fi xed point in C.

Proof. First note that, Remark 3.1 implies that

   1 2( )X X X   

is a measure of noncompactness in the space E E  where 

, 1,2 iX i   denote the natural projection of X. Now consider the 

map. :  G   defi ned by the formula

     , ( , , , )x y G x yG G y x

Which is continuous on  . We claim that G  satisfi es 

all the conditions of Theorem 2.1. To prove this, let X    

be a nonempty subset. Then, by 20 and (6) we have

     1 2 2 1( ) ( )G X G X X G X X      

            1 2 2 1( )G X X G X X    

             1 2 1 2( , , )max X X S X X    

            1 2 2 1( , ,  )max X X S X X    

            1 2 1 22 ( , , )max X X S X X    

Then

         1 2 1 2
1 ( ) ( , , )
 2

G X max X X S X X     

                         1 2 1 2( , )max X X S X X     

                          1 2 1 2( 2 , )max X X S X X     

              1 2( 2 , )max X S X X   

and taking     1 2
1  , ( )
2

S X S X X          we get

       ( ) ( , )G X max X S X       

Since,   is also a measure of noncompactness, therefore, 
all the conditions of Theorem 2.1 are satisfi ed and G has a 
coupled fi xed point.

4. Application 

Let 1 ( )L R  be the space of Lebesgue integrable functions on 
the measurable subset R+ of R with the standard norm

0
( ) .x x t dt


 

Now, we defi ne a measure of noncompactness in the space. 
1( )L R . 

For 0  , let X be a nonempty, bounded, compact, and 

measurable subset of 
1( )L R , set 

 ( ) lim sup sup ( ) : ; ( ) ;
0




     D
C X x t dt D R meas D

x X
 

Where means(D) denotes the Lebesgue measure of the 
subset D and

   lim ( ) : .
TT

d x sup x t dt x X



 

Then we defi ne

     ,X C X d X  

Where u is a measure of noncompactness in 1( )L R . 

Our purpose is the study of the equation below:

          (1 ) ( , ); 0, (0,1)0 0x t k t s x s ds f t k t s x s ds t             

                (7)

under the following hypotheses.

i.  :f R R R    and there is a constant 0 1b   such that

   , exp .f t x bx t  

ii. The function :k R R  belongs to the space 1( )L R , 

defi ned by   exp( )k t t   for [0,1]t  and   0k t   for 

0 t   and 1t  .

Therefore, we can see that for any 0A   and for all 1 2,t t R  
the following condition is satisfi ed:

   1 2 2 10 0
  .
A A

t t k t s ds k t s ds     

iii.  : R R    is a non-decreasing function such that 

 t t   for each 0t   and  0 0  .

iv. The linear continuous operator K is defi ned by

      
0

Kx t k t s x s ds


 
Maps Qr into Qr. (Let E be an arbitrary Banach space with 

norm    and the zero element 0 and Br be a closed ball in 

E centered at 0 and of radius r, and also suppose Qr be the 

subset of Br consisting of all functions that are a.e. positive and 
nonincreasing on R+, which is a compact, bounded, closed, and 

convex subset of
1( )L R .

Then we can prove the following result.

Theorem 4.1 Let the assumptions i), ii), iii), and iv) 

be satisfi ed. Then the equation (7) has at least one solution 

1( )x L R  such that
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     
0

.x t k t s x s ds


 

Proof. 

Step 1: We consider the following operators

           
0 0

(1 ) ( , ),Hx t k t s x s ds f t k t s x s ds  
 

     

      
0

Kx t k t s x s ds


 
and

     , .Fx t f t x t

Thus the equation (7) becomes

   1  .x Hx Kx FKx     

Next, we consider

   1
,

Hx Kx
Gx FKx





 

 

Step 2: For any 
1( )x L R  we have

( )Gx FKx 

 
0

( )FKx t dt


 

      
0 0

exp t b k t s x s ds dt
        

 exp ( )0 t dt b Kx   

1 ( )b K x  

 
0

1 ( )b K x s ds


  

0
1 ( )b K x s ds


  

1 ,b K x 

hence, for rx B , we have

1Gx b K r 

if we take 1r b K r  , then 
1

1
r

b K


 . This implies that G 

maps the ball Br into itself, where 

1
1

r
b K


  .

Step 3: For any rX Q  consider x X  and 0   be 

arbitrary,  let be D R  with   meas D  , then we have

 ( ) ( )Gx t dt FKx t dtD D  

            ( )bKx t exp t dtD      

             expb Kx t dt t dtD D   

             exp ( )b Kx t dt t meas DD   

         ( ( )) exp( )b Kx t dt t
D

      

When  tends to zero and from defi nition ( )C X   that is a 

defi ned measure in the 1( )L R , we get ( ) ( )C GX bC KX .

Step 4: For any rX Q  and  0T   we have

 ( ) ( )Gx t dt FKx t dt
T T


 

 

   exp( )
T
bKx t t dt

     

    expb Kx t dt t dtT T    

 ( ) exp( )b Kx t dt TT    .

Now with take lim
T

sup
  of the above inequality, we get 

   .d GX bd KX

Where d is a defi ned measure in the 1( )L R . Now by  step 3 
and step 4 we deduce that.

   .GX b KX 

Step 5: Take rx Q  then ( )x   is a.e. positive and 

nonincreasing on R+ and consequently ( )Kx  is also of the 

same type in virtue of the assumptions (i), (ii), (iii) and (iv) we 

deduce that ( )Gx FKx   is also a.e. positive and nonincreasing 

on R+. This fact, together with the assertion : r rG B B  gives 

that G is a self-mapping of the set Qr. For this reason that K is 

a linear and bounded operator, therefore K is continuous , and 
obviously F is a continuous operator then G  is a continuous 
operator. Then K and G are continuous from Qr into Qr.

Step 6: We will show that     , ( , )K f t x f t K x . We 

have   ( )x t Kx t  if and only if        
1

exp exp
t

t
t x t s x s ds


    

therefore, if the function g satisfi es    exp 1 ( 1)g t g t     ,

then g is a fi xed point of K. Hence,   exp( )g t t   is a fi xed 
point of K. Thus

        exp (exp ( )K t bx t K t bK x t    

          exp ( )t bK x t  

         , .f t Kx t
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Therefore,       ( )K Fx t F Kx t , i.e. K and F 

are commuting maps. For every rx Q  we have 

      ( )GK x FKKx KFKx KG x    , so  G and K are commuting 

maps Thus without  the loss of  generalities, in  Corollary 2.4 

enough that, we put     t bt  and    X KX  . Then K and G 

have at least one common fi xed point, which is a solution of the 
equation (7) and satisfi es   ( )x t Kx t . Moreover,  

  exp( )
1

tx t
b





is a common solution of the equations     ,f t x t x t  and 

     .K x t x t

Conclusion

This paper examines the existence of a fi xed point in various 
cases based on the measures of incompressibility, which is a 
very important technique in existence proof.
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