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In this paper, by applying the measure of noncompactness a common fixed point for the maps T and S is obtained, where T and S are self-maps continuous,
commuting continuously on a closed convex subset C of a Banach space E and also S is a linear map. Then as an application, the existence of a solution of an integral

equation is shown.

1. Introduction

The compactness plays an essential role in the Schauder's
fixed point theorem and however, there are some important
problems where the operators are not compact. G. Darbo
in 1955 [1], extended the Schauder theorem to noncompact
operators . The main aim of their study is to define a new class
of operators that map any bounded set to a compact set. The
first measure of noncompactness was defined and studied by
Kuratowski [2] in 1930.

Suppose (X, d) be a metric space the Kuratowski measure of
noncompactness of a subset

A c X defined as
p(4)= inf{5 > 0;A=UlL A, for some A; withdiam(4;)< 8 for1 <i<n< oo}
(1
where diam (A) denotes the diameter of a set A — X namely

diam(A4) = sup{d(x,y);x,ye A}.

Also, in recent years measures of noncompactness have
been used to define new geometrical properties of Banach
spaces which are interesting for fixed point theory [3]. In this
paper first, some essential concepts and results concerning the
measure of noncompactness are called [4-7]. In the second
section, a common fixed point for the maps T and S where T
and S are self-map continuous, commuting continuous on
a closed convex subset C of a Banach space E and also S is a
linear map is shown. In the third section, we apply our result
to obtain a coupled fixed point [8-11] . Finally by applying our
results a solution of an integral equation is obtained [12-15].

Now, we recall some basic facts concerning measures of
noncompactness. Suppose R denotes the set of real numbers

and put R, =[0,0) and let (E,

D be a Banach space. The
symbol X,ConvX will denote the closure and closed convex
hull of a subset X of E , respectively. Moreover, let 9, indicate

the family of all nonempty and bounded subsets of E and N,
indicate the family of all nonempty and relatively compact
subsets.
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We begin by recalling some needed definitions and results.

Definition 1.1 A mapping #:9; > R, is said to be a

measure of noncompactness in E if it satisfies the following
conditions:

1. The family kerz={X €9, : 4(X)=0} is nonempty and
kerucM, .

2. XY= uX)su¥).
3. u(X)=p(x).
4. ,u(Coan)z,u(X),

5. u(AX +(1=2)Y) <Au(X)+(1-)u¥) for A€[0,1].

6. If {Xn} is a sequence of closed sets from 90 such that

X,, <X, for n=1,2,..., and if }ij?oﬂ(Xn)=0 , then

szﬁXn;t()

n=1
Theorem 1.1 (Schauder [9]) Let C be a closed and convex
subset of a Banach space E. Then every compact and continuous
map F:C — C has at least one fixed point.
In 1955, G. Darbo [1] used the measure of noncompactness
to generalize Schauder's theorem to a wide class of operators,

called k-set contractive operators, which satisfy the following
condition

u(T(A4))<ku(4)

for some k<€[0,1). In 1967 Sadovskii generalized Darbo's
theorem to set-condensing operators [16,17].

Definition 1.2 Let E and E, be two Banach spaces and pu,
and p, be arbitrary measures of noncompactness on E and E,

respectively [5] . An operator T from E to E is called a (u,, y,)
condensing operator if it is continuous and for every bounded

noncompact set Q c E, the following inequality holds
#:(T(Q)) < 4(9).

The following lemmas and theorems from [16-18] are
necessary for the main results.

Theorem 1.2 (Darbo's fixed point theorem) Let Q be a
nonempty, bounded, closed, and convex subset of a Banach

space E and let 7:Q — Qbe a continuous mapping such that
there exists a constant & €[0,1) with the property [18].

,u(TX) < k,u(X);

For any nonempty subset X of Q Then T has a fixed point
in the set Q.
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Lemma 1.3 For every nondecreasing and upper

semicontinuous function ¢:R,—> R, The following two
conditions are equivalent:

i. limg"(t)=0 forany ;0.

ii. p(r)<¢ forany ¢>0.

The following theorem is an extension of Darbo's fixed
point theorem.

Theorem 1.4 [7] Let C be a nonempty, bounded, closed,

and convex subset of a Banach space E and 7:C— C be a
continuous operator satisfying

A(T (X)) < p(u(X) @)

for any subset X of C, where n is an arbitrary measure of

noncompactness and ¢: R, —» R, is a nondecreasing and upper

semicontinuous function such that ¢(s)<¢ forall ;> (. Then
T has at least one fixed point.

2. Common fixed point

Theorem 2.1 Let C be a nonempty, bounded, closed, and
convex subset of a Banach space E.

and let 7.,s:C — C be continuous operators and S be a
linear operator such that §(7'(X))< 7(X)and also
(T (X)) < plmax {u(X), u(S (X)),

for eachX<cC, where p is an arbitrary measure of

noncompactness and ¢:R, = R, is a nondecreasing function

such that ¢(¢)<¢ foreach >0 and ¢(0)=0.Then T, S have a
common fixed point in C.

Proof. Set

C,=C

And

C, =ConvTC,
in general, set

C, =ComvTC,_,

Forn=1,2, ..

Then we have

C,cC, andS(C,)cC,(*)
for evern =1,2,3, ...

Indeed it is clear that C,cC, and
S(C,) =Conv(ST(C,)) =Conv(T(C,))=C,.

So (*) holds forn = 1.
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Assuming now that () is true for n>1.

Then
C. = Conv(T(C”)) c Conv(T(T,H )) =C,
And
S(C,.,)=S(Conv(T(C,))) = Con(S(T(C,))) = ComT(C,)=C,,,
We obtain
C,2CoC D...
Now if there exists an integer N >0 such that #(Cy)=0,
then C, is relatively compact and since 7C, c ConvTC,, cC, ,

thus Schauder's fixed point theorem implies that T has a fixed

point. So we assume that «(C,)>0 for ;> (. By assumptions
we have

u(C,.,) = u(ConvTC,)
=u(TC,)
<p(max {(7C, ), u(STC,)})
<p(u(TC,))
<u(IC,)
<u(C,)

which implies that #(C,) is a positive decreasing sequence
of real numbers thus, there is an r>0 so that #(C,) —>7r as
n— o . We show that r = 0 . Suppose, in the contrary, that
7> 0. Then we have

u(C,.;) = u(ConvTC,)

By Lemma 1.3 and assumption with choose # (Co) =1, we
have

r=limu(C,, ) <limg"(u(C,))=limg"(1)=0

n—»w

forany t > o.

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics 8

So r = 0 and hence #(C,)—>0 as n—> . Since C,,,cC,
and 7C,cC, for all n>1, then from (6), C, =ﬂ:=1C,, is a

nonempty convex closed set, and C, c C. Moreover, the set

C, isinvariant under the operator T and belongs to ker . Thus,

o

applying Schauder's fixed point theorem, T has a fixed point.
Now, suppose that F, ={xeC:Tx=x}. The set F, is closed by
the continuity of T, by the assumption we have SF, c F, then

Sx is a fixed point of T for any x € F; and
1(Fy) = u(TF;) < p(max { u(F;), u(SF;)})
=p(u(F;))
< u(Fy)
then #(Fr) =0 and have F,is compact.
Then by Schauder's fixed point theorem, we deduce that
S has a fixed point and set F(S)={xeC,Sx=x} is closed

by the continuity of S. Also, since SF. c F, by Schauder's
fixed point theorem, we have Tx is a fixed point of S for each
xefFy. Since FTﬂFSg F,cC is a compact subset, then
T,s: FTﬂFS —>F, ﬂFS are continuous self maps, now by
Schauder's fixed point theorem we have a common fixed point

in C.

Corollary 2.2 Let C be 1 nonempty, bounded, closed, and
convex subset of a Bana.! space E and let 7,5 :C—C be
continuous operators and be a linear operator such that

S(7(X))=T(X)
and

u(TX) < kmax{p(X), u(SX)},

for each X< C, where p is an arbitrary measure of
noncompactness and & [0,1). Then T, S have a common fixed
point in C.

Proof. Let ¢(7) = ks in the Theorem 2.1.

Corollary 2.3 Let C be a nonempty, bounded, closed, and

convex subset of a Banach space E and let 7,5:C — C be
continuous operators and S be a linear and condensing operator
such that.

S(T(X)) cT(X)
and

w(TX) < p(u( X)),

For each X <C, where p is an arbitrary measure of
noncompactness and @R, —> R, is a nondecreasing function

such that ©(¢)<? for each ;>0 and ¢(0)=0. Then T, Shave a
common fixed point in C.
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Proof. The result is followed by Definition 1.2 and Theorem
2.1
Corollary 2.4 Let C be a nonempty, bounded, closed, and

convex subset of a Banach space E and let 7,5:C— C be
continuous operators and S be a linear operator such that T and
S be two commuting map and

u(1 (X)) < p(max{u(X).p(S(X))}):
For each X < C, where p is an arbitrary measure of
noncompactness and ¢:R, —R, is a nondecreasing function

such that ¢(#) <t for each ;>0 and ¢(0)=0.Then T, Shave a

common fixed point in C [19-23].
Proof. The proof is similar to the proof of Theorem 2.1.

Definition2.1 Let X be a Banach space. An operator (not

necessarily linear) F:X — X is compact if the closure of F(Y)
is compact whenever Y — X is bounded.

Corollary 2.5 Let C be a nonempty, bounded, closed, and
convex subset of a Banach space Eand let F:C — E be alinear

and continuous operator such that T and S be two commuting
map and

|7~ F < o= ) 3)

where @:R,— R, is a nondecreasing function such that
p(t)<t for each r>0 and ¢(0)=0. Assume that G:C > E
is a compact, continuous operator. Define 7'(x):= F(x)+G(x)
and assume that T(x)eC for all xeC. Then T, S have a
common fixed point in C.

Proof. Let u:91,—>R, be the Kuratowski measure of

noncompactness defined by (1). Moreover, assume that X is a
nonempty subset of C. As ¢ is non-decreasing, from (3), we
have

||Fx— Fy” < supx’yeX(P(”X - y||) = (P(S“Px,ye)( ||x -y
)
diam(F(X))S(p(diam(X)). (4)

By the definition of Kuratowski measure of noncompactness,

for every ¢ >0, there exist 4,...,4, such that X < U?:lAi

and diam(4;)<pu(X)+5 . as F(X) < |J,F(4) and by
assumption, ¢ is a non-decreasing function, from (4) we have
u(F (X)) < diam(F (4,)) < (p(diam(4,)) < p(u(X ) + )
and
#(F (X)) <p(u(x)) 5)

On the other hand, as G is compact, from (5) we obtain

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics 8

H(T (X)) = ul(F +G)YX) < u(F (X)+ GX)) < u(F (X)) + u(G(X) < p(p(X)).

Now, by Theorem 1.4, T has a fixed point in C, Now, suppose

that F, ={xeC:Tx=x} is closed by the continuity of T.

On the other hand, since S commuting with T, we see that

Sx is a fixed point of T for any x € £ .

Thus SF, € F, and since

u(F; )= u(TF;) < p(max {u(F; ), u(SE,) )
=p(u(F;))
< u(Fy)
then 4#(F;)=0 and have F,is compact.

Then by Schauder's fixed point theorem, we deduce that

S has a fixed point and set Fy ={xeC,Sx=x} is closed by the
continuity of S . Also, since S commutes with T, we have Tx is a
fixed point of S for each xe F; , therefore Fs is invariant by T or

T(F;) c F; . Since Fs is convex closed and bounded and for any

D c Fy; we have
w(T(D)) < p(max{u(D),u(S(D))))

<g(u(D)).
Then by Corollary 2.4, T and S have a common fixed point
inD.
Corollary 2.6 Let C be a nonempty, bounded, closed, and

convex subset of a Banach space E and let S,G:C—C be
continuous operators and S be a linear operator and G be a
compact operator, define 7(x):=S(x)+G(x) and assume that

T(x)eC for all xeC, such that T and S be two commuting
map. Then T, S have a common fixed point in C [2,24-27].

Proof. Since G is a compact operator, we have # (G(C )) =0
and so u(T(C))=u(S(C)) so T, S have a common fixed point
inC.

Example 2.1 ([7]) Let Cla,b] denote the Banach space
consisting of all real-valued functions, defined and continuous
on [a,b]. The space Cla,b] is furnished with the standard norm

Hx” = max{|x(t)| ite [a,b]}
for every x e Cla,b].

A measure of noncompactness can be defined as follows.
To this end let us fix a nonempty bounded subset X of C[a,b].

For xe X and ¢ >0 let us denote by @(x,&) the modulus of
continuity of the function x on the interval [a,b], i.e

w(x,&)= sup{|x(t) - x(s)| :t,sefab]|t—s| < 8}
o(X,e)= sup{a)(x,g) ‘xe X}

317
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w,(X)= lgiir(}a)(X,g)
and
X(t)z{x(t):xeX}.

It is easy to prove that o, is a measure of noncompactness
and

u(x) =1 (x)

In the following, we will show some examples of the results.

Example2.2 Let C =[0,1] a nonempty, bounded, closed, and

convex subset of a Banach space R,7,5:C — C be continuous
operators and S be a linear operator where

S(TX) c T(X)

and also

w(T () < g(max{p(X), u(S(X))}),
For each X < C is holed.

X X X
Then consider SXx=-, Tx:m and PR 2R py

2

go(t):éis a nondecreasing function such that (1)<t for
each >0 and ¢(0)=0.

Let p be the same measure of noncompactness in Example

2.1. Then by Theorem 2.1, T, S have a common fixed point x =0
in C.

Example 2.3 Let R be a Banach space and we define:

7,8:C—>C
0 x<0
x2
T(x)z x—— 0<x<1
l x>1
2
0 x<0
S(x)z x 0<x<l1
1 x>1
And
QR >R,
by

12
t—— 0<t<1
2

— t>1

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics 8

is a non-decreasing function such that ¢(¢)<¢ for each >0
and ¢(0)=0. Clearly T, S are commuting maps and with

corresponding Corollary 2.4, for any subset D < R | obviously
we have

,u(TD) < q)(max{,u(D),,u(S(D))}).
Then T, S have a common fixed point x = 0.
3. Common coupled fixed point

Definition 3.1 [8] An element (X,Y)e XxX is called a
coupled fixed point of the operator F: X x X — X if F(x,y)=x
and F(x,y)=y.

Definition 3.2 The operators 7,5:CxC— C is called
commuting operator if

T(S(x.2),8(v.x)) = S(T(x.0), 7 (3.%))
for all x,yeC.

Theorem 3.1 [7] Suppose ,t,,---, /4, be measures of

noncompactness on, Banach spaces E,E,,...,E, respectively.
Moreover assume that the function F:R’ — R, is convex and

F(x,...,x,)=0 if and only if x, =0 for i=1,2,...,n. Then

IU(X) =F(u (Xl)nuz(Xz)a“'uun(Xn))
defines a measure of noncompactness on E, x E, x...x E where

X, denotes the natural projections of X into E, for ; =1,2,...,n.

Remark 3.1 [4] Let u be a measure of noncompactness on a
Banach space E considering

E(x,y) = max{x,y} and Fz(x,y) =x+y

for (x,y)ER+2 then conditions of Theorem 3.1 are satisfied.

Therefore,
i (X) = max{,u(XJa/—l(Xz)}
And

o (X )= p(py) + pasy)

Define measures of noncompactness in the space ExE
where X,,i=1,2 denote the natural

projections of X into E.

Theorem 3.2 Let C be a nonempty, bounded, closed, and
convex subset of a Banach space E

and let 7,5:CxC— C be continuous operators and S be a
linear operator such that

S(T(X)xT(Y)) € T(X)xT(Y)

and
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w(T(XxY)) S(p(max{,u(X),,u(Y),,u(S(XXY))}) (6)

for each X,YcC, where p is an arbitrary measure of
noncompactness and ¢:R, = R, is a non-decreasing function
such that ¢(¢)<¢ foreach t>0 and ¢(0)=0.Then T, S have a

common coupled fixed point in C.
Proof. First note that, Remark 3.1 implies that
A(X) = pu(X,)+ u(X)
is a measure of noncompactness in the space ExE where

X;,i=12 denote the natural projection of X. Now consider the

map. G:QxQ—>QxQ defined by the formula

G(x.y)=(G(x.y),G(y.x))

Which is continuous on QxQ. We claim that G satisfies
all the conditions of Theorem 2.1. To prove this, let X ©QxQ

be a nonempty subset. Then, by 2° and (6) we have
WG(X) < UG(X,x X,)xG(X,x X))
=u(G(X,x X,))+ u(G(X,x X,))
< plmar{ (X, )X, )1 (S (X, 3 X))
sp(max {p(X,), (X, ). pt(S (X, % X))
=2p(max{u(X, ). u(X,).u(S(X, x X,))})
Then
SAG(X) = plmax{(X,). w(X)oat(S (X, x X))
< p(max{u( X))+ 1(X,). (S (X, % X))
< pmax{2(u(X,)+ (X)) (S (X, x X))

:(p(max{Z,&(X),y(S(XlXXZ))})
U B
and taking # =54 -H (S(X))=u(S(X,xX,)) we get

H(G(X)) < plmax{ i (X).2(S(X))}

Since, i’ is also a measure of noncompactness, therefore,
all the conditions of Theorem 2.1 are satisfied and G has a
coupled fixed point.

4. Application

Let L'(R,) be the space of Lebesgue integrable functions on
the measurable subset R, of R with the standard norm

RE j:|x(t)| dt.

Now, we define a measure of noncompactness in the space.
L'(R,) .
+

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics 8

For £>0, let X be a nonempty, bounded, compact, and

measurable subset of L'(R,) , set
C(X) = lim_ sup sup{f ‘x(t)‘ dt: D < R, ;meas(D) < e};
e>0 xex D

Where means(D) denotes the Lebesgue measure of the
subset D and

d(x) = }iilgusup{-[:‘x(tﬂ dt:xe X}.

Then we define

u(X)=C(X)+d(X),

Where u is a measure of noncompactness in L'(R,) .

Our purpose is the study of the equation below:

x(0) == k(e —5)x(s)ds + A1 (2.]§ k(1= s)x(p(s))ds)t = 0,4 € (0,1)

(7)

under the following hypotheses.
i. f:R, xR — R and there is a constant 0<b <1 such that

S (t,x) =bx+exp(-t).

ii. The function k:R— R, belongs to the space L'(R,),
defined by k(¢)=exp(-t) for t[0,1] and k(¢)=0 for
t<0 and t>1.

Therefore, we can see that forany 4> 0 andforall ,, € R,
the following condition is satisfied:

t <t :>_[0Ak(t2 —s)ds SJOAk(t] —s)ds.

iii. ¢:R, — R, is a non-decreasing function such that

@(1)<t for each ¢>0 and ¢(0)=0.

iv. The linear continuous operator K is defined by

(Kx)(t) = JO k(t —s)x(s)ds
Maps Q, into Q,. (Let E be an arbitrary Banach space with

norm |- | and the zero element 0 and B, be a closed ball in
E centered at 0 and of radius r, and also suppose Q, be the

subset of B, consisting of all functions that are a.e. positive and
nonincreasing on R,, which is a compact, bounded, closed, and

convex subset of L'(R,) .
Then we can prove the following result.

Theorem 4.1 Let the assumptions i), ii), iii), and iv)

be satisfied. Then the equation (7) has at least one solution

xeL'(R,) such that
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Step 1: We consider the following operators

(Hx)(1) = (1= ) (¢ =) x(5)ds + A1, (2 = 5) (o)) ),

)

(Kx)(t) = Ik(t —s)x(s)ds

0

and

(Fx)(r) = f(t.x(1))-
Thus the equation (77) becomes

x=Hx= (1 - ﬂ,)K)H— lFKx((p).
Next, we consider

Hx—(1-2)Kx
2

Gx = = FKx((p),

Step 2: For any x € L'(R,) we have

|Gx|| = | FRx(o)
= I|FKx(¢(t))|dt

< I:[exp(—t)+b‘ [ k(t=s)e(p(s))ds

}ﬂ
= o exp(~t)dt + b|Kx(o)|

<1+ B[[K]|x(o)

=1+b]K] | "[x(p(s)fds

<1+b]K]| [, [x(s)ls

~tep|K]le

s

hence, for x € B, , we have
|Gx| <1+b| K]~

if we take r=1+b|K]||r, then 7 . This implies that G

1
1-b|K]
maps the ball B, into itself, where

L1
1-B[&] -

Step 3: For any X c Q. consider xeX and .- ) be

arbitrary, letbe D c R, with meas( D) < ¢, then we have

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics 8

Ip|Gx(v)dt = Jp| FKx(p(1)far
= Ip|[pKx (0 (1)) + exp(-0)| |t
< be‘Kx(go(t))‘dt +[pexp(—t)dt
<b]p|Kx(p(1))de ~ exp(~t) meas(D)
bl |Kx(p(o))dt — exp(-1)e

When ¢ tends to zero and from definition C(X) thatisa

defined measure in the I'(R,), we get C(GX)<bC(KX).

Step 4: Forany X cQ and 7 >0 we have

[|Gx(0)|dt = | |FKx(p(1))|dt
T T

- .[:Ube(go(t)) + exp(—t)”dt

<bJf |Kx(gp(1))Jde + [ exp(—t)de

<bJf |Kx(p(t))|dt + exp(-T) .

Now with take limsup of the above inequality, we get

d(GX)<bd (KX).

Where d is a defined measure in the L'(R,). Now by step 3
and step 4 we deduce that.

1(GX) <bu(KX).

Step 5: Take x€0O, then x(¢) is a.e. positive and
nonincreasing on R, and consequently Kx(gp)is also of the
same type in virtue of the assumptions (i), (ii), (iii) and (iv) we
deduce that Gx = FKx(p) is also a.e. positive and nonincreasing
on R,. This fact, together with the assertion G:B — B, gives

that G is a self-mapping of the set Q,. For this reason that K is

a linear and bounded operator, therefore K is continuous , and
obviously F is a continuous operator then G is a continuous
operator. Then K and G are continuous from Q, into Q..

Step 6: We will show that K(f(t,x)):f(t,K(x))- We
have x(¢)=Kx(¢) if and only if exp(t)x(t):_[tilexp(s)x(s)ds
therefore, if the function g satisfies &'(7)=—exp(~1)g(t~1) |

then g is a fixed point of K. Hence, g(¢)=exp(—¢) is a fixed
point of K. Thus

K (exp(—t)+bx()) = K (exp(—t) + bK (x(1))

= exp(—t) +bK(x(t))

= f(6.Kx(1)).
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Therefore, K ((Fx)(¢))= F(Kx)(s)), ie. K and F

are commuting maps. For every x€(, we have

GK (x) = FKKx(p) = KFKx(9) = KG(x) , so G and K are commuting
maps Thus without the loss of generalities, in Corollary 2.4
enough that, we put ¢(¢)=>5¢ and u(X)<u(KX). Then K and G

have at least one common fixed point, which is a solution of the
equation (7) and satisfies x()=Kx(¢) . Moreover,

_exp(=1)
==
is a common solution of the equations f(t,x(t)):x(t) and

K(x(t)) = x(t).
Conclusion

This paper examines the existence of a fixed point in various
cases based on the measures of incompressibility, which is a
very important technique in existence proof.
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