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Abstract

A stepwise alternating direction implicit method of the three dimensional convective-diffusion equation is considered in this paper. We constructed an
implicit difference scheme and analyzes it's truncation error, convergence and stabilities. The theoretical and numerical analysis shows that the implicit
difference scheme is unconditional stable. Then the Greedy Algorithm is proposed to solve the numerical solution on x,y and z axis separately by using
implicit difference scheme and the numerical solution is convergent theoretically, however with no physical meaning.

The Stepwise Alternating Direction Implicit Method (SADIM) is proposed, which uses the implicit difference scheme in this paper. Using Sauls scheme
to pretreat the initial-boundary condition before iterating, thus eliminate the numerical oscillation caused by discontinuous initial boundary conditions.
This SADIM is at least six ordered convergent, and is one of high ordered numerical methods for three dimensional problem. Our implicit difference scheme
is more ideal than the standard Galerkin centered on finite difference scheme, quicker than SOR iteration method. The convergence of our implicit scheme
is better than finite element method, characteristic line method, and mesh-less method. Our method eliminates the numerical oscillation caused by the
convection dominant, resists the dispersion effectively and addresses dissipation caused by diffusion dominant.The implicit difference scheme has good
theoretical and practical value.
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Introduction

Convective diffusion equation is one kind of basic motion equation that linearizes the nonlinear equation of viscous fluid.
It can be used to describe river pollution, air pollution,distribution of pollutants in nuclear waste pollution, fluid flow and heat
conduction in fluid, mass, heat transport process [1-26]. Considering the classification of equations, it belongs to parabolic or
elliptic equations, but it also presents the basic properties of hyperbolic equations caused by convection-dominant. Therefore,
itis of great theoretical and practical significance to construct a numerical method for three dimensional convection-diffusion
equation which can reflect its characteristic properties.
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[13,22,26-32], used traditional finite difference and [8,12] adopted finite element method, however numerical solutions
produces serious numerical oscillations and numerical dissipation phenomena. For the purpose of eliminating the numerical
oscillation caused by convection dominance [12,31] proposed the characteristic finite element method and characteristic finite
difference method, which are effective in numerical calculation and applications. There are a lot of papers have discussed the
numerical solution of convection-diffusion equation with high accuracy, good stability and for small diffusion coefficient in
recent years as [16,17]. The above method improves the traditional method, but it also has many insurmountable effects. The
streamline diffusion method reduces the numerical diffusion, but artificially imposes the streamline direction. The modified
finite element method can be flexible with large time step without reducing the precision of approximation and has high
stability at the front of flow front, which eliminates the numerical diffusion phenomenon, but too dissipated. The mixed finite
element method for the convection dominant diffusion equation for the convection part of the equation is discretion by the
characteristic difference method, the diffusion part of the equation is discretion by the mixed element method. For the larger
time step, they all have a non-physical oscillation. [12,31] pointed out that the classical upwind format does not produce
numerical vibration or oscillations, however discrete convection terms with only first order accuracy. [17] gives Modified
Upwind Format is second-order accuracy, but for the strong convective dominance problem, the format is still only one order
accuracy, and occurs serious numerical dissipation phenomenon. These methods above usually used to linear interpolation
on convection terms. It does not oscillate, but the accuracy is low.

It is difficult to solve the numerical solutions for strong convection-dominant problems, [16,18,19,24-27,32] proposed
corresponding improvement measures. The above method improves the traditional method, but it also has many
insurmountable defects: the streamline dissipation method reduces the numerical diffusion, the disadvantage is: artificially
impose the direction of the streamline. The modified finite element method can adopt a large time step without reducing
the rescission of the approximation, has high stability, eliminates the numerical diffusion phenomenon, but also reflects
the dissipation phenomenon. Because of the characteristics of the equation itself, it brings some difficulties to establish an
accurate and effective numerical solution method.

We give an implicit difference scheme, which is proper to diffusion dominant cases. The difference scheme overcomes
the disadvantages of the characteristic line direction method, which is a low-order difference in the time layer. Difference
scheme is third ordered accuracy in the time layer and avoids non-physical oscillations. It overcomes the disadvantages
of least square fitting method, in which diffusion phenomenon occurs because of higher polynomial fitting on diffusion
terms. We theoretically and numerically verify that the implicit finite difference scheme is unconditionally stable and second
order convergent in both space and time layers.The algorithms we propose in this paper can improve the efficiency without
reducing the approximation accuracy and avoid the numerical diffusion phenomenon.

For the convection dominant diffusion problem and diffusion-dominant problem, the low-order scheme has serious
numerical dissipation, and the high-order scheme is prone to numerical dispersion and non-physical oscillation. Therefore,
we construct a numerical method with high precision, stable and suitable for small diffusion coefficients. It reflects the
characteristic properties of hyperbolic equation.

1 Problem
We consider a three dimensional convection-diffusion equation

2 2 2
Ou Ou ,0u,  Ou_ Ou 0“u 0“u 1.1
ity e g g T m e Ri=0 -

in which q, b, ¢, v,, V,, v, constants and v,>0 fori=1,2,3.1f v,<0,=1,23, the initial-value problem is called not well-posed.
If the a,b,c is smaller than v, V,, Vs, that is, the convection effect is relatively weak. In such problems, diffusion dominates,

and the equations are elliptic or parabolic. If Pe is large, that is, the diffusion of solute molecules is slow relative to the fluid
velocity. In such problems, the convection is dominant and the equations have the characteristics of hyperbolic equations.

1.11If vy <a,vy <b,v3<c, then (11)is called convection-dominant, if
aZvl,bZV ,CZV3

the problem (1.1) is strong convection dominance.
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We discussing the convection-dominant problem in section 2 and section 3, and the considering diffusion-dominant
problem in section 4. The initial-boundary value of (1.1) is

u(x,y,z,0)= g(x,y,2),x,y,z€ R

M(O’ ’Zat): ( ,Z,t), aZER,OSt
y g 2.0,y (12)

u(x,O,Z,t):gz(x,z,t),x,zeR,OSt
u(x,,0,0) = g5 (x,,0),x,y €R,0<t

which describes the diffusion of a substance in a medium that is moving with speed v, , = 1, 2, 3. The solution of (1.1) is the
concentration of the diffusing substance. Analytic solution of the initial-value problem (1.1) and (1.2) is given in [4]. Generally
it is difficult to write down a formula for a classical solution. References [9] has considered four techniques of solving partial
differential equations, It is too complicated and asks too much initial-boundary conditions [33-38]. In classical theory of
heat and the energy equation of incompressible fluid flow satisfies three dimensional convection-diffusion equation. Solving
the heat equation, energy equation is a hot topic in physics area. Since we give an implicit difference scheme for numerical
solution of (1.1). We will give its compatibility, stability and convergence consequently.

1.1 Implicit difference scheme

Here we establish the implicit difference scheme

yl n n n n n
“itm 6 j+llm uj—llm +ujl+1m +ujl—lm +ujlm+1 +ujlm—1)
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n _n n+1 n+l
a uj+llm uj—llm j+llm uj—llm
+—( + )
2 2h 2h
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ul _ul n+1 n+1
14 ( jlm+1 Jlm—l ]lm+l ]lm—l)
2 2h 2h
n /) n n+1 A, n+l o on+l
v Mitlim 2u iim Y j—1im +1lm 2u im " j—1im
_1( J J J i J J J= )
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n A, N n n+1 _yon+l o n+l
Vy Yiltim 2ujlm +ujl—1m “il+im 2M]lm +ujl—lm
+7( 2 + 2 )
h h
n AN n n+l Y
3 it 2 tm T jimet | jlmet =2 jim jim-t,
n? n? (1.3)
with initial condition ”?’lm “Eiim

The difference scheme (1.3) is a two-layers implicit difference scheme which involves the fourteen different points on the
time layers n and n+1

ul un+1 Jn
J-Um” jlm*” j+lm’ ]—llm ]lm j+llm

n+l Wt +1

u]l 1m’ ]l+lm ]l —lm’ ]Z+lm

n+l n+l

u W
jlm-1’ ]lm+1’ jlm—l’ ]lm+l

See Figure 1.

Rewrite the initial-value problem (1.1) as
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Figure 1: The points that the Implicit difference scheme (1
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.3) used.

u(x’y’zﬂo):g(x5y5z)9'x5yﬂz€R

and rewrite the difference scheme (1.1) as

D(nyyzy'[):

=0,x,y,zeR,t>0

n+1
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Now we trying to calculate it's Truncated error.

1.2 Truncated error

(1.4)

(1.5)

Assume now u(x, y, z, t) is sufficient smooth and for t third order differential, for space variable x,y and z are fourth order

differential. For calculation is easy, we choose the same step length h of x,y and z axis as h=h, =h =h,, the step length of the

time space is 1. u(x,, z, t) is the solution of initial-valued problem (1.4) and ”;!lm

(1.5). Here we give Labels for later calculation

is a solution of the difference-initial problem
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and likewise (1.13), (1.8)
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The truncated error of implicit difference scheme (1.5) is

T(x,y,z,7) = D(ujlm,tn) —L(u,t)
3. 3 o3 4 4 47T
Eh{au_‘_@_u_‘_@_u} +16_;4+6_§4+6_3 h2r+La—Z+a—Z+a—Z w2 ... (1.25)
Oot|ox oy Oz jim 0o’ & oz Jim 12/ % oz jim
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delete the high level item, it is easy to see that the truncated error of implicit difference scheme (1.5) is o(:2 + h? + h* + h? + r2h?) -
1.3 Compatibility
1.2 The differential scheme (1.5) is compatible with the differential equation (1.4).

Proof: Let us now check compatibility of (1.5)

im TCoy,zr)= 1 D ., ,t,)—L(u,t
e T@ra0= lim (O, )~ L)

t—0 t—0
n n n
B . 63 2 a 64u 54u 84u 2 v82 82u 84u 2
=  lim T +E —atatz h +§—2 5 7 Th®+---—>0.
h—0 (31‘ jim oxt Oy 0z jim ot Ox jim ox jim
t—0

According to the definition of compatibility, when the time step and spatial step to zero, the truncated error tends to zero,
thus the difference equation (1.5) tends to initial-valued problem (1.6), then the compatibility conditions hold.

1.3.1 Precision: Rewrite the difference scheme (1.5), we have

Mg T (52 +87+5D"
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Thus, difference scheme is second ordered. Truncated error of (1.5)

lim T(x,3.0:7) = lim (D(u 1) = L(6.0) = lim O(z 2en2 412 1w+ 222 0.
h—0 h—0 h—0

t—0 =0 t—0

The difference scheme (1.5) is second-order precision for h, for T respectively.
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1.4 Stability
Generally use the Fourier Transformation Method for stability of the constant coefficient problem.
1.3 The difference scheme (1.5) is stable.

Proof: For finding growth factor of the difference scheme, we usually use Fourier transforming Method. Rearrange the
items (1.26) we have

A 2 2 2 1
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Likely we can write F Agu i E A(Z) 71"1
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2.n _ n n
Foyu ]lm F(u]+llm 2ujlm+uj—llm)
ik, j+hol+kymh ikh —ikh
ny, 123 (e kl te kl -2) (1.35)
i(k j+k l+k m)h
Mg (klj ) [- 2(1—cosklh)]
Likely we can write F 53%”?1171’1: 522 u;lm’ and
j+kAl+k,m)h
F[(l+%5§ i A6‘+2v152)u 1=V"e iy ekfekgm) [ +(—7—7]v1)(1 coskyh) - asmk 4] (1.36)
2 A 2 2 A 2
likely we can write F[(1+ 65y 4bA6’ ’27 zay)u;?l ] FI(+ ¢ P> A6+’27v35 )u;!lm].
i(ky j+kol+k,m)h i
[(1+ ank -1, 52y ]=V"el( I [1+7v (l—cosk h)+ﬁasink h (1.37)
0 21 Jlm
likely we can write FI(1+%603 ~Zv,s3w"y, 1, Fl(1+Zeaf ~Lvis2u 1. Then
[1+ (2 )1~ cosk )~ 2 asin, h][1+(—1—77v )(1-cosk, h)—ﬂbsink h][1+(—1—;7v )(l—cosk =2 csink. i)
_ 3 M 17 2 2 37 2773 (1.38)
[1+77v1(1—cosk1h)+l asink h][1+77v2(1 cosk, h)+ bsmk h][1+77 (1 cosk h)+ csink3h]
\G(T k)=
(l—cosk h)ka(tsmk h)—r]v (l—cosk h)(1— (l—cosk h)——b(tsmk h)—?]vz(l—cosk h))(l—{l—cosk hH(zsznk h)—77 (l—cosk h)) ( )
1.39

(147 a(lsznklh)ﬂyvz(l - coskzh))(l + Eb(lsznkzh) + '7V2(1 - coskzh))(l + Ec(zsznk3h) + 77v3(1 - cosk3h))

Aa... 1 b . . 1 dc . . 1
. [1- 2" isinkh+ (=3 =1 —cosk (1 S dsinkyh+ (3 =v,)(1- cosky )P [1- ZC isinkgh+ (3 ~nv3)(1 —coskyh)I*
[T+ %isink]h +1v (1- cosklh)]z[l + %isinkzh + 77v2(1 - coskzh]z[l + % isink3h +1vy (1- cosk3h)]2
(1 7%isink h -1 (1-cosk h))2(1 7@isink h —1vy (1-cosk, h))2
<

(1+—/Izsmk1h+77v (1-cosk h))2(1+—j'lsmk h+77v2(1 cosk h))2(1+—zsmk h+nv (1 cosk h))

2 3

and pay attention to minus items of numerator, then we have |G(r,k)I? -1<0,in which k=(k,,k,,k,)", the implicit difference
scheme (1.5) is unconditionally stable [39-45].

The stability of three dimensional problem is difficult than one and two dimensional problem.Even though (1.5) is
unconditional stable theoretically, in practice restricted by mesh grid ratio and convection-diffusion coefficients.

It is worth to show that the explicit difference scheme for three dimensional problem double times constrictions about
time step, thatis why we propose the second ordered implicit difference scheme in this section. To solve the three dimensional
convection-diffusion equation by using implicit difference scheme directly is difficult. So the numerical methods becomes hot
topic in recent decades [46-50].

1.5 Convergance

Lax and Richmyer (1956) gives the Lax Equivalence Theorem which helps to determine the convergence when we dont
know the exact solution. It is always used to constant coefficient problem. For variable coefficient problem, we have used to
Energy Inequality Method.

1.4 According to the Lax Equivalence Theorem, The implicit difference scheme (1.5) is converges to three dimensional
convection-diffusion equation.

The Lax equivalence theorem can be used when the initial value problem is linear, well-posed and has the periodic initial
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and boundary condition. The problem (1.1) is a well-posed the First-Dirichlet Initial - Boundary problem with periodic
initial condition. It is worth to show that the explicit difference scheme for three dimensional problem wants triple times
constrictions about time 7. So we propose the second ordered implicit difference scheme in this paper [51-60]. Here we give
an algorithm of numerical solution of the three dimensional convection-diffusion equation which using (1.5).

1.6 Stepwise alternating direction implicit difference method
The three dimensional problem

ou Oou ,0u Ou 62u 6214 62u

Lu:§+a§+b§+cg_vlax—2_v26y—2_v3az—2:0 (140)

We rewrite implicit method (1.5), we need initial and boundary condition

u(x7yjz70) = g(x’y’z)
u(O,y,z,t)=f1(y,z,t),
u(x,O,z,n)=f2(x,z,t), (1.41)

”(X,y,O,n) = f3(X,)/J)-
We want special step h=h, =h, =h, for calculation. The The first,second and third terms are the diffusion terms at the right

end and the second, third terms at the left end are the convection term. Because of the characteristics of the equation itself,
it is difficult to establish an accurate, effective method. Convection velocity corresponding X,y and z are constants, V,,V,,V, are
diffusion constant coefficients. If the convection coefficients a,b and c are small, the convection effect is relatively weak, and
diffusion dominates, equations are elliptic or parabolic [61-65].

If the number of a,b and c are large, the diffusion of solute molecules is slow relative to the fluid velocity. In such problems,
the convection is dominant, the equation has the characteristics of hyperbolic equations. The problem (1.1) and initial-
boundary conditions (1.2), the diffusion of a substance in a medium that is moving with speeds to x,y and z directions. The
unknown function is the concentration of the diffusing substance. The conventional Galerkin Finite element method is used
to solve the convection dominant problem.

Peaceman, Rachford and Douglas proposed Alternating Direction Implicit Method.

we have use the implicit method (1.69) for Lu, as

n+l _ 1.2 2, 2 A ax ntl Ay n+l 1 n+l
ujlm [1+6(5x+5y+5z)] iim 3(a A (u]lm ]lm)+b A (u]lm ]lm)+c (u]lm ]lm)
M s2mH B 2,m+l B 2, ntl (1.42)
56 (u jlm) —5 (u ]lm) _5 (ujlm Jlm))
we do implicit difference to x direction to L,u of (??)
~n+l1 2,2 2yl T 1 ox An+l ull
ujlm =[l+¢ (5 +02); Jjlm 6(5 i ]lm §a4hA0 jlm) b_ ]lm 4h 0(u]lm)
| 52pn+l V2 52,1 _V_3§2 n (1.43)
S22 R T OV iy 3 OZ i)
2h JE 2n I op Jim
An+l 2ysntl | 2yintl | 2 AX (L Lavintl LAz
u]lm =l+s (5 Vi ]lm 6(5 i ]lm 6(5 w; ]lm 3(a4h O(u]lm)+b A0 ]lm+c4hAO(u]lm) (1.44)
v v, N v
1 R2an+l 2 2Ap+l 3 2on
h2 é‘xu]l 252 5yujlm 52 u]lm)
n+l _ 2\ An+l 234+, 1, <20 ntl AX (At A oyvan+l Lz ]
u]lm =1+— (5 )i ]lm+ (5 i ]lm+6(5z) iim 3(a4h O(u]lm)+b A ]lm+c A (ujlm) (1.45)
V. v, v
1 ¢25n+l 2 2 n+l _ "3 2 n+l
2h26xuﬂ 2h2§y jlm ™ Zu]lm)
257
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x y A/ 2 25 | n+l
[1+ (aA +bA +cA) (vé' +v 5y+v352)}ujlm

- [“Z@% +67 +522)7Z([mx 083 +caZ)+ 187 +v,53 +v25)%)}u;’lm (1.46)

A x 2 Ay 2 A Az 2y n+l
(1+ZaA0 _EV1§ )(1+ZbA _5V26y)(1+ZCA0_EV35 )ujlm

_ 2_A 2 2 4 1.2 4
7(1+_5x —_anﬂv 5x)(1+25y —ZbAg+gv25y)(1+Zaz -z

z 2
0 PR T (1.47)

1 3zyx7 25252 232 q,ntl _on
[64abcﬂ. AOAOAO (v1 > 35x 03 )+ 16 770 5y52 + ](uﬂm ujlm)
and the
3
1 3AZAVAX _ 1 2 22 n+1 n
+[aabcﬂ AOAOAO ?(V1 > 35x 5 )+ 16 770 5 o7 +- ](u ujlm)
is a high ordered residual deleting it,we have
A
(1+2 aAg 7\/62)Au =1+ 52 - A3+’27v152)u’?lm
y_1n, s2 - A pAY A
(1+—bA0 2v25y)Au (l+4 y 4bA0+2v25y)Au (1.48)

(1+ZCA(Z) §v3§2)Au:(l+Z§ZZ 2A6+2v35)2,)Au

This is a Fractional Step method, second ordered unconditionally stable. The numerical solution is need initial -boundary
conditions. Now we give an Alternating Direction Implicit method (ADIM) algorithm for three dimensional problem (?7?)
which using the implicit difference scheme (??) inderectly. It is necessary to show that, now we propose the details which
change the implicit to explicit, and improve the accuracy as well, reducing the computational work [66-70].

Algorithm of ADIM

0
step one: step 1: input initial condition ¥z, =8 1> and boundary condition (10’") ”0 Jm and function u(x, y, t), and
constant coefficient a, b, v, step length [ A,n.

step 2: Pretreatment: calculating

0 n+l _1-al p (n+1m ul )
Jjlm 1+aA ﬂm 1+aﬂ. —U"’l J+llm

beyond x direction and

nl _1-al pn n+l n
jim " Tvartjim T 1+a,1( jietm Y im)

beyond y direction, and

4 n+l _ 1+a/112 }’H—] l-al I’l
j+lim al ' jlm az iim ™ m

" n+l _ 1+aﬂ.ﬁ n+l _1-al Wl
Jl+lm ai jlm ai jlm” jl—lm

are for right boundary condition.

step 3:calculate the ”ﬁlllm by using

ad M\ n+l W n+l

(___)uj—llm+(l+ “ilm (___) Y iHlim (1.49)
N M’ 1 i

B 177+7 j —1im +5 )ujlm+(zi_ - j+llm

Citation: Sabir A, Abudusaimaiti M. Stepwise Alternating Direction Implicit Method of the Three Dimensional Convective-Diffusion Equation. Ann Math Phys.
2024;7(3):248-276. Available from: https://dx.doi.org/10.17352/amp.000131



g’ PeertechzPublications https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics 8

n+1

calculate the uj7,, using

v, v, v,
(2—2777)1/”rl +(1 +%’7)u”+1 +(%—%77)u”.+1

jl-1lm Jjlm Jl+lm (1.50)
1 ad Vy'og Vol 1 _bA "% n
TG T T G

step 4 iterating step 2 and step 3, stop when n=N-1.

Because the difference scheme proposed step 2 is unconditionally stable that will not affect the convergence of (??) and
(?7). This is the lively usage of Fractional Step Methods(FSM) and Alternative

1.7 Greedy algorithm
1.5 The problem (1.1) is uniquely solved by (1.5) directly.

Proof: According to the time layers, splitting (1.1) on three direction, we have Below we use the each blocks of implicit
method (1.5) on each equation of (1.37).

1.7.1 Implicit split on x axis

Rewrite (1.5) on x direction, we have the iterative linear system below

_ﬂ_m n+l 1 ﬂ n+l , car 17 n+l

( )uj—llm 3+ )ujlm ( )j+llm (1.51)
0 7 ol 1 L
( )] llm+( )]lm ( )]+Ilm

in which A= %,,u vl Let(j=1,2,..,7-1) then (1.51) represents a linear system as

uml —aZlB un

ilm il +AY y (1.52)

The coefficient matrices and corresponding vectors in linear system (1.52)

) _
A @y 0 0
2Ty A0 @ Ty 0
P B R G B
o o O o o
V; \Z
0 o &0y &0 @ (1.53)
% (%%%) 0 0 0 ]
(1.54)
] 0 0 0 (é+%+%) %
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T
n+l _(, n+l  n+l | n+l gl
szm’( 1m " 20m Y 3im> T 204 g llm) (1.55)
un ,( Wbt u ut )T
Jolom  \UUm " 20m? " 3Ime " J=2Im " J-1lm (1.56)
at 771 n+l al ' ]
(‘_ PR ozm+(_+T+ = 40m
0
Sy = :
K 0 (157)
al ™ p+l ai ™, n
( )Jlm+(7 ) )qum) ]

1.6 The sufficient conditions to find a unique solution of the linear system (1.52) using the catch-up method is these inequalities
hold on

a/i S
A e A U
>l |+l v, =2, — .
2)‘ﬁj‘_‘aj‘+ @y 0,522 =2, (1.58)
38>l 4
@, B;7; are the tri-diagonal elements of 4 , or the coefficients of u7+11,u"+1 7:11 in (1.51) like
__aA "t L A U -
P e VA R g R e AR
If ﬂ—% >0, 4, isa diagonally dominant, inverse of A exist.
1.7 When
@>2
i
OSaﬂ—v]yS% (1.59)

the coefficient matrix 4 in (1.52) is diagonally dominant.

Proof: Because 420,420,y 20,420, if (1.59) hold on, then we have

1 M

32

ai V!
4 2

al V1ﬂ+
4 2

_(_

the coefficient matrix A, is diagonally dominant. The sufficient condition that (1.52) has a unique solution is the inequalities
(1.59) hold on.

1.8 If (1.59) holds on, then (1.58), holds on too, then the linear system (1.52) has a unique solution.

1.91f 4, DD gnd

d ,= min a--‘—Za
A
1<j<n & i=1
i#]
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then A4 exist, and

-1 1
4 e
X

Proof: The linear system (1.52) is an iteration form on time layers

untl =y Slpun a7y

Jid.m X X5 lm

“1p \n (1.60)
_ 1-(4, 'B _
— (4, le)nHU?lm* ( x ! W)y -l
o 1-(4 "By)
If p(4,”B,)<1, then the difference iteration method (1.52) is convergent.Because
ot | <josstam oo, |+ 1-(4;'By)" ]
JoksM Jidm 1_(‘4;13)6)
(1.61)

Ay - BY

<Joa ool ’+_|fx|

in which A, -B, »|A% —By||is a positive real number, suppose k_is a real number, and
A -B;
2 g | =K let G,=ABF =Af , then (1.61) becomes
n+l n+l 770 Ky ”F x”
U] I.m <Gy UJ Im + =1 5,1
x

1.10 When A(45 By) <1 then G\ <1.The solution of linear system (1.52) is convergent on the x direction.
1.11 The difference scheme (1.51) has unique solution on x direction, requires these inequities established
1) A is a diagonally dominant matrix. 2) p(4, 8,)<1.

1.7.2 Implicit Split On y Axis

We can rewrite (1.5) beyond y directions

_b/i n+l 1, Y1 ntl n+l
4 _) Y il-1m +(§+ 2 - Y ilm ( )]l+lm
bA VT Vo1 Vo7 (1.62)
7(_ o tom ]l m TS )]lm (__ )jl+1m
Let1=1,2,..L-1 ,then (1.62) represents a linear system,as
n+l n

A)’U]lm ByU]lm+fx0
vl —ASlB U, ALY

jlm Y jlm Yy (1.63)

Citation: Sabir A, Abudusaimaiti M. Stepwise Alternating Direction Implicit Method of the Three Dimensional Convective-Diffusion Equation. Ann Math Phys.
2024;7(3):248-276. Available from: https://dx.doi.org/10.17352/amp.000131




g’ PeertechzPublications https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics 8

1.12 If the inequality system

bh

-—>2
\Z
2
2 (1.64)
0<bA-vopss
holds on, then the coefficient matrix in (1.63) is diagonally dominant.
1.13 When inequality system (1.64) is hold on,then the linear system (1.63) has a unique solution on y direction.
Proof is same as Theorem 2.10, here we omit.
In linear system (1.63), the coefficient matrices and corresponding vectors are
]
bir My
~+20 oA T2 0 0 0
( (4 5 )
_M_”_z LA At}
23 Gy (4 2 0 0
_bA_ Ty L 0T pAT
4y 0 ( & ) ( (4 2 ) 0
br 7 n bA
0 o 2Tz g2 2T
(1.65)
_bﬂ_”_z 1,57
] 0 0 0 ( ) (3+ > ]
o] 1_b4,
2 Gaty) 0 0 0
1,04, i} __M ﬂ
Gra+ ) 2 G X 0 0
1,bA, M m 1_bA ™
B, = 0 Grata) 2 G332 0
1,04, ™ sl 162, (1.66)
0 0 G 2+ 2) 2 G a3
1,62, ™
] 0 0 0 (6+ 7 + ) ) ) |
n+l _| n+l  n+l  on+l 0 n+l n+l
Jjim [ujlm’uj2m’uj3m’ ’ujL—2m’ujL—1m} (1.67)
n n n n n T
[”jlm’ujZm’uj3m"“’ujL—Zm’ujL—lm} (1.68)
b/’l, v 2 n+l bA TIVZ n ]
M G W o
0
fyo = :
0
(1.69)
M G )
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bxl n
1.14 When — 72>0 4y, is a diagonally dominant, A, exist, and (1.63) has a unique solution on y direction.

1.7.3 Implicit split on z Axis

The same way, we rewrite (1.5) on z directions, we have

V. V.
i)un+1 +(l+i)un+l +(ﬁ_3777)un+l

jlm—1 jlm Jlm+1
v (1.70)
7(_ e 3) A (AW SR B < AW B
jlm—l 2 7jlm e 4 2 7" jlm+l
Let m=1,2,..,M-1, then (1.70) represents a linear system as
n+l _ n
AU =BT, + S
n+l 1 n -1
R (1.71)
In which, the coefficient matrices and corresponding vectors are
(_ 37 ( cA_T 3 0 0 0
ﬁ 77 3 377 Z, nv 3
—+ =2 0 0
(- =) 3+ > ) (- )
A V3 cd 3
0 A ST “_ 0
4z = %7 ( &3
A_M3 3’7 6/1 ’73
0 0 _L —4 30
( - ) ( (- )
0 0 0 (- C’l 773) (7 37
L (1.72)
1, Y37 1 cA ™ |
v Gt 0 0 0
1 cA 3 e} 1 cAd
473 =3 = =3 0 0
staT ) 2 G 2+ 72)
1 cA M3 e 1 cA T3
0 S =3 S 0
B, = G 23 2 G 2172
1 . cA T s 1 cd ™
0 0 SR - =3
G a7t 7) 2 G2+t
V. V.
0 0 0 (1 ﬁ+7773) s}
L 6 4 2 2 ] (1.73)
Ci v 3 n+l cA 77‘}3 n 1
WG G,
O
fz=
0
A ’73 n+l )
(G +( TPl
"M i) | (1.74)
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n+l n+l  n+l | n+l n+l n+l r (1.75)
Vilm =[”jll i ""’”ﬂM—z’“jLM—J '

n n n n n n U
Uitm z{ujll’ujIZ’ujB"“’“le—2’ule—l} (1.76)
U A B, LA
1.15 If the inequality system

% >2

3 (1.77)

2
0<cd- V3l < 3

holds on, then the coefficient matrix in (1.72) is diagonally dominant.
1.16 When inequality system (1.77) hold on, the linear system (1.71) has a unique solution on z direction.

Implicit difference scheme (1.5) for three dimensional convection-diffusion equation (1.1) constructed by three one
dimensional linear systems [71-80]. Here the implicit difference method is second ordered on time layers and on x,y,z
directions, second ordered on convection terms,second ordered on diffusion terms.The convergence better than Finite
element method, characteristic line method,and mesh-less method which is only first ordered on time layers and first ordered
on convection terms, see [18,19,24].

2. Implicit Split Alternating Direction Method (ISADM)

The numerical solution of (1.37) on x,y,z direction separately have no physical meaning. Solving the three dimensional
convection-diffusion equation, we give an Implicit Split Alternating Direction Difference Method. This algorithm based
on (1.5), which solves the problem (1.1) globally, six ordered the convergence on time layers, at-least second ordered on
convection terms.Equation (1.1) is a tri-linear system, coefficients are three dimensional tensor. The main idea of this method
is splits (1.1) on the x,y and z directions,each blocks of it use implicit format blocks of (1.5), then iterating (1.52), (1.63),
(1.71) alternately. Split equation (1.1)

Lu=a—u+aa—u+ba—u+ca—u—v &—v &—v &=O
ot ox oy o0z lg2 2 5‘y2 382

into the sum of three one-dimensional equations such as:

2
1 0u ou o“u
——+a—=v,—=,xeR,t>0
3o Yo g2t E

2
10u ,0u o0“u
———tb—=v,— R,t>0
35t > vzayz,ye , (2.1)

10u ou 82u

= Z,zeRt>0
" v3622’ze ,

Here we use implicit difference schemes in each partial differential equation in (2.1) on x,y and z directions separately. At

. 1
the time layers, we use 3 step once, then we have

n+k n n " . n+l n+%
Yilm _E(uj+llm +uj—llm) +£(uj+llm “idim N Yiilm _uj—llm)
3r 2 2h 2h

1 1 1

ntl ntl o onel
n _o n _ (2.2)
i 2 im M jtim it~ jm i
2 2 2
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nt2 | ol ol nk ol 2 2
3_1,3 3 3
.2 ——(u, +u . ) u. —u. u. -u.
jlm 2V jlHlm 7 jl-1m é( jl+Hlm 7 jl-1m + jl+Hlm ]l—lm)
3r 2h 2h
ntl nk ol o2 3 ontl 2.3)
_p 2 m M jAm  jieim 2 jm Y ji=tm,
2 2 2 2
n+l _ 1 Lw 3 n+§ ) un+7 _un+7 Jrl ol
jlm™ 2 ]lm+1 jlm—l c ( jlm+1 jlm—l ]lm+1 ]lm—l)
3r 2 2h 2h
2 2 2
n+= n+s  n+s
_ G oyt it (2.4)
V3 Yim+l 2ujlm +ujlm—1 Yilm+1 2ujlm +ujlm—1
= ( )-
2 h? h?

It is clear that adding (2.2), (2.2) (2.3) and (2.4) is equal to the implicit difference scheme (1.5). Time t is a curvature
on fourth order space. Three dimensional problem (1.1) solved by iterating (2.2), (2.3), (2.4), in each step, work only on
one direction, then iterate alternately. By this way, we can use implicit difference scheme (1.5) indirectly, solve the three
dimensional convection diffusion equation (1.1) globally, and greatly improves accuracy, numerical solution quickly
converges to analytic solution, and with no unnecessary vibration [81-88].

This Implicit Split Alternating Direction Method(ISADM) can also usedto the convection dominant,diffusion-dominant
problem.

2.1 Convergences of ISADM

Rewrite (2.2), (2.3) and (2.4) we have

1 1
al sy "3 _ 1 al n n 1 al
(__ l)u] 1/m ( v )ujlm ( - )u]+llm _(€+7+77v1)uj—llm +77V1ujlm +(6 2 +m}l)u]+llm (2.5)
2 2 2 1 1 1
(—M— v )un+§ +(l+ v, )un+§+(@— Vv )un+§ :(l /1+ v )u +nv "3 ( b/1+ VA U "3 (2.6)
2 M1 T ST gy T T 1A T T T ]llm ’72ﬂm vy ]l+lm
2 2 2
ch n+l 1 n+l n+l +§ n+ 1 _cd +7
S, + G +’7V3)”jzm+(_"7 il (“ +’7V3)” T P g+ =3 (27)
When ;=12,....J-1,/=1,2,---,L-1,m=1,2,---,M -1, three difference equation (2.5), (2.5), (2.6), (2.5) (2.5) (2.4) becomes

three-dimensional linear systems

nl
Al -1
u"3 Azl un +AY Sy

Jil.m X TXE G lm

n+2

N

U T S

Uj,l,m Ay ByUl Ay Sy

(2.8)

2
Ul —aZlp "3 LAzl
_] l m zZ z j,l’m zZ z

The coefficient matrices and corresponding vectors are same as (1.52), (1.52) (1.63), (1.52) (1.63) (1.71) Calculating the
values on level n+1 by using (2.8).

2.1 If inequalities system

a_h>2 @>2 %>2

v v, V3
0<al—-vu<2|0ShbA-vu<2|0<cA—vu<2

(2.9)
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hold on in (2.8), then A,,A,'A;’ exist, and we have

- 1
4y < 5—
Ax
e L
Y (2.10)
- 1
4 <5
z
in which 5Ay’ A4, same as 5Ax in Theorem 2.10.
2.2 (1.1) can be uniquely solved by linear systems (2.8) in each x,y and z direction alternately.
2.3 Solution of three dimensional linear system (2.8) is convergent to the analytic solution of (1.1)
Proof: We check the convergence of (2.8). Input the first linear system into the second one in (2.8), we have
2
n+=
Usgin A3 BT BUT , + A5 BT 0+ (A5175) (2.11)
We put (2.11). into the third linear system in (2.8), we have
Uﬁlm =Az'B.[A}!B yAngny,,l’m +AB AT AT A
=(AZ'BA B AL BOUT L+ (AZTBAL B AT ) +(aZ B )+ ALY
_ra—l -1 -1 0
=[(AZ B2)(A}By)(Ay Bx)]"UjJ,m
-1 -1 —lp -l .-l -1 | | -1 -1 -1 -1
HIAZ BZ)(AL B A BT+ +[(AZ7 B-)(A), By )AY B (A} By) (A fx)+(AZ B(A) f))+AZ fZ]. (2.12)
Let
') <G,
(47 'B,)(4;'B,)<G,.
(478,04, B, )4 B < G (213)
then (2.12) becomes
vl <onp®  enl g2 4606, v Ty ]
Jlm =717 jilm 1 1 12724 73 4y 3 (2.14)
because we have
p(4, 1B <1,
-1
P4y, By) <1,
y 7y (2.15)

P47 1B <1,

then we know (2.8) at least six ordered convergent.Problem (2.12) are inverse problem, three-dimensional tri-linear system
(2.8) has a unique solution when the inequality systems (2.10) hold on. So (2.8) convergent. The speed of convergence rate
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0_8 T T T T T T T T T
our implicit differencescheme
0.6 I Standard Galerkin centered diffirence
I', scheme
1
04 | i
III f.
1 !
II /
02| ."'l 1]
II |l|l
; I|I .l"l
‘\ll 3 /
0 \ 4 w\\_ / d
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far exceeds the Super-Relaxation Method (SOR), quicker than general Alternating Direction Implicit Method. Here we give the
Algorithm of Alternating Direction Implicit Split Difference Method below [89,90].
2.2 Pretreatment for initial-boundary condition

Numerical solution of (1.1) by using (2.8) always depends on initial boundary conditions. If the initial-boundary condition
is continuous, use implicit split scheme (2.8), numerical solution converges to analytic solution so quickly Figure 2.

If the initial-boundary conditions is discontinuous, then there appears oscillation near the discontinuous initial-boundary

_ 1—ad n al § n
“iim 1 arjim  Traz j-itm T im)

points. Hence we show the pretreatment for discontinuous initial-boundary points. Before we calculate the numerical

solution, do this pretreatment first. See Figure 3, for pretreatment on x axis. The pretreatment on y and z axis is the same. We
omit their Figure here. When j = 1, pretreatment for left boundary condition on x direction is
1
s
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see the left side of Figure 3. When I = 1, pretreatment for left boundary condition on y direction is

2 1 2 1
ez _ o ek 2 ek
3_1-ad "3 ad (u ) (2.17)

3
“itm " Txaijim T1xar Mji-im T jim

When m = 1, pretreatment for left boundary condition on z direction is

2 2
n+l _1-al n+§+ al (un+1 +

2
3
Jjlm 14ai jlm " 1+al jlm—1+ujlm+1)' (2.18)

While j =] - 1, the pretreatment for right boundary condition on x axis direction is

1 1
"3 _1-al p al M3

- _hn 2.19
“im =15 azim  Traz “jilm =% j-tm (2.19)

see the right of Figure 3. While [ = L-1, the pretreatment for right boundary condition on y axis direction is
2 1 2 1
}’l+§ _ 1—al n+§ al n+s I’l+§

3 _
ujlm 1+a}bujlm+1+a,1(ujl+lm ujl—lm)' (2.20)

While m = M-1, the pretreatment for right boundary condition on z axis direction is

(2.21)

n+l :l_aﬂ Mn+%+ al (u}’H'l —u +% )
Jim 1vad jlm 14ad” jlmtl 7 jlm-1"

Inside of definition domain, as j=2:J-1,/=2:L-1,m=2:M -1, we use (2.5), (2.5) (2.6), (2.5) (2.6) (2.7) alternately. We
calculate all value of Yin from t=0:N. Now we will give the algorithm of ISADM, see Algorithm 1. Now we give the algorithm

of Stepwise Alternating Direction Implicit Method(SADIM)for three dimensional problem (1.1), which the implicit difference

Algorithm 1 Algorithm of Stepwise Alternating Direction Implicit Method
Require: Input
Input Input:Space Step kb = hp = hy = R (Only for this paper); Input: Time Step 7;

Input: Convection coefficient a,b,c ;[Input:Diffusion coefficient vy, ve, vs;

Input:Initial condition uc?,i m;Input:Boundary condition “3,£,m+u§to,m+uﬁ,o
Ensure: Cutput
Output Uﬁ"?;li;
1: Calculating A = £.,n = 5;
Initialize Ay, By, fo according to(?7)
InitializeAy, By, fyaccording to {77)
Initialize 4., B., fz,according to (77)

2: for t=0:n do
3 while j=1,]-1 do
4: Pretreatment for left and right initial-boundary bevond x direction; calculating
1—ah .
W = m“ﬁm m(’&ﬁ—um + v )

5 end while
for j=2:1-2 do

3]

A T gviﬁgju"-z

A N .2 1 o
(1—}—4&.&%’—21;1503)@*:(14—6503— . -
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a: end for
O: return u*
10: while 1=1.1-1 do
11: Pretreatment for left and right initial-boundary beyond y direction. : calculating
1—ai ah
1—ai .
u;f'm = 1+ a)\u;nim m(u;f+im - u’;i—im)
12: end while
13: for 1=2.1-2 do
14: A 1 A
(14 “bA¥ = Tuns2iAw™ = (1+ 252 — “bAY + TunsZ)Aw®
4 2 B 4 2
1h: end for
15: return u**
17: while m=111-1 do
18: Pretreatment for left and right initial-boundary bevond s direction. © calculating
1—an a9
+1 +1
u;:l-[m - 14+ a)\u;fm + 14 al (u;'t-[m—i—i - u;f'm—ij
1—an oA
1 1
16: end while
20: for m=211-2 do
2L by 1 A
i) i)
(14 JeAd — Jusdfju™h = (14 82— TeAf+ Jusdiju
22 end for
23: return «*t1 this is the lat part.
24: end for

scheme (22) ~ (22)(??).

When j=1--J-1,(2?) becomes

ai M\ n+l sl | ad M1 i
o = g D+ O =
2.22
=(l+ﬂ+£)u” +(l—v N +(l—ﬁ+£)u” 222
6 4 2 MmN  jim TN T T i
2.2.1 Numerical example
Three dimensional convection diffusion equation
fuou fu du du 0P oPu o%u_
o oy oz ol o2 ol (2.23)
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o
o

Figure 4: When t not equal to zero,then t is curves on four dimensional space.

and initial- boundary condition given as

u(x,y,z,0) = sin(x)sin(yr)sin(zr)
u(0,y,z,t)= e_tzcos(yﬂ)cos(Zﬂ),
u(x,0,z,t)= et ZCOS(xﬂ)COS(Zﬂ),

(2.24) u(x,,0,t)= e_tzcos(xﬁ)cos( yr),

The initial-boundary problem is a steady state blocks
on four dimensional space, w hen t=0, then it is a super
symmetric 3d objects which formed by the intersection of
six paraboloids. Here we show its one block on axis y. See
Figure 4. When t not equal to zero, then t is curves on four
dimensional space. The super symmetric 3D objects moves
along the t curve, and her whole body and endogenous
changes when time t changes [91-96].

2.2.2 Other effects of stability

The main idea of this section is, the difference
scheme is established to ensure that its solution satisfies
the properties of mass, momentum and total energy
conservation on the whole solution region and even on each
grid. In a word, the study on the conservation of difference
scheme should include two contents: How to construct
the appropriate conservation scheme; that the results of
numerical solution should be tested when the conservation
scheme is difficult to design [97-100]. It is obvious the
conservation of this practical calculation result is closely
related to the grid scale effect, differential remainder effect
and numerical boundary effect and conservation of format
mentioned above. Therefore, conservation should be used
as a test of the calculation process,according to which the
grid scale should be checked and dissipating dispersion
and numerical boundaries to ensure the stability of the
calculated results.

The difference scheme (1.5) proper to strong diffusion
dominant problem, and the problem of time dominance.
For the diffusion dominant case, when the v is too big or
too small, or the time step chosen too large or too small,
the numerical solution dispersive [101-132]. Though the
difference scheme is unconditionally stable in theoretically,
in practice, the stability of the numerical solution affected
grid scale effects, residual effect of difference scheme,
numerical boundary effect, and conservation effect of
scheme, etc.

Difference Equation (1.5) can easily be extended to more
than three spatial dimension, and the analytical solutions
for several dimensions are also available. Thus, they can
be used to test numerical methods in one, two, three and
more dimensional convection-diffusion equations and still
unconditionally stable and higher accuracy on time step
and convection terms.This is the lightning of our paper.

Conclusion

This paper mainly discussing a numerical solution
for tree dimensional convective-diffusion equation with
initial-boundary condition. An implicit difference scheme
constructed, its truncated error, stability, convergence are
analyzed. For solving convergent numerical solution, we
give an Implicit Split Alternating Direction Method and
it's Algorithms. If a,b,c>0,v,20,v,20,v,20, the problem
(1.1) is well-posed, and can solve (1.1) uniquely by the
implicit difference scheme (1.5). The implicit method is
unconditional stable, second-ordered convergent on Xy,
and z direction. Theoretical analysis and experimental
results show that when the grid ratio is properly selected,
the difference scheme is quite stable.

However, the convection coefficient is too large, there
appears non-physical vibration. Use Algorithm we proposed
reduces the non-physical oscillation and eliminates the
dispersion effectively.
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The problem with discontinuous initial-boundary condition, much more numerical solution appears perturbation near
the discontinuous points. We have use the Saus scheme before use algorithm, retreating discontinuous initial-boundary
conditions. Since the implicit difference scheme performs better than the standard Galerkin finite difference scheme, and
quicker than SOR iteration method.

The implicit difference scheme (1.5) used in Algorithm alternately, eliminating discontinuous initial-boundary conditions
one by hand, solving three dimensional problem, the algorithm almost six ordered accuracy. It can be extended to three
dimensional variable coefficient convective-diffusion equation directly. The characteristic line method and Finite Element
methods uses all of the initial-boundary conditions and the three degrees differential values, so the computational work is
much more. The implicit difference method we proposed are over coming this deficiency. For three dimensional problem,
Implicit method works three directions at a time, thus tripling the calculation at a point. The parallel computational work
easily processing this algorithm in this paper, six ordered convergent, unconditionally Von-Neumann stable.For convection
dominance and dig divergence dominance, the number of meshes should be increased and the length reduced.

However, no more in-depth study was undertaken in this area. We comparing with the characteristic difference method
and the characteristic finite element method, the method we proposed is effective, simple in contraction and have a good
convergence order. Therefore, exploring the numerical solutions of these problems using implicit difference format provides
a feasible numerical model and a convenient, quick operation method for both theorists and practitioners, which has certain
theoretical value and application value. Authors are grateful for the stimulating discussions and enlightenment's from from
my teacher.
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The Algorithm we put out in paper one of good algorithms for numerical solution of compressible and incompressible
Navier-Stokes equation.

Conclusion and prospect

This article presents a comprehensive study on the analysis and synchronization of QBAM neural networks. It introduces
a direct analytical method based on the quaternion-valued sign function, which allows for a more in-depth analysis compared
to previous approaches. The study investigates fixed /preassigned time synchronization in QBAM networks that incorporate
random and impulse phenomena, providing a comprehensive understanding of their impact on synchronization behavior.
Interestingly, the assumption that activation functions must be continuous is challenged by incorporating discontinuous
activation functions. The proposed control protocol is shown to be effective in achieving synchronization in the presence of
impulse and random effects, supported by both theoretical analysis and numerical simulations. These findings contribute to
the understanding of QBAM networks and pave the way for further research in this field.
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