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Abstract

In the current study, the Jensen-Mercer inequality is extended to co-ordinated h-convex functions. Additionally, a novel inequality is employed to derive Hermite–
Hadamard-Mercer type inequalities for h-convex functions defi ned on the co-ordinates of a rectangle in the plane. These developments not only reinforce the core tenets 
of convex analysis but also expand the applicability of Hermite-Hadamard-Mercer type inequalities to generalized convex functions on co-ordinates. This provides valuable 
tools for data analysis and optimization problem-solving. The practical utility and effi  cacy of this generalized inequality in real-world scenarios involving co-ordinates are 
demonstrated through a computational study.
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1. Introduction

Convexity is a fundamental concept in mathematics, particularly in the fi eld of optimization and analysis. The history of convexity 
dates back to ancient times, with early mathematical investigations conducted by ancient Greek mathematicians such as Euclid and 
Archimedes. However, the formal development of convexity theory began to take shape in the 17th and 18th centuries with the works 
of mathematicians like Isaac Newton and Leonhard Euler.

In the 19th century, the concept of convexity saw signifi cant advancements, particularly with the emergence of convex analysis. 
Augustin-Louis Cauchy, Jean-Victor Poncelet, and Joseph Fourier made notable contributions to the fi eld during this period. The 
mid-20th century witnessed further progress in convex optimization and convex geometry, with mathematicians like Hermann 
Minkowski, George Dantzig, and John von Neumann playing pivotal roles in advancing the theory and applications of convexity.

Today, convexity theory is a cornerstone of mathematics, with widespread applications in various fi elds, including economics, 
engineering, computer science, and physics. Its importance stems from its elegance, versatility, and utility in modeling and solving 
a wide range of optimization problems.
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The Hermite-Hadamard inequality, also known as the Hermite-Hadamard integral inequality, is a fundamental result in 
mathematical analysis that provides bounds on the value of certain types of integrals. It is named after French mathematician Charles 
Hermite and French mathematician Jules Henri Poincare (though it is often associated with the work of French mathematician 
Jacques Hadamard as well). Charles Hermite (1822-1901) was a prominent French mathematician known for his work in number 
theory, algebra, and mathematical analysis. He made signifi cant contributions to the theory of elliptic functions, algebraic number 
theory, and mathematical physics. Jules Henri Poincare (1854-1912) was a leading mathematician and physicist who made substantial 
contributions to various fi elds of mathematics, including topology, celestial mechanics, and the theory of dynamical systems, to 
know more one can be seen [1,2]. Mathematically it is defi ned as:

If : I      be a convex function on the interval I on the real numbers 1 1, .I    The inequality

     1 111 2
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1 ,
2 2

d




  
 

 
    


 

             (1.1)

is known as Hermite-Hadamard inequality for convex function.

Breckner was the pioneer mathematician to introduce an s -convex function in 1979 [3], and the exploration of connections with 
s-convexity in its initial sense was extensively discussed in [4]. The direct proof of Breckner's seminal result was later acclaimed in 
2001 by Pycia [5]. Given the pivotal role of convexity and s -convexity in unraveling optimality within mathematical programming, 
numerous researchers have dedicated substantial attention to s-convex functions. Notably, earlier works by H. Hudzik, et al. [4] 
elucidated two variants of s-convexity (0,1)s , demonstrating that the second sense inherently surpasses the s-convexity in the 
initial sense whenever (0,1)s . We broadly term the use of s-convexity in its second sense as an s-convex function. Given (0,1)s , 
this class of functions holds greater importance than convex functions. Moreover, our primary fi ndings reveal that results obtained 
via s -convexity signifi cantly outperform those derived from convexity. Additionally, s-convexity serves as a generalization of 
convex functions, allowing us to deduce results for convex functions by setting s=1 in the s-convex function outcomes. The Hadamard 
inequality for s-convex functions in its initial sense was introduced by S. S. Dragomir and Fitzpatrick [6]. Hadamard inequality for 
s-convex functions in the second sense was also introduced by S. S. Dragomir and Fitzpatrick in [6]. The class of h-convex functions 
was introduced by S. Varošanec in [7], which generalizes the concept of Convex Functions, s-Convex Functions, Godunova-Levin 
Functions, and p-Functions. Hadamard's type inequality for h -convex functions was introduced by Sarilaya, et al. in [8].

The primary objective and rationale behind coordinated convex functions lie in the fact that every convex mapping 1 1:[ , ]     
retains convexity when viewed along its coordinates. In other words, the function remains convex when examined individually 
along each coordinate axis. However, it's noteworthy that while coordinated convex functions exhibit this property, there also exist 
coordinated convex functions that are not globally convex. This highlights the nuanced relationship between coordinated convexity 
and global convexity, offering insights into the intricate nature of these mathematical structures (see for example [9,10]). For more 
results in the fi eld of co-ordinated convex, we refer the interested readers to see [9-20].

S.S. Dragomir established the ensuing Hermite-Hadamard type inequalities for coordinated convex functions defi ned on the 
plane's rectangle 2  in [9].

Theorem 1

[9] Suppose that a function 2
1 1 2 2: = , ,               is convex on co-ordinates. Then one has the inequalities:

       , , , ,1 2 1 2 1 2 1 2
4
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    1 1 2 ,
1 21 1 2 2

d d
 

     
  

 
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The Hadamard-type inequality for s-convex functions in the second sense, defi ned on the coordinates of a rectangle in the plane 
2 , was established by Alomari and M. Darus in [21].

Alomari and M. Darus established similar inequalities of Hadamard's type for s-convex functions defi ned on the coordinates 
in the fi rst sense on a rectangle in the plane 2  [11] .  Hadamard inequality for h-convex functions defi ned on the coordinates of a 
rectangle in the plane 2  was introduced by Amer Latif and M. W. Alomari in [22].
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The Hermite-Hadamard Inequality spans a wide range of operator convex functions, giving rise to numerous intriguing 
inequalities within the dynamic fi eld of matrix analysis. A natural progression from the classical Hermite-Hadamard Inequality to 
Hermitian matrices could entail a double inequality. This extension aims to capture the interplay between the inherent properties 
of Hermitian matrices and the principles underlying the Hermite-Hadamard Inequality, potentially yielding new insights and 
applications in matrix analysis.

The Hermite–Hadamard-Mercer type inequality is an extension of the classical Hermite–Hadamard inequality. It provides a 
relationship between the average value of a function over an interval and the function's integral. Specifi cally, it states that if a 
function is convex (or satisfi es certain convexity conditions) on a given interval, then the average value of the function over that 
interval is greater than or equal to the value of the function at the midpoint of the interval. This inequality has various applications 
in mathematical analysis, optimization, and related fi elds. The literature regarding Hermite–Hadamard-Mercer inequality is as 
follows:

In 2003, Mercer authored a paper discussing a modifi cation of Jensen's Inequality [23]. In 2006, Pe ĉ arić and their colleagues 
introduced a concept of Mercer-type Jensen inequality for operator convex functions, accompanied by various applications [24]. 
Niezgoda in 2009, worked on the generalization of Mercer's result on the convex functions [25]. Hermite–Hadamard-Mercer-type 
inequality was introduced by Kian, et al. in 2013 [26]. Hermite–Hadamard-Mercer Inequality for h -convex functions are given by 
Xu, et al. in [27].

In mathematics, there's a crucial link between the value of a convex function evaluated at an integral and the integral of a convex 
function itself. This connection is formally termed Jensen's inequality, named after the Danish mathematician Johan Jensen, who 
formulated it in 1906. Jensen's inequality for convex functions holds a prominent place among the most celebrated inequalities in 
both mathematical and statistical realms. It serves as a foundational principle from which numerous other notable inequalities stem. 
Notably, Hölder's inequality and Minkowski's inequality emerge as special instances of Jensen's inequality for convex functions, 
highlighting its extensive applicability. Over time, a multitude of variations, refi nements, and generalizations of Jensen's inequalities 
have been developed and extensively investigated, underscoring its enduring importance and versatility across diverse mathematical 
contexts. For more detail, one can be seen [28-32].

The outline of the article is structured as follows: In Section 2, we provide fundamental defi nitions and preliminary concepts to 
establish a solid foundation for our subsequent discussions. In Section 3, we demonstrate the Jensen-Mercer inequality and Hermite–
Haamard–Mercer type inequalities for coordinated h-convex functions, contributing to the theoretical framework of our research. 
Section 4 presents numerical examples and computational analyses, offering empirical validation of the newly derived results and 
their practical signifi cance. Finally, in Section 5, we present our conclusions, summarizing the key fi ndings and implications of our 
study.

2. Preliminaries

In this secti on, we present some basic defi nitions and results which are required to establish the ongoing article.

Defi nition 1 

[33] Let I be a convex subset of a real vector space and : I      is said to be convex if 

( ) (1 ) ( ) ( (1 ) ),                        (2.1)

for all 0,1],  and , .I    

Defi nition 2 

[4] A function :[0, )    is said to be s-convex if

 1 1( ) (1 ) ( ) (1 ) ,s s                        (2.2)

for all 0,1], (0,1],  and , 0, ).1s      

Defi nition 3

Let  : 0,1h J     be a positive function. A function : I      is said to be h-convex or that F is said to belong to the class  ,S h I

, if F is non-negative and for all , I I    and  0,1  , we have

  ( ) (1 ) ( ) ( (1 ) ).h h                       (2.3)
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Defi nition 4 

[9] A mapping 2:     is convex on co-ordinates, if the following inequality holds:

          1 1 1 1, 1 , 1 , 1 ,                                              (2.4)

   for all , , , and 0,1],1 1     

Dragomir introduced a modifi cation for convex functions on coordinates, referred to as coordinated convex functions [9,10] as follows: 

A function 2:     is convex on the co-ordinates on Δ if the partial differentiable mappings    1 1 2 2: , , = ,          

and    2 2 2 2: , , = ,            are convex for all 1 1 2 2, , , .           

A formal defi nition of coordinated convex functions can be expressed as follows:

Defi nition 5

[20] A mapping 2:     is convex on co-ordinates, if the following inequality holds:

              
    

, 1 , 1 , 1 1 ,1 1 1 1
1 , 1 ,1 1

            

     

      

    

   



 


         (2.5)

     for all , , , and , 0,1 .1 1     

Defi nition 6

A mapping 2:     is h-convex on co-ordinates, if the following inequality holds:

           
           

    

, 1 , 1
1 , 1 1 ,1 1 1

1 , 1 ,1 1

h h h h

h h h h

     

       

     

 

    

    

 

 



 



     for all , , ,  and , 0,1 .1 1                                   (2.6)

Defi nition 7

 [7] Let F be h-convex function defi ned on the real interval .    If 3, , ,..., n     and 11 12 13 1, , ,..., 0,n      also  : 0,h      be a 
supermultiplicative function then

=1 =11

1( ) ,
n n

i
i i i

i in n

h



 
   

      
   

                (2.7)

where 
=1

= .
n

n ii
   

Defi nition 8 

[34] Let :h    be a supermultiplicative function .  Let 3, , ,..., n     and  1 2 3, , ,..., , 2 ,nq q q q n   such that 

=  and 1.=1 =1
qn n iQ q hn ii i Qn

 
  
 

   If F be h-convex function defi ned on the real interval ,    then for any fi nite positive increasing sequence 

  =1
,

n

k k
  we have

    ( )
=1

1 .
=1

n qihn iQi n
n
qn k kQ kn


 
  
 

 
  
 

  

   

  



  

 
            (2.8)
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Defi nition 9

[35] This defi nition provided by Stromer, describes a function :g I     as a super-multiplicative if it satisfi es the inequality

   ( ) ,g g g                                   (2.9)

for all , .I   Conversely, if the inequality is reversed, the function g is termed as sub-multiplicative. 

Example 1 

Consider the function   1
1=( ) ,pg     where 0. If 1 1,   then for  0,1p the function g is super-multiplicative, it means the 

function g satisfi es the inequality (2.9), on the other hand, p>1 the function g  is sub-multiplicative. 

3. Main results

In this section, we introduce Jensen-Mercer inequality and se veral Hermite–Hadamard-Mercer type inequalities tailored for 
coordinated h-convex functions.

Lemma 1

 Let 2:h J     is a non-negative supper multiplicative function, and , , , 0,1 ,a c b e      such that     1h a h c   and     1.h b h e   Then 

2:      is any co-ordinated h-convex function, and fi nite positive increasing sequences   =1

n

k k
  and   =1

.
n

k k
  Then,

 
         

,1 1
, , , , , ,1 1 1 1

n nk k

n n n n k k

     

         

   

    



    
          

(3.1)

where 1 .k n   

Proof. Assume that 1 20< ... n      and 1 20< ... ,n      also , , , 0,1 ,a c b e      such that     1h a h c   and     1.h b h e   Let us 
write 1= .k n k      Then 1 =n k k      so that the pairs 1, n   and ,k k   possess the same midpoint. Since that is the case there 
exists , 0,1 ,a c      such that

1= ,k na c  

1= .k nc a  

Similarly, it can be written as 1= .k n k      Then 1 =n k k      so that the pairs 1, n   and ,k k   share the same midpoint. Since 
that is the case there exists , 0,1 ,b e      such that

= ,1
= ,1

b e nk
e b nk

  

  





 where , 0,1  and 1 .s k n   

   
           
           

, = ,1 1
, ,1 1 1
, , ,1

c a e bn nk k
h c h e h c h b n

h a h e h a h bn n n

     

   

   

 

 

 

 

 

 

                            (3.2)

   
           
           

, = ,1 1
, ,1 1 1
, , .1

a c b en nk k
h a h b h a h e n

h c h b h c h en n n

     

   

   

 

 

 

 

 

 

            (3.3)

By Jensen inequality for co-ordinated h-convex functions and using (3.3)

 ,k k 

                       1 1 1 1, , , ,n n n nh c h e h c h b h a h e h a h b             
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               1 1 11 1 , 1 1 , nh a h b h a h e         

               11 1 , 1 1 ,n n nh c h b h c h e         

       1 1 1 1= , , , ,n n n n            

                     1 1 1, , nh a h b h a h b h a h e h a h e          

                     1, ,n n nh c h b h c h b h c h e h c h e           

       1 1 1 1, , , ,n n n n             

                       1 1 1 1, , , ,n n n nh a h b h a h e h c h b h c h e               

         1 1 1 1, , , , , ,n n n n k k                 

where                                    , , ,h a h b h a h b h a h b h a h e h a h e h a h e h c h b h c h b h c h b         and 

           h c h e h c h e h c h e    for , , , 0,1a c b e     .

Hence, we have

 1 1,n k n k        

         1 1 1 1, , , , , .n n n n k k                 

The proof of Lemma 1 is completed. 

Theorem 2

 Let 1 2 3, , ,..., nz z z z   and 1 2 3, , ,..., nq q q q  ,  2 ,n   such that 
=1

=
n

n kk
z  and 

=1
=

n

n kk
q . Also, assume that 2:h J     is a non-

negative supper multiplicative function with 
=1

1
n k
k

n

z
h
 

  
 

   and 
=1

1
n k
k

n

q
h
 

  
 

   respectively. If the function 2:      is co-ordinated 

h-convex on 1 1= , ,n n           then for any fi nite positive sequences   =1

n

k k
  and   =1

n

k k
  from .  Then

1 1
=1 =1

1 1,
n n

n k k n k k
k kn n

z q     
 

     
 

   

       1 1 1 1, , , ,n n n n             

 
=1 =1

, .
n n

k k
k k

k kn n

z q
h h  
   

       
   

                           (3.4)

Proof. Since 
=1

1 = 1
n

kk
n

z
 and 

=1

1 = 1,
n

kk
n

q
 we have:

1 1
=1 =1

1 1,
n n

n k k n k k
k kn n

z q     
 

     
 

   

   1 1
=1 =1

= ,
n n

k k
n k n k

k kn n

z q
     

 
     

 
   

 1 1
=1 =1

,
n n

k k
n k n k

k kn n

z q
h h      
   

          
   

   

         1 1 1 1
=1 =1

, , , , ,
n n

k k
n n n n k k

k kn n

z q
h h          
   

             
   

       

         1 1 1 1
=1 =1

= , , , , , .
n n

k k
n n n n k k

k kn n

z q
h h         
   

          
   

      

Hence the proof of Theorem 2 is completed. 
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Theorem 3

Suppose that 2
1 1 2 2: = , ,               be an h-convex function on co-ordinates on Δ and let  2L   and  1 0,1h L     . Then one 

has the inequalities: 

1 1 2 2
1 1 2 22

1 ,
2 214

2
h

   
   
  

    
   

  
  



    1 1 1 2 2 2

1 1 1 2 2 21 1 2 2

1 , d d
     

     
 

   
   

   


      

          21

1 2 1 2 1 2 1 2 0
4 , , , , h d                   

          21

1 2 1 2 1 2 1 2 0
, , , , ,h d                              (3.5)

where 1 1 1 1, ,        and 2 2 2 2, , .        

Proof. Since :  is h-convex function on co-ordinates also    2 2: , , = , ,            is h-convex on 2 2, ,    for all 

1 1, .      Then by Hermite–Hadamard-Mercer Inequality for h -convex functions

2 2
2 2

1
212

2
h

 
 
 

      
 
 



       2 2 2
2 2 2 2 2 2

2 2 22 2

1 d
  

  
       

 
 

 
              

  1

0
,h d  

i.e.

2 2
2 2

1 ,
212

2
h

 
 

 
     

 
 

 

   2 2 2

2 2 22 2

1 , d
  

  
 

 
 

 


   

      1

2 2 2 2 2 2 0
, , .h d                  

Integrating the above inequality with respect to  , we get 

 
1 1 1 2 2

2 2
1 1 1

1 1

1 ,
212

2

d
h

  

  

 
 

 

 

 

 
      

 

   

    1 1 1 2 2 2

1 1 1 2 2 21 1 2 2

1 , d d
     

     
 

   
   

   


      

   1 1 1
2 2 2

1 1 11 1

1 , d
  

  
  

 
 

 


  


   

      11 1 1
2 2 2 01 1 11 1

1 , .d h d
  

  
    

 
 

 


   

 
              (3.6)

Similarly, for the mapping    1 1: , , = , ,           we get

 
2 2 2 1 1

1 1
2 2 2

2 2

1 ,
212

2

d
h

  

  

 
   

 

 

 

 
      

 

 
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    1 1 1 2 2 2

1 1 1 2 2 21 1 2 2

1 , d d
     

     
 

   
   

   


      

   2 2 2
1 1 1

2 2 22 2

1 , d
  

  
    

 
 

 


  


 

      12 2 2
1 1 1 02 2 22 2

1 , .d h d
  

  
      

 
 

 


   

 
             (3.7)

By adding the inequalities (3.6) and (3.7), we get 

 
1 1 1 2 2

2 2
1 1 11 1

1 1 ,
214

2

d
h

  

  

 
 

 
 

 

  
        

 

   

 
2 2 2 1 1

1 1
2 2 22 2

1 ,
2

d
  

  

 
   

 
 

 

 
    

   
 

    1 1 1 2 2 2

1 1 1 2 2 21 1 2 2

1 , d d
     

     
 

   
   

   


      

   1 1 1
2 2 2

1 1 11 1

1 1 ,
2

d
  

  
  

 
 

 

  


   

   1 1 1
2 2 2

1 1 11 1

1 , d
  

  
  

 
 

 
  

    

   2 2 2
1 1 1

2 2 22 2

1 , d
  

  
    

 
 

 
  

  

      12 2 2
1 1 1 02 2 22 2

1 , .d h d
  

  
      

 
 

 

   
 

             (3.8)

Now by Hadamard's Mercer inequality for h-convex functions, we have:

1 1 2 2
1 1 2 2

1 ,
2 212

2
h

   
   
  

       
 
 



 
1 1 1 2 2

2 2
1 1 11 1

1 , ,
2

d
  

  

 
 

 
 

 

 
   

  
   

1 1 2 2
1 1 2 2

1 ,
2 212

2
h

   
   
  

       
 
 



 
2 2 2 1 1

1 1
2 2 22 2

1 , .
2

d
  

  

 
   

 
 

 

 
   

  
 

Adding these inequalities, we have:

1 1 2 2
1 1 2 2

1 ,
2 21

2
h

   
   
  

       
 
 



 
1 1 1 2 2

2 2
1 1 11 1

1 ,
2

d
  

  

 
 

 
 

 

 
   

  
   

 
2 2 2 1 1

1 1
2 2 22 2

1 , .
2

d
  

  

 
   

 
 

 

 
   

  
 

By dividing both sides of the above inequality 14 ,
2

h
 
 
 

 we get
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1 1 2 2
1 1 2 22

1 ,
2 214

2
h

   
   
  

    
   

  
  



 
1 1 1 2 2

2 2
1 1 11 1

1 1 ,
214

2

d
h

  

  

 
 

 
 

 

  
         

 

   

 
2 2 2 1 1

1 1
2 2 22 2

1 , .
2

d
  

  

 
   

 
 

 

 
    

   
             (3.9)

Finally, by the inequality (3.8), we get: 

   1 1 1
2 2 2

1 1 11 1

1 , d
  

  
  

 
 

 
 

    

      1

1 1 1 2 2 2 1 1 1 2 2 2 0
, , ,h d                          

   1 1 1
2 2 2

1 1 11 1

1 , d
  

  
  

 
 

 
 

    

      1

1 1 1 2 2 2 1 1 1 2 2 2 0
, , ,h d                          

   2 2 2
1 1 1

2 2 22 2

1 , d
  

  
    

 
 

 
 

  

      1

1 1 1 2 2 2 1 1 1 2 2 2 0
, , ,h d                          

   2 2 2
1 1 1

2 2 22 2

1 , d
  

  
    

 
 

 
 

  

      1

1 1 1 2 2 2 1 1 1 2 2 2 0
, , .h d                          

Adding the above inequalities, we get 

   1 1 1
2 2 2

1 1 11 1

1 1 ,
2

d
  

  
  

 
 

 


 


   

   1 1 1
2 2 2

1 1 11 1

1 , d
  

  
  

 
 

 
  

    

   2 2 2
1 1 1

2 2 22 2

1 , d
  

  
    

 
 

 
  

  

   2 2 2
1 1 1

2 2 22 2

1 , d
  

  
    

 
 

 


   

 
 

   1 1 1 2 2 2 1 1 1 2 2 2, ,                     

   1 1 1 2 2 2 1 1 1 2 2 2, ,                       

  21

0
.h d                                (3.10)

From (3.6)-(3.10), and by using Jensen Mercer inequality for co-ordinated h-convex functions, we get (3.5). The proof of Theorem 
3 is completed. 



199

https://www.mathematicsgroup.us/journals/annals-of-mathematics-and-physics

Citation: Toseef M, Zhang Z, Mateen A, Budak H, Kashuri A (2024) Refinement of Jensen Mercer and Hermite–Hadamard-Mercer type inequalities for generalized 
convex functions on co-ordinates with their computational analysis. Ann Math Phys 7(2): 190-205. DOI: https://dx.doi.org/10.17352/amp.000123

Corollary 1

If we replace  = s   in Theorem 3, we get the inequalities:

1 1 1 2 2
1 1 2 24 ,

2 2
s    

      
    

 


    1 1 1 2 2 2

1 1 1 2 2 21 1 2 2

1 , d d
     

     
 

   
   

   


      

       
 

1 2 1 2 1 2 1 2
2

, , , ,
4

1s

           
  

   

       
 

1 2 1 2 1 2 1 2
2

, , , ,
.

1s

           
  

   

 

          (3.11)

Remark 1

If we replace  =   in Theorem 3, we get the inequalities,

1 1 2 2
1 1 2 2,

2 2
   

   
  

    
 



    1 1 1 2 2 2

1 1 1 2 2 21 1 2 2

1 , d d
     

     
 

   
   

   


      

       1 2 1 2 1 2 1 2, , , ,             

       1 2 1 2 1 2 1 2, , , ,
,

4

          
  
  

   
          (3.12)

which are already proved by Toseef, et al. 

Remark 2 

If we replace  =  , and 1 1 1 1 2 2= , = , = ,       and 2 2= ,   in Theorem 3, we get the inequalities, 

1 1 2 2,
2 2

     
 
 



    1 2

1 21 1 2 2

1 , d d
 

 
 

   


      

       1 2 1 2 1 2 1 2, , , ,
,

4

         

   

         (3.13)

which are already proved by Dragomir in [8]. 

Remark 3 

If we replace   1=


 , and 1 1 1 1 2 2= , = , = ,       and 2 2= ,   in Theorem 3, we get the inequality:

1 1 2 2,
2 2

     
 
 



    1 2

1 21 1 2 2

16 , .d d
 

 
 

   


                 (3.14)

Remark 4

If we replace 1 1 1 1 2 2= , = , = ,       and 2 2= ,   in Theorem 3, we get the inequalities,

1 1 2 2
2

1 ,
2 214

2
h

     
 
   

  
  


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    1 2

1 21 1 2 2

1 , d d
 

 
 

   


      

          21

1 2 1 2 1 2 1 2 0
, , , , ,h d                           (3.15)

which are already proved by Alomari and Latif in [21]. 

4. Numerical examples and computational analysis

In this section, we give numerical examples and computational analysis of newly derived inequalities. 

Example 2 

     2 2
, = 1 1

s s
      is h -the convex function on  2,10 2,10 0, ) 0, ), 0.1s             then there are three cases 

      1(i) = ,(ii) = ,(iii) = .sh h h    


In the fi rst  case:  = sh   , =0.1s  

1 1 1 2 2
1 1 2 24 ,

2 2
s    

      
    

 


2 2

1 1 1 2 2
1 1 2 2=4 1 1

2 2

s s

s    
        

        
   

0.2 0.2
0.1 1 3 7 3 7=4 2 10 1 2 10 1

2 2
     

        
   

=0.5880,                (4.1)

    1 1 1 2 2 2

1 1 1 2 2 21 1 2 2

1 , =2.0352,d d
     

     
 

   
   

                    (4.2)

       
 

1 2 1 2 1 2 1 2
2

, , , ,
4

1s

           
  

   

       
 

1 2 1 2 1 2 1 2
2

, , , ,

1s

           
  

   

=16.0273.                (4.3)

In the second case:  =h  

1 1 2 2
1 1 2 2,

2 2
   

   
  

    
 



2 2

1 1 2 2
1 1 2 2= 1 1

2 2
   

   
    

        
   

2 2
3 7 3 7= 2 10 1 2 10 1

2 2
    

        
   

=1296,               (4.3)

    1 1 1 2 2 2

1 1 1 2 2 21 1 2 2

1 , = 1393.778,d d
     

     
 

   
   

                   (4.4)

       1 2 1 2 1 2 1 2, , , ,            
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       1 2 1 2 1 2 1 2, , , ,

4

          
  
  

   

=6324.0.                (4.5)

In the third case:   1=h 


1 1 2 2
1 1 2 2

1 , =81,
16 2 2

   
   
  

    
 



    1 1 1 2 2 2

1 1 1 2 2 21 1 2 2

1 , = 1393.778.d d
     

     
 

   
   

         

From inequalities (4.1)-(4.6), Table 1, and Graph we can conclude that inequalities of Theorem 3 are better when 0s   and worse 
when 1.s   

Example 3 

 , = se    is h -the convex function on  2,10 2,10 0, ) 0, ), 0.1s             then there are three cases  i   = ,sh     ii   = ,h     iii  

  1= .h 


In the fi rst case:  = sh   , =0.1s  

1 1 1 2 2
1 1 2 24 ,

2 2
s    

      
    

 


1 1 2 2
1 1 2 22 21=4

s
s e

   
   
   
     
     

3 7 3 7
0.1 2 10 2 10

2 20.1 1=4 e
   

     
   

=38.5646,               (4.7)

    1 1 1 2 2 2

1 1 1 2 2 21 1 2 2

1 , =269.08,d d
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Table  1: Comparative analysis of Inequalities of Theorem 3 for different values of 's' of Example 2.

  s  Left Inequality  Middle Inequality  Right Inequality 

 0.1  0.5800  2.0352  16.0273 

 0.2  1.3831  4.1549  24.3931 

 0.3  3.2534  8.5082  41.4191 

 0.4  7.6526  17.4753  76.3889 

 0.5  18.000  36.000  149.333 

 0.6  42.3388  74.3783  303.732 

 0.7  99.5877  154.111  634.494 

 0.8  234.246  320.212  1349.81 

 0.9  550.983  667.166  2908.3 

 1.0  1296.0  1393.778  6324.0 
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=72742.               (4.9)

In the second case:  =h  

1 1 2 2
1 1 2 2,

2 2
   

   
  

    
 



1 1 2 2
1 1 2 22 20=4 e

   
   
   
     
  
  

3 7 3 7
2 10 2 10

2 2=e
   

     
  

21= 1.1524 10 ,              (4.10)

     311 1 1 2 2 2

1 1 1 2 2 21 1 2 2
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     

     
 

   
   

   

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In the third case:   1=h 

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
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From inequalities (4.17)-(4.12), we can conclude that inequalities of Theorem 3 are better when 0s   and worse when 1.s   

Remark 5

Clearly, in Example 2, from Table 1 and Figure 1 our newly established inequalities give better results when 0.s   

Remark 6

Clearly, in Example 3, from Table 2 and Figure 2our newly established inequalities give better results when 0.s   

5. Applications

Hermite-Hadamard–Mercer inequality has several applications in mathematical analysis and optimization. Here are some 
potential areas of application:

Figure 1: Comparative Analysis of Inequalities of Theorem 3 when 's' lies between 0 and 1.
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1. Mathematical analysis

Hermite-Hadamard–Mercer inequality provides tighter bounds and more precise estimates, enhancing theoretical  understanding 
and practical applications. General convex functions offer insights into broader applications where traditional convexity concepts are 
insuffi cient.

2. Optimization

Improved inequalities can enhance the performance and accuracy of optimization algorithms, especially those that rely on 
convexity assumptions. In operations research, refi ned inequalities can lead to more effi cient solutions for resource allocation 
problems by providing better bounds and estimates.

3. Computational analysis

Computational analysis of these inequalities can help in developing numerical methods that are more effi cient and accurate. 
Refi ned inequalities can improve the fi delity of simulations and models that involve convex functions or require precise bounds for 
their operations.

4. Economics and fi nance

In fi nancial mathematics, tighter inequalities can improve risk assessments and pricing models by providing more accurate 
estimates. Enhanced convex function analysis can refi ne economic models, leading to better predictions and insights.

5. Engineering

In control theory, refi ned inequalities can lead to more precise control algorithms, improving system stability and performance. 
Better bounds and estimates can improve signal processing techniques, leading to clearer and more accurate results.

6. Conclusion

In this article, we demonstrated the Jensen-Mercer inequality for coordinated h-convex functions and introduced the novel 
Hermite–Hadamard-Mercer type inequalities tailored for coordinated h-convex functions, leveraging a newly discovered 

Table  2: Comparative analysis of Inequalities of Theorem 3 for different values of 's' of Example 3.

  s  Left Inequality  Middle Inequality  Right Inequality 

 0.1  38.5646  269.08  72742 

 0.2  594892  223657  1.34767×109 

 0.3  917671  3.20339×108  2.5293×1013 

 0.4  1.41558×108  5.8682×1011  4.8038×1017 

 0.5  2.1837×1010  1.2290×1015  9.21733×1021 

 0.6  3.3685×1012  2.7992×1018  1.7844×1026 

 0.7  5.1962×1014  6.7541×1021  3.4861×1030 

 0.8  8.0155×1016  1.6997×1025  6.8403×1034 

 0.9  1.2365×1019  4.4163×1028  1.3523×1039 

 1.0  1.1524×1021  5.3422×1031  9.9887×1042 

Figure 2: Comparative Analysis of Inequalities of Theorem 3 when 's' lies between 0 and 1.
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inequality. We provided numerical examples and conducted computational analyses of the derived inequalities, showcasing their 
superior estimation capabilities compared to previously established results. This work signifi cantly contributes to the evolution of 
mathematical theory and its real-world applications by effectively connecting theoretical concepts with practical problem-solving 
methodologies. It represents a fresh trajectory in the realm of inequalities, offering valuable insights for researchers immersed in 
this domain.
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