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Abstract

This research paper introduces a predator-prey system in which both organisms depend on a common sustenance source. In order to establish environmental 
dynamics that are more plausible, we integrated climatic effects on the predator population by implementing a sigmoidal function. The objective is to study the impact of 
climate on the population dynamics of interacting species by employing mathematical tools like stability analysis and Artifi cial Neural Networks. By employing meticulous 
mathematical analysis, we were able to ascertain the equilibrium points of the system and examine their stability on a global scale. Our investigation covered both diffusive 
and non-diffusive models, providing insight into the unique dynamical characteristics of each. Moreover, in order to leverage the capabilities of modern computational 
methods, a neural network strategy was implemented to analyses the system's complexities in greater detail. In conclusion, exhaustive diagrams were used to meticulously 
illustrate the effect of varying parameters, thereby providing invaluable insights into the behavior of the system under various conditions.
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Introduction

The concept of prey-predator communication was fi rst 
presented by Lotka (1925) and Volterra (1926) [1] in their 
groundbreaking research. Holling [2] further expanded on this 
concept by developing prey-predator models that included 
three different types of functional responses to explain the 
dynamics of predation. These models of biological interest are 
developed using nonlinear systems, which are represented by 
ordinary and partial differential equations. The mathematical 
model of prey-predator dynamics is infl uenced by the prey-
predator mathematical model derived from the coexistence of 
foxes and rabbits. Foxes prey on rabbits, while rabbits consume 
clover. The safety of rabbits will rise as the population of foxes 
drops, and conversely, if the rabbit population declines, the 
fox population will grow [3]. The population dynamics of the 
two kinds of animals, characterized by declining and growing 
trends, are modeled using ordinary differential equations for 
a nonlinear prey-predator system. The relationship between 
predators and their prey has a rich historical background 

and will persist as a fundamental concept in mathematical 
ecology due to its global importance and inherent truth [4]. 
Mathematical biology frequently involves the utilization of 
both modelling and simulations. Biological structures are 
commonly depicted using systems of nonlinear Ordinary 
Differential Equations (ODEs). Nonlinear Ordinary Differential 
Equation (ODE) models are frequently distinguished by their 
inherent challenge in determining solutions. These objects are 
typically categorised as rigid or impractical and are recognised 
for presenting substantial diffi culties and intricacies when 
trying to fi nd analytical solutions. Therefore, the very effi cient 
and powerful approach for fi nding numerical solutions to these 
nonlinear systems has attracted considerable attention. The 
predominant focus of the research community has been on 
prey-predator models that involve interactions between two 
variables, namely interspecifi c interactions. However, Danca, 
et al. [5], Jing, et al. [6], Liu, et al. [7], and Elabbasy, et al. 
[8] have published work on discrete-time nonlinear models 
of prey-predator dynamics. The durability of the dynamics 
in discrete-time models surpasses that of continuous-time 
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systems in terms of longevity. Summers, et al. conducted 
research on four discrete-time ecosystem models that were 
infl uenced by periodic forcing effects [9]. In a separate study, 
Danca, et al. collaborated with Holling to examine the chaotic 
dynamics of discrete-time prey-predator systems [5]. In 
recent times, several novel techniques have been developed 
to effectively address these types of nonlinear issues. Some 
examples of methods used in this study include the Runge-
Kutta-Fehlberg method, the Laplace Adomian decomposition 
method [10], the differential transformation method [11], 
the fi nite element method [12], the Sumudu decomposition 
method [13], the Homotopy analysis method [14], the new 
coupled fractional reduced differential transform method 
[15], and the confi dence. There are pros and cons to each of 
these predictable methods. On the other hand, bio-inspired 
and nature-inspired heuristics-based stochastic solvers have 
not yet been used to solve nonlinear systems that describe 
prey-predator models. In [16] global stability of the diffusive 
and non-diffusive predator-prey model is discussed in which 
common food is considered for both species. In [17,18] authors 
have presented three species of predator-prey systems taking 
the common food by predator and a prey species and disease in 
the interacting species. In [19] fractional-order predator-prey 
model is presented and analysed.

Stochastic computing paradigms that use artifi cial 
intelligence algorithms have been successfully implemented to 
solve linear and nonlinear models in many applications within 
the fi elds of applied science and technology [20,21]. Some 
notable recent applications of stochastic solvers include solving 
nonlinear system models for electrical conducting solids [22], 
representing atomic physics models using the Thomas-Fermi 
equation [23], modelling fuzzy-type nonlinear differential 
equations [24], studying combustion theory models for fuel 
ignition [25], and analysing nonlinear Navier-Stokes systems 
[26]. Nonlinear systems of pantograph delay differential 
equations [27], Volterra integral systems [28,29], nanofl uids 
models of mechanics [30], Fredholm integral equations [31], the 
spherical cloud of gas model [32], astronomy models of Flierl–
Petviashivili type [33], control systems of fractional order 
[34], bilinear programming models [35], nonlinear Jeffery–
Hamel fl ow containing nanoparticles [36], and nonlinear Bratu 
models [37]. These facts not only highlight the importance 
of stochastic solvers in various applications, but also provide 
motivation for authors to conduct exploration and exploitation 
in order to develop a precise, dependable, resilient, stable, and 
effi cient computing paradigm for nonlinear prey-predator 
problems.

This study explores the predator-prey model, examining 
the impact of climate on species interactions. It uses neural 
networking techniques to predict future scenarios, enhancing 
our understanding of ecological systems and contributing to 
artifi cial neural networking techniques. The study integrates 
climate variables into the predator-prey framework, revealing 
a more comprehensive understanding of species balance 
in the face of environmental changes. The main aim of this 
research is to investigate the climatic effects along with future 
predictions about the behavior of the model by using ANN. The 

visual representation of results through plots captivates the 
scientifi c community and opens up new explorations.

The setting of this paper is presented ahead. The second 
section deals with the modeling of the predator-prey system. 
The third section deals with the equilibrium points of the 
model along with the stability of a non-diffusive system. The 
fourth section deals with the stability self-diffusive system. 
Simulations are presented in section fi ve. In sections (6) and 
(7) discussion and conclusion are presented.

The model

The interaction between species in predator-prey modeling 
is greatly affected by environmental factors such as the 
availability of food, water, shelter, and many more to name 
a few. It has been observed that climatic factors are crucial 
in this regard. Climate changes are affecting the population 
throughout the globe. We consider a predator-prey model in 
which predator and prey depend on a common food resource 
and predators are being affected by the environmental changes. 
This system is an extension of the system presented in [16], in 
which two species relying on a common food were considered. 
We defi ne the following system of Ordinary Differential 
Equations (ODEs):
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Where P and N are respectively the functions of predator 
and prey. Here f shows the common resource and a, b are 
consumption rates of food by predator and prey, respectively. 
The predation rate is α, the temperature-dependent term 

1 e


T

k
 introduces a sigmoidal response to temperature 

changes, infl uencing the predator population. A further 
breakdown of the involved parameters is given next. k Displays 
the sensitivity of the predator population to temperature 
changes, 𝛿T, and 𝜎 respectively show the difference between 
the current temperature and reference temperature and width 
parameter of the sigmoidal temperature response. 

Stability analysis for non-diffusive system

In this section, we present the equilibrium points of the 
model and the analysis of the fi xed points for the global 
stability of coexistence fi xed points. 

To fi nd the equilibrium points we solve the following 
system of equations
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The solution of the above system leads to the following 
result.
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Theorem.1 Suppose the inequalities hold for positive 
parameters of the model (1)-(3), then (P*, N*) is Lyapunov 
stable in φ.

Proof: We consider the Lyapunov function [16] given below
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The derivative of (9) leads to the following
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As (P*, N*) is an equilibrium point, we have
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We further simplify the above equation
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Some more simplifi cations lead to the following 
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Which proves the Lyapunov stability.

Stability analysis for the diffusive system

Within the dynamical population model, habitat structure 
is infl uenced by random walks, with species movement 
dictated by environmental factors such as food resources and 
protection. The stochastic nature of this movement exhibits 
variation across locations due to the diverse environmental 
conditions. Furthermore, the density of species within their 
habitats demonstrates variability.

The following section deals with the implications of 
diffusion on the coexistence of species.

The self-diffusion sys tem for (1-2) can be written as
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In the provided mathematical framework, P(x,t) and N(x,t) 
represent the respective population densities of predators and 
prey at a designated location x within the defi ned domain    at 
time t. The domain Ω possesses a smooth boundary denoted 
as ∂Ω, and  signifi es the outward unit normal vector on this 
boundary.

The Neumann boundary conditions stipulate that there 
is no population fl ux across the boundary. This condition 
enforces a balance at the edges of the domain, ensuring that 
the population dynamics of both predators and prey are subject 
to equilibrium or stability at the boundary. The initial condition 
is as under

{P(x, 0) (x) 0, N(x, 0) (x) 0}0 0 0P N                      (15)

Here d11, d22, are non-negative self-diffusion parameters. 
The solution to the above system has global existence and 
boundedness, according to Hollis results. 

Theorem 2 Let Ω be a bounded domain with smooth 
boundary ∂Ω. Suppose a, b, d11, d22 and f be positive and (19) 
holds then (P*, N*) of (12-13) is Lyapunov stable in 

 { , , 0, 0}P N P N    .

Proof. It is obvious that {(P, N), P = 0}, {(P, N), N = 0} are 
the invariant manifolds. We establish the Lyapunov function to 
determine the stability of the self-diffusive system as shown 
below 
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Now taking derivative with respect to “t” on both sides, 
we get 
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By applying Green’s fi rst identity we have 
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Hence the result.

Implications of artifi cial neural network

Figure 1 illustrates a feed-forward ANN with input, hidden, 
and output layers. The input layer has four neurons, each 
receiving one input signal. The hidden layer has 10 neurons, 
each receiving a weighted sum of outputs from the input layer. 
The output layer has two neurons, each receiving a weighted 
sum of outputs from the hidden layer. The diagram shows the 
direction of information fl ow, with arrows pointing from the 
input layer to the hidden layer and output layer. The ANN is 
used for future load profi le prediction. 

Table 1 presented herein demonstrates the multifaceted 
impacts of temperature variation, prey accessibility, food 
consumption rate, and food availability on predator-prey 
dynamics. The nuanced relationships within ecosystems are 
underscored by the varying values for each factor in the three 

cases (Case 1, Case 2, and Case 3). The environmental parameters 
that are depicted in the variants offer valuable insights into 
their impact on the dynamics of predator-prey systems. Table 
2 presents a detailed summary of the performance metrics 
related to physical quantities that affect a model, with a special 
emphasis on the infl uence of temperature (𝛿T), food (f), and 
food consumption rate by prey (b). The fi ndings are shown 
in three main stages: Training, Validation, and Testing. The 
table shows that 𝛿T has a negligible effect, with performance 
metrics of 1.79 × 10-8, 2.09 × 10-8, and 5.09 × 10-8 for training, 
validation, and testing, respectively. The gradient associated 
with the model denoted as Grad, is 1.79 × 10-8, which indicates 
that the model's convergence during training is steady. 
Additionally, the model's sensitivity, represented as Mu, is 
8.79 × 10-9. Regarding the food effect (f), the model exhibits 
marginally higher values in all stages, with a performance of 
3.21 × 10-6, 2.02 × 10-6 and 6.01 × 10-6 for training, validation, 
and testing, respectively. The gradient and sensitivity values 
are within the permissible limits, measuring at 3.21 × 10-6 
and 7.9 × 10-9, respectively. The food consumption rate (b) is 
shown by metrics of 4.56 × 10-9, 2.16 × 10-9 and 5.16 × 10-9 for 
training, validation, and testing, respectively. These metrics 
indicate a lesser infl uence on food consumption rate compared 
to food itself. The gradient coeffi cient is 4.56 × 10-9, while the 
sensitivity coeffi cient is 6.7 × 10-9. The convergence of different 
physical values is achieved after a varying number of epochs. 
Specifi cally, 𝛿T converges after 312 epochs, f after 234 epochs, 
and b after 567 epochs. The assessment process takes 5 seconds 
for f, 6 seconds for 𝛿T, and 8 seconds for b.

Simulations and results

We present the effects of different parameters on the 
system (1-2) through plots. The phase portraits along with 
the time series solution are presented for different values of 
parameters. In the same section, we provide the analysis of 
results via Neural Networking.

Discussion

In Figure (2-4) the values of parameters are taken as a = 
0.9, b = 0.79, a = 0.0092, m = 0.31, k = 0.071, 𝛿T = 10,  = 0.1 and n = 
0.001. We have taken f = 0.9, 1.5 in plots 1, 2, and 3 respectively. 
Here P(0) = 92, N(0) = 50. The visual representations of plots 
offer a captivating insight into the complex dynamics of the 
predator-prey system, particularly emphasizing the pivotal 
role of the shared food resource, the prey's consumption 
rate, and the temperature differential. Observing Figures (2-
4), it becomes evident that the predator population exhibits 
a pronounced positive response to an escalating value of f. 
This underscores the criticality of a plentiful food source in 
bolstering predator numbers. Such a correlation resonates 
with ecological principles, where the availability of resources 
directly infl uences population dynamics. In Figures (5-7) 
the values of parameters are taken as a = 0.73, b = 0.979, a = 
0.0092, m = 0.31, k = 0.071, 𝛿T = 15,  = 0.01, n = 0.01 and f = 
0.9. We have taken b = 0.179, 0.579, and 0.979 in plots 4, 5, and 
6 respectively. Here P(0) = N(0) = 30. Delving into Plot (5-7), 
a compelling trend emerges: as the prey's consumption rate 
of f intensifi es, so does its population. This direct relationship 

Figure 1: Schematic representation of an artifi cial neural network (ANN) designed 
to predict future load profi les.

Table 1: Environmental Factors' Comparative Infl uence on Predator-Prey Dynamics.
Situation Variants Case (1) Case (2) Case (3)

1 Temperature Difference 0.1 10 20
2 Food 0.19 1 5
3 Rate of food consumption by prey 0.179 0.579 0.95
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Figure 2: Impact of food at f = 0.90.

Figure 3: Impact of food at f = 1. 

Figure 4: Impact of food at f = 5.

Figure 5: Impact of food consumption rate at b = 0.179.
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underscores the fundamental ecological tenet that enhanced 
consumption of resources fosters prey proliferation, leading to 
cascading effects up the trophic levels. In Figures (8-10) the 
values of parameters are taken as a = 0.73, b = 0.979, α = 0.0092, 
m = 0.31, k = 0.071, 𝛿T = 10,  = 0.71, n = 0.01 and f = 0.9. We 
have taken 𝛿T = 0, 10, and 20 in plots 7, 8, and 9 respectively. 
Here P(0) = 4, N(0) = 5. The most intriguing revelations 
come from Plots (8-10). As widens, a conspicuous surge in 
the predator population is observed. This can be attributed 
to thermoregulatory advantages conferred upon predators, 
enabling them to capitalize on temperature-driven ecological 
advantages. The escalating predator numbers in response 
to temperature gradients accentuate the intricate interplay 
between climate and predator-prey dynamics. In summation, 
these plots not only elucidate the multifaceted relationships 
within the predator-prey system but also underscore the 
profound impacts of environmental variables. They serve as a 
testament to the intricate ballet of nature, where subtle shifts 
in resources and climate can orchestrate signifi cant changes 
in ecological dynamics. Figure 11(a) displays a Mean Squared 
Error (MSE) graph of a neural network-based prediction 
model for temperature difference T. The model achieved its 
lowest MSE at epoch 8, with training performance generally 
lower than validation. Test performance is lower than training 
but higher than validation, indicating good generalization to 
unseen data. The model's performance is attributed to its low 

MSE on the validation set and its ability to generalize well to 
unseen data. The image highlights the model's accuracy and 
generalization capabilities. Figure 12(a) shows a graph of the 
best validation performance for a feed-forward neural network 
at each epoch. The performance increases rapidly in the early 
epochs, reaching a peak at 122.1924 at epoch 40. The training 
performance is always higher than the validation performance. 
Validation performance measures how well a model will 
perform on unseen data, calculated by evaluating the model on 
a separate dataset. The peak at epoch 40 is due to the model's 
best balance between underfi tting and overfi tting. Training 
performance is always higher than validation performance 
because the model is trained on training data.

Figure 13 depicts a graph illustrating the training and 
validation performance of a machine learning model. The 
graph consists of four curves: blue, green, red, and purple. The 
training outputs closely follow the targets, indicating good 
learning. However, the validation outputs are not as closely 
following the targets, suggesting overfi tting. The graph's "Best 
Validation Performance" is 550.8533 at epoch 5, indicating the 
model's best performance on validation data. The model's 
generalization is not good, suggesting further tuning or 

regularization. Figure 11(b) shows that the model is still learning 

at epoch 14, with a gradient of 5.5324 and validation checks 

of 6. The temperature difference T could impact the learning 

Figure 6: Impact of food consumption rate at b = 0.579.

Figure 7: Impact of food consumption rate at b =0.979.
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process, leading to the exploration of the parameter space and 

fi nding the global minimum. Lower temperature differences 

may lead to stable convergence but may prevent the model 

from fi nding the global minimum. The optimal temperature 

difference depends on the problem's complexity, data set size, 

and desired accuracy. Figure 12(b) shows a graph of a machine 

learning model's performance during training. It shows the 

gradient, validation checks, and epochs. The gradient starts 

high and gradually decreases as the model approaches optimal 

performance. The validation checks initially increase before 

fl uctuating. The "val fail gradient" threshold is used to prevent 

overfi tting by stopping the training process if the checks fall 

below a certain level. The model achieved a gradient of 5.5324 

and a validation check score of 6 at epoch 14, with a learning 

rate of 1. Figure 13(b) shows a machine learning model's 

training and validation performance. The model maintains a 

constant number of validation checks and graduates, indicating 
learning and improving data classifi cation. However, a gap 
between blue and green lines suggests a misclassifi cation. The 
model's training outputs closely follow targets, indicating good 

Figure 8: Impact of temperature diff erence at T = 0.

Figure 9: Impact of temperature diff erence at T = 10.

Figure 10: Impact of temperature diff erence at T = 20.
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a) b)

c) d)

e)

Figure 11: Visual Overview of Training Progress and Performance Metrics for Temperature Difference. (a). Results of MSE for case-1 (b). Results of 
transition case-1; (c). Error bar plot case-1 (d). Fitness plot case-1; (e). Regression illustration case-1
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a) b)

c) d

e

Figure 12: Visual Overview of Training Progress and Performance Metrics for Food.  (a). Results of MSE case-2 (b). Results of transition case-2; (c). 
Error bar plot case-2 (d). Fitness plot case-2; (e). Regression illustration case-3
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a) b)

c) d)

e)

Figure 13: Visual Overview of Training Progress and Performance Metrics for Rate of food consumption by prey. (a). Results of MSE case-3 (b). Results 
of transition case-3' (c). Error bar plot case-3 (d). Fitness plot case-3; (e). Regression illustration case-3 
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learning, but validation outputs. Figure 12(c) illustrates the 
impact of temperature difference at 𝛿T on error histograms. 
The histogram shows the difference between predicted outputs 
and actual targets, with bins representing different error 
ranges. The training line has the most peaked errors, while 
the validation and test lines have less peaked ones. Overall, the 
temperature difference negatively impacts the neural network's 
performance. Figure 12(c) shows three graphs illustrating the 
performance of the machine learning model during training. 
The top graph shows the gradient, which indicates the model's 
learning rate, which starts high and gradually decreases as 
it approaches optimal performance. The middle graph tracks 
the model's performance on a separate data set, indicating its 
generalization beyond the training data. The bottom graph 
shows the val fail gradient, a threshold for validation checks, 
which stops the training process if the gradient falls below 
it. The text box displays the current values of the gradient, 
learning rate, and validation checks at epoch 14. 

Figure 13(c) shows the training and validation results of a 
function, fi tting a system. The model's training MSE decreases 
rapidly, indicating good learning, while the validation MSE 
overfi ts the training data. The test MSE is higher, indicating 
the model needs further tuning or regularization. Figures 11,12, 
and 13(d) illustrate the results of fi tting a function to a system's 
output element 1, with training targets in blue, training 
outputs in green, validation targets in red, and validation 
outputs in purple, illustrating the system's performance. 
Figures 11,12,13(e) display the purposes of training, validation, 
and testing of the scenarios. The primary objective of this 
inquiry was to evaluate the accuracy of data prediction and 
forecasting. A regression result of R = 1 implies a high degree of 
correlation between the target and output variables throughout 
the computation.

Conclusion

Upon synthesizing the insights obtained from our thorough 
analysis, it becomes indisputable that the predator-prey system 
comprises complex inter-dependencies. This relationship 
is supported by the consumption rates, environmental 
temperature gradients, and the dynamics of a shared food 
resource. By employing modern computational techniques 
such as neural networks and rigorous mathematical analysis, 
our research has shed light on the signifi cant consequences 
that resource abundance, consumption patterns, and 
climatic fl uctuations have on ecological dynamics. The subtle 
equilibrium of natural systems is underscored by the undeniable 
positive correlation between f and predator proliferation, the 
direct infl uence of b on prey populations, and the nuanced 
response of predators to temperature gradients. The results 
of this study not only contribute to the advancement of 
knowledge regarding ecological principles but also emphasize 
the importance of comprehensive conservation approaches 

that acknowledge the complex interaction between biotic and 
abiotic elements. It is incumbent upon us, as custodians of 
the environment, to heed the advice contained within these 
analyses. The complex interaction between predators and 
prey, infl uenced by the patterns of resource availability and 
climatic fl uctuations, serves as a powerful reminder of the 
resilience and vulnerability of nature. In this era of fast-paced 
environmental changes, the fi ndings of this study urge us to 
adopt a mindset of sustainable coexistence. It emphasizes the 
need to achieve a harmonious relationship between different 
species and their environment, not only as a goal but as a 
shared necessity. Predator-prey interaction has been studied 
for many decades, but the complexity of the relationship opens 
a vast scope of research on this interaction. New trends like 
non-integer order models deal the complexity in a better way, 
in the future we shall look at the fractional-order model to 
study the complexity of the relationship.
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